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Abstract

The performance of Federated Learning (FL) hinges on
the effectiveness of utilizing knowledge from distributed
datasets. Traditional FL methods adopt an aggregate-then-
adapt framework, where clients update local models based
on a global model aggregated by the server from the previ-
ous training round. This process can cause client drift, es-
pecially with significant cross-client data heterogeneity, im-
pacting model performance and convergence of the FL al-
gorithm. To address these challenges, we introduce FedAF,
a novel aggregation-free FL algorithm. In this framework,
clients collaboratively learn condensed data by leveraging
peer knowledge, the server subsequently trains the global
model using the condensed data and soft labels received
from the clients. FedAF inherently avoids the issue of
client drift, enhances the quality of condensed data amid
notable data heterogeneity, and improves the global model
performance. Extensive numerical studies on several pop-
ular benchmark datasets show FedAF surpasses various
state-of-the-art FL algorithms in handling label-skew and
feature-skew data heterogeneity, leading to superior global
model accuracy and faster convergence.

1. Introduction
Federated Learning (FL) algorithms typically follow an it-
erative aggregate-then-adapt paradigm in which clients use
their local private data to refine a global model provided by
a central server. These locally updated models are subse-
quently returned to and aggregated by the server, where the
global model is updated through averaging the local models
according to predetermined rules [26]. Given the decen-
tralized nature of client data in FL, substantial variations
in the clients’ data distribution are common. This scenario
results in non-Independent and Identically Distributed (non-
IID) data across clients, often referred to as data heterogene-
ity. Such heterogeneity presents considerable challenges to
the convergence of FL algorithms, primarily due to the sig-
nificant drift in local learning paths among clients [15, 30].
This phenomenon, known as client drift, can significantly

(a) Aggregate-then-adapt FL approach

(b) Aggregation-free FL approach

Figure 1. The conventional aggregate-then-adapt approach (a) is
prone to client drift in data-heterogeneous scenarios, as clients up-
date a downloaded global model and risk forgetting prior knowl-
edge. In contrast, the aggregation-free paradigm (b) has the server
train the global model directly using condensed synthetic data
learned and shared by clients, which circumvents the client drift
issue.

decrease the accuracy of the global model. [20, 39, 40].
Most existing efforts to address the challenge of data

heterogeneity have focused either on modifying the local
model training with additional regularization terms [1, 10,
15, 19, 22] or on utilizing alternative server-side aggrega-
tion or model update schemes [5, 13, 24, 29, 35, 41]. Nev-
ertheless, these methods remain constrained by the conven-
tional aggregate-then-adapt framework, as depicted in Fig-
ure 1a. In scenarios with strong cross-client non-IID data
distribution, the fine-tuning of the global model over local
data becomes susceptible to catastrophic forgetting. This
means that clients tends to forget the knowledge learned in
the global model and diverge away from the stationary point
of global learning objective when they update the model in-
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dividually [9, 14].
Recent works on data condensation [4, 31, 32, 36–38]

suggest an aggregation-free paradigm that has the poten-
tial to overcome the limitations mentioned above in FL
with privacy preservation. As depicted in Figure 1b, in
this new framework, each client first learns a compact set
of synthetic data (i.e., the condensed data) for each class
and then shares the learned condensed data with the server.
The server then utilizes the received condensed data to di-
rectly update the global model. However, in the current re-
search on the aggregation-free method [25, 34], two critical
open challenges emerge: First, significant cross-client data
heterogeneity can compromise the quality of locally con-
densed data, adversely affecting the global model training.
Second, relying exclusively on condensed data for global
model training can result in reduced convergence perfor-
mance and robustness, particularly when the quality of the
received condensed data is sub-optimal.

Motivated by the above research gap, this paper presents
FedAF, a novel aggregation-free FL algorithm tailored to
combat data heterogeneity. At the heart of our research
is the question of how to optimally harness the inherent
knowledge in each client’s original data to enhance both
local data condensation and global model training. To
achieve this, we first introduce a collaborative data con-
densation scheme. In this scheme, clients condense their
local dataset by minimizing a loss function that integrates a
standard distribution matching loss [37] with an additional
regularization term based on Sliced Wasserstein Distance
(SWD). This regularization aligns the local knowledge dis-
tribution with the broader distribution across other clients,
granting individual clients a more comprehensive perspec-
tive for data condensation. Furthermore, to train the global
model with superior performance, we incorporate a local-
global knowledge matching scheme. This approach enables
the server to utilize not only the condensed data shared by
clients but also soft labels extracted from their data, thereby
refining and stabilizing the training process. As a result, the
global model retains more knowledge from earlier rounds,
leading to enhanced overall convergence performance.

Extensive experiments demonstrate that FedAF can con-
sistently deliver superior model performance and acceler-
ated convergence speed, outperforming several state-of-the-
art FL algorithms across various degrees of data heterogene-
ity. For instance, on CIFAR10, we achieve up to 25.44%
improvement in accuracy and 80% improvement in conver-
gence speed, compared with the state-of-the-art methods. In
summary, our contributions are threefold as follows:
• We propose a novel aggregation-free FL algorithm,

termed FedAF, to tackle the challenge of data heterogene-
ity. Unlike traditional approaches that aggregate local
model gradients, FedAF updates the global model using
client-condensed data, thereby effectively circumventing

client drift issues.
• We introduce a collaborative data condensation scheme

to enhance the quality of condensed data. By employing
a Sliced Wasserstein Distance-based regularization, this
scheme allows each client to leverage the broader knowl-
edge in the data of other clients, a feature not adequately
explored in existing literature.

• We further present a local-global knowledge matching
scheme which equips the server with soft labels ex-
tracted from client data for enhanced global insights. This
scheme supplements the condensed data received from
clients, thereby facilitating improved model accuracy and
accelerating convergence speed.

2. Background and Related Works

FL Algorithms for Heterogeneous Data. The founda-
tional FedAvg algorithm [26], widely used in FL, calcu-
lates the global model by averaging the local models from
each client. Among its variants, FedAvgM [13] adds server-
side Nesterov momentum to enhance the global model up-
date. FedNova [29] normalizes aggregation weights based
on the amount of local computation. FedBN [23] specif-
ically excludes batch normalization layer parameters from
global aggregation. FedProx [21] integrates a proximal
term in local training loss to mitigate the issue of client
drift, while SCAFFOLD [15] employs variance reduction
and a control variate technique to directly address client
drift. FedDyn [1] allows clients to update the regulariza-
tion in their local training loss to align more closely with
the global empirical loss. In contrast, FedDC [10] pro-
poses learning a drift variable to actively mitigate discrep-
ancies between local and global model parameters. MOON
[19] uses model-contrastive regularization to foster simi-
larity in feature representations between the global and lo-
cal models. Meanwhile, FedDF [24] and FedBE [5] focus
on knowledge distillation-based model fusion and Bayesian
model ensemble, respectively, to transfer knowledge into
the global model. To forego the need for an unlabelled
transfer dataset, FedGen [41] enables the server to learn and
share a generator model with clients, facilitating knowledge
distillation from the global model to local models through
generated feature representations.

Data Condensation. Recent years have witnessed the rise
of data condensation (or data distillation) techniques. These
methods aim to compress a large training dataset into a
significantly smaller set of synthetic data, enabling models
trained on this condensed dataset to achieve performance
comparable to those trained on the original dataset. For ex-
ample, [32] explores a bi-level learning framework to learn
the condensed data, allowing models trained on it to mini-
mize the loss on the original data. [38] matches the gradi-
ents produced by training models on both the original and
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Figure 2. Overview of FedAF’s workflow. Left: Clients download the global model w and the class-wise mean logits V , averaged from
Vk at the server. They then update the condensed data Sk using a combination of Distribution Matching (DM) loss and Collaborative Data
Condensation (CDC) loss, with local real data Dk and V as inputs. Right: The server updates the global model w by employing both
cross-entropy loss and Local-Global Knowledge Matching (LGKM) loss. This utilizes both condensed data Sk and soft labelsRk received
from each client k ∈ {1, 2, . . . , N}. The entire process iterates over a pre-defined number of communication rounds.

condensed data. This approach is further enhanced by [36],
which applies differential Siamese augmentation to enable
the learning of more informative condensed data. Differing
from single-step gradient matching, [4] suggests matching
multiple steps of training trajectories resulting from both
the original and condensed data. To reduce the complexity
of the expensive bi-level optimization used in earlier works,
[37] introduces a distribution matching (DM) protocol. In
this approach, condensed data is optimized to closely match
the distribution of the original data in the latent feature
space. Building upon DM, [31] further develops this con-
cept by aligning layer-wise features between the real and
condensed data.

Unlike Generative Adversarial Networks (GANs) [11],
which focus on generating realistic-looking images, the ob-
jective of data condensation methods is to boost data ef-
ficiency by creating highly informative synthetic training
samples. A recent study by [8] indicates that condensed
data not only provides robust visual privacy, but also en-
sures that models trained on this data exhibit resistance to
membership inference attacks.

The potential of condensed data has recently drawn inter-
est in the FL community, prompting efforts to combine data
condensation with FL within an aggregation-free frame-
work. FedDM [34] implements a DM-based data condensa-
tion on the client side, with the server using condensed data
from clients to approximate the original global training loss
in FL. Employing the condensation method in [32] as the
backbone, [25] introduces a dynamic weighting strategy for
local data condensation and enhances global model train-
ing with pseudo data samples obtained from a conditional
generator. However, both of these works do not adequately
investigate how to utilize knowledge from other clients to
improve the quality of local condensed data and the perfor-
mance of the global model. While [25] allows the sharing
of condensed data among clients, it relies on an assumption
that all clients possess data of the same class, which may
not be true under strong cross-client data heterogeneity.

3. Notations and Preliminaries

To facilitate a clearer understanding of our proposed
method, we begin by introducing some essential notations
and preliminaries.

Federated Learning. FL is a decentralized machine learn-
ing framework where K clients jointly learn a global model
parameterized by w without uploading local raw data D =

{D1,D2, . . . ,DK}, where Dk = {(xi
k, y

i
k)}

|Dk|
i=1 is the lo-

cal data owned by client k and | · | refers to the number of
samples in Dk. These clients are then set to learn the model
parameter w by solving the following problem collabora-
tively:

argmin
w
Lglob(w) =

K∑
i=k

pkLk(w,Dk), (1)

where Lk(w,Dk) is the local empirical loss of client k,
which is given by:

Lk(w,Dk) =
1

|Dk|

|Dk|∑
i=1

ℓk(w, xi
k, y

i
k), (2)

where ℓk(·) denotes the training loss such as cross-entropy
loss. Weighting coefficient pk associated with client k is
proportional to |Dk| and normalized by pk = |Dk|

|D| so that∑K
k=1 pk = 1.

Data Condensation with Distribution Matching. Sup-
pose a client k is tasked with learning a set of local con-
densed data denoted as Sk. The client first initializes each
class of condensed data by sampling from the local orig-
inal data Dk or Gaussian noise. Subsequently, the client
employs a feature extractor, denoted as hw(·), which com-
prises all the layers preceding the last fully connected layer
in a backbone model parameterized by w, and extracts the
feature representations from each class c ∈ {0, 1, . . . , C −
1} of data in Dk and Sk. The means of these feature repre-
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sentations are computed as below,

µreal
k,c =

1

Nk,c

Nk,c∑
j=1

hw(xj
k,c), µ

syn
k,c =

1

Mk,c

Mk,c∑
j=1

hw(x̃j
k,c). (3)

Here xj
k,c ∈ Dk and x̃j

k,c ∈ Sk represent the j-th sam-
ple of class c drawn from Dk and Sk, respectively. Nk,c

refers to the number of samples of class c in Dk, whereas
Mk,c denotes the number of samples of class c in Sk. Then
client k ∈ {0, 1, . . . ,K − 1} can learn and update Sk by
optimizing the DM loss as follows,

argmin
Sk

LDM(Sk,Dk) =

C−1∑
c=0

∥µreal
k,c (Dk)− µ

syn
k,c(Sk)∥

2. (4)

4. The Proposed Method
The overall mechanism of our proposed FedAF is illustrated
in Figure 2. In each learning round, clients first engage in
collaborative data condensation, updating their local con-
densed data. They then share this condensed data and soft
labels with the server. Subsequently, the server uses this
information to update the global model.

Collaborative Data Condensation. Other than the extrac-
tion of feature representations needed by DM loss in (4),
we allow clients to compute class-wise mean logits and re-
lated soft labels from their local original data Dk. With the
latest global model updated by the server as the backbone
network, clients perform the following:

vk,c =
1

Nk,c

Nk,c∑
j=1

fw(xj
k,c), (5)

where vk,c refers to the mean logit of class c computed by
client k, function fw(·) denotes the global model param-
eterized by w without the last softmax layer. Similarly,
clients can compute class-wise mean logits of local con-
densed data uk,c by

uk,c =
1

Mk,c

Mk,c∑
j=1

fw(x̃j
k,c). (6)

To ease the presentation, we adopt the following nations
for every client k:

Vk = [vk,0,vk,1, . . . ,vk,C−1],

Uk = [uk,0,uk,1, . . . ,uk,C−1].
(7)

Upon having the class-wise mean logits obtained, clients
share Vk with the server. The server then updates the global
class-wise mean logits vc by

vc ←
1

K

K−1∑
k=0

vk,c. (8)

We then empower clients to learn and update the local
condensed data Sk by downloading the following from the
server

V = [v0,v1, . . . ,vC−1], (9)

and minimizing a local training loss as below:

Lloc
(
Sk, {Dk}K−1

k=0

)
= LDM(Sk,Dk)

+ λloc

C−1∑
c=0

F
(
uk,c(Sk),vc(D1,D2, . . . ,DK)

)
,

(10)

where we refer to the second term on the right-hand-side
of (10) as the collaborative data condensation (CDC) loss.
Without loss of generality, we let F(·, ·) in the above loss
function be a distance metric to promote the alignment be-
tween the local knowledge uk,c and the global knowledge
vc. Inspired by recent studies [2, 7, 17], we select the Sliced
Wasserstein Distance (SWD) as the choice of F(·, ·). SWD
serves as an effective approximation of the exact Wasser-
stein distance [3, 16], enabling the efficient capture of dis-
crepancies between the knowledge distributions of locally
condensed data and the original data owned by other clients.
This approach allows clients not only to match the distribu-
tions of condensed and original data in the latent feature
space but also ensures a matching across clients in logit
space. By leveraging the CDC loss as a regularization term,
each client can learn condensed data with the assistance of
global insights shared by their peer clients, thereby avoiding
the pitfall of biased matching towards their local data and
facilitating the learning of higher-quality condensed data.

Local-Global Knowledge Matching. The data condensa-
tion process inevitably leads to a certain degree of infor-
mation loss from the original data. Consequently, rely-
ing solely on the condensed data received from clients for
global model training might result in limited convergence
performance or even instability. To address this, we in-
troduce a local-global knowledge matching approach, en-
abling the server to harness a broader spectrum of knowl-
edge about the original data distributed across clients.

To be more specific, we let clients compute local class-
wise soft labels about its original data, represented by

Rk = [rk,0, rk,1, . . . , rk,C−1], (11)

where rk,c = σw(vk,c, τ) and σw(·, τ) denotes the last soft-
max layer of the global model fw softened by a temperature
τ . Clients then share Rk with the server in addition to the
local condensed data Sk, the server subsequently averages
the shared local soft labels for each class as below

rc ←
1

K

K−1∑
k=0

rk,c. (12)

At the same time, the server uses the received condensed
data S = {S1,S2, . . . ,SK} to compute global class-wise
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soft labels tc through

tc = σw

(
1

|Sc|

|Sc|∑
j=1

fw(x̃j
c), τ

)
, (13)

where x̃j
c ∈ Sc and Sc denotes the condensed data received

by the server and belongs to class c. Then we empower the
server to match tc with rc using a Kullback–Leibler (KL)
divergence-based regularization term and propose the fol-
lowing loss function for training the global model:

Lglob(w,S) = LCE(w,S) + λglobLLGKM(w,S), (14)

where LCE(w,S) denotes the cross-entropy (CE) loss and
LLGKM(w,S) refers to the local-global knowledge match-
ing (LGKM) regularization, which is given by

LLGKM(w,S) = 1

2

(
DKL(R||T ) +DKL(T ||R)

)
. (15)

R and T in the above equation are defined as

R = [r0, r1, . . . , rC−1], T = [t0, t1, . . . , tC−1]. (16)

Augmented by the local-global knowledge matching, the
server gains a more comprehensive understanding of the
original data distributed across clients. By ensuring the
global model better retains knowledge acquired in prior
rounds, this enhancement not only stabilizes the global
model updates but also curbs potential overfitting, espe-
cially when dealing with less-optimal condensed data.

Model Re-sampling. We also employ a global model re-
sampling approach in each step of the local data condensa-
tion. Specifically, we interpolate the global model received
from the server as below

w← γw + (1− γ)w̃, (17)

where w̃ represents randomly sampled model parameters.
This model re-sampling technique aims to mitigate overfit-
ting when learning condensed data by interpolating between
the parameters of the global model learned in the previous
round and a benign random perturbation.

5. Experiments
Datasets. We conduct experiments to evaluate and bench-
mark the performance of our proposed methods on both
label-skew data heterogeneity and feature-skew data het-
erogeneity. For label-skew scenarios, we adopt Fashion-
MNIST (FMNIST) [33], CIFAR10, and CIFAR100 [18].
The FMNIST dataset consists of 70,000 grayscale images
of fashion products that fall into 10 categories. The CIFAR-
10 and CIFAR-100 datasets are both collections of 60,000
color images. CIFAR10 images are grouped into 10 classes
with 6,000 images per class, while CIFAR100 categorizes
image into 100 classes with 600 images per class. For

feature-skew scenario, we use DomainNet [27] which con-
tains 600,000 million images in six domains: Clipart, Info-
graph, Painting, Quickdraw, Real, and Sketch, each domain
has data of 345 classes.

Baselines. We compare FedAF against the aggregate-then-
adapt baselines, including typical FedAvg [26] and var-
ious state-of-the-art FL algorithms designed for handling
data heterogeneity: FedProx [21], FedBN [23], MOON
[19], FedDyn [1], and FedGen [41]. We also consider
the prior work that also employs aggregation-free FL,
namely FedDM [34], to demonstrate the effectiveness of our
proposed collaborative data condensation and local-global
knowledge matching schemes.

5.1. Results for Label-skew Data Heterogeneity

Configuration and Hyperparameters. We consider K =
10 clients and partition the training split of each bench-
mark dataset into multiple data shards to simulate the local
training dataset for every client. Specifically, we leverage
Dirichlet distribution to partition data among clients. For
every benchmark dataset, we consider three degrees of data
heterogeneity, represented by α=0.02, α=0.05, and α=0.1,
respectively. The hyperparameter α controls the strength of
heterogeneity. Notably, a smaller α implies a higher non-
IID in the data distribution among clients. We choose these
α values to simulate harsh scenarios of data heterogeneity
that can be encountered in real world applications.

For aggregate-then-adapt baseline methods, we adopt 10
local epochs with local learning rate of 0.01 and local batch
size of 64. For both FedDM and FedAF, we adopt a local
batch size of 256, local update steps of 1000, 50 image-
per-class (IPC) for local data condensation, while using 500
epochs with a batch size of 256 and learning rate of 0.001
for global model training. We initialize each class of con-
densed data using the average of randomly sampled local
original data. For FedAF, the image learning rate is set to
1.0, 0.1, and 0.2, for CIFAR10, CIFAR100, and FMNIST,
respectively. For FedDM, we adopt an image learning rate
of 1.0 and clip the norm of gradients at 2.0 to ensure its
stability during local data condensation. The global model
re-sampling coefficient γ is set to 0.9 whereas we set ρ=5 in
FedDM (See Appendix A for more implementation details).

Model accuracy. We first evaluate the highest accuracy
of the global model achieved by each algorithm within
20 communication rounds. Table 1 and Figure 3 show
that, FedAF significantly outperforms all aggregate-then-
adapt baselines in various settings, showing notable im-
provements in both mean accuracy and variance. A detailed
analysis in Table 1 indicates that FedAF enhances perfor-
mance compared to FedAvg by up to 25.44%, 17.91%, and
31.03% on CIFAR10, CIFAR100, and FMNIST, respec-
tively. Even against FedDyn, the leading aggregate-then-
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Methods α = 0.02 α = 0.05 α = 0.1
FMNIST CIFAR10 CIFAR100 FMNIST CIFAR10 CIFAR100 FMNIST CIFAR10 CIFAR100

FedAvg 56.50±5.55 39.71±1.15 30.80±2.20 69.14±5.84 46.51±3.07 33.37±0.75 82.19±5.67 56.15±4.62 39.97±1.53
FedProx 60.38±5.00 36.46±5.39 30.82±0.80 69.33±4.12 45.83±2.23 36.61±1.44 81.56±4.52 58.54±1.87 40.45±1.53
FedBN 58.26±4.28 36.53±2.52 29.73±1.73 72.91±4.69 45.13±2.18 33.73±2.15 77.33±3.07 57.67±3.21 39.84±0.20
MOON 51.33±7.00 33.32±1.13 33.41±0.70 71.41±4.08 47.41±4.59 37.90±0.80 81.61±2.68 57.62±4.99 40.24±0.68
FedDyn 69.79±5.04 45.73±3.98 35.01±2.07 75.19±5.49 57.68±1.84 39.10±0.34 84.73±2.74 59.97±2.20 41.81±1.46
FedGen 61.44±2.07 36.61±1.06 29.20±2.09 75.48±1.83 42.72±2.11 33.56±3.91 82.29±2.53 58.17±2.84 40.23±1.06

FedDM 85.36±0.96 60.28±0.82 44.15±0.30 86.08±0.68 62.97±0.96 46.27±0.98 86.65±0.31 64.88±0.35 47.05±0.13
FedAF 87.53±0.32 65.15±0.86 48.71±0.33 87.29±0.23 67.50±0.76 49.49±0.33 87.91±0.41 69.11±0.86 50.61±0.26

Table 1. Comparison of global model accuracy achieved with various FL algorithms on FMNIST, CIFAR10, and CIFAR100 datasets.
FedAF consistently outperforms all baseline methods across three degrees of data heterogeneity.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 3. Comparison of convergence performance amongst baseline approaches. (a) to (c): learning curves obtained CIFAR10, (d) to (f):
learning curves obtained on CIFAR100, (g) to (i): learning curves obtained on FMNIST. In addition to the the improvement in accuracy,
FedAF also stands out to deliver considerably accelerated convergence speed, especially on harder dataset.

adapt baseline, FedAF maintains an edge of up to 19.43%,
13.70%, and 17.74% on the same datasets. Moreover,
FedAF consistently outperforms FedDM, with accuracy ad-
vantages reaching 4.87%, 4.56%, and 2.17% on CIFAR10,
CIFAR100, and FMNIST, respectively. Notably, FedAF’s
performance is more pronounced under stronger data het-
erogeneity, such as at α = 0.02, demonstrating the effec-

tiveness of our collaborative data condensation and local-
global knowledge matching approaches.

Convergence Performance. We further examine and com-
pare the convergence speed of FedAF with baselines, the
learning curves resulting from three benchmark datasests
are illustrated in Figure 3, which indicates that FedAF con-
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Methods DomainNet
C I P Q R S Avg

FedAvg 43.03 40.76 59.16 39.60 41.03 28.46 42.01
FedProx 44.81 43.76 60.22 38.13 41.55 29.18 42.94
FedBN 46.07 34.27 52.01 43.10 47.33 29.72 42.08
MOON 48.80 37.97 56.26 48.07 42.02 29.72 43.81
FedDyn 48.04 60.03 67.46 37.73 41.77 32.67 47.95
FedGen 42.77 37.88 54.37 37.33 42.86 25.69 40.15

FedDM 52.28 41.38 60.58 62.37 52.45 46.69 52.62
FedAF 51.2 47.05 62.53 64.6 52.64 50.06 54.68

Table 2. Comparison of global model accuracy across various
FL algorithms on the DomainNet dataset. The domains are rep-
resented by C (Clipart), I (Infograph), P (Painting), Q (Quick-
draw), R (Real), and S (Sketch), “Avg” denotes the avarage accu-
racy across domains. The highest and second-highest accuracies
in each column are indicated by boldface and underline, respec-
tively.

Figure 4. Comparison of convergence performance amongst base-
line approaches on DomainNet dataset. FedAF also outperform
the other baselines on both accuracy and convergence in feature-
skew heterogeneous data distribution.

Configuration α=0.02 α=0.05 α=0.1

IPC=10 53.39±2.09 55.33±0.81 56.15±0.42

IPC=20 58.56±0.55 60.89±0.11 61.79±0.59

IPC=50 65.15±0.86 67.50±0.76 69.11±0.86

IPC=80 67.94±1.18 70.07±0.45 70.72±0.37

IPC=100 69.14±0.56 71.27±0.58 71.66±0.37

Table 3. Impact of IPC on the global model accuracy for learning
CIFAR10 under three different degrees of heterogeneity.

sistently surpasses other baseline methods in convergence
speed, particularly under significant data heterogeneity. For
instance, at α = 0.02, FedAF achieves the highest ac-
curacy of other aggregate-then-adapt baselines within just
two rounds. Compared to FedDM, FedAF also maintains a
similar edge; on CIFAR10 with α = 0.02, while FedDM
reaches a mean accuracy of 60% in fifteen rounds, FedAF
attains this target in only three rounds, marking an 80% in-
crease in convergence speed.

5.2. Result for Feature-skew Data Heterogeneity

Configuration and Hyperparameters. For the experi-
ments in feature-skew scenario, we follow [23] to form

a sub-dataset of DomainNet comprising only the top ten
most frequent classes across all domains. We configure six
clients, each holding data from a unique domain, to mimic
real-world scenarios such as different hospitals using dis-
tinct imaging protocol and equipment, influencing the data
heterogeneity. All algorithms are run for ten communica-
tion rounds to compare the resulting global model’s accu-
racy for every domain and the average accuracy across do-
mains. For aggregate-then-adapt baselines, we maintain the
same hyperparameters as in the label-skew scenarios. Both
FedDM and FedAF use an image learning rate of 1.0, with
the other settings such as batch size and number of local
steps consistent with those in the label-skew scenarios (see
Appendix A for more details).

Model Accuracy and Convergence Performance. From
Table 2 and Figure 4, it is evident that FedAF outperforms
all other baseline methods in average accuracy and related
convergence performance across all domains. This com-
parison highlights FedAF’s consistent superiority, ranking
as either the top or the second-best performer in every do-
main. Similar to the label-skew scenarios, aggregate-then-
adapt FL approaches are found to be less effective com-
pared to FedAF. Moreover, FedAF not only demonstrates
higher accuracy but also exhibits faster convergence per-
formance than FedDM. For instance, FedAF achieves the
accuracy level in just two rounds that FedDM requires ten
rounds to reach, indicating an 80% acceleration. These ad-
vantages underscore the benefit of integrating knowledge
from other domains through our collaborative data conden-
sation and local-global knowledge matching strategies, val-
idating the effectiveness of these approaches.

5.3. Performance Analysis of FedAF

Impact of IPC. We conduct an ablation study on CIFAR10
to examine how variations in IPC might potentially influ-
ence the performance of FedAF under various degrees of
data heterogeneity. We summarize the results in Table 3,
and also illustrate and compare the resulting learning per-
formance in Figure 5. It can be concluded that higher IPC
values generally lead to higher accuracy. Besides, for each
IPC value, the resulting model accuracy does not vary sig-
nificantly over different values of α (with the gap between
the highest and the lowest being 3.96%). From Figure 5d
we find that although remarkable performance gain can be
observed when IPC ranges from 10 to 50, this improve-
ment starts to become marginal using an even higher IPC.
Considering the increase in communication cost is approx-
imately linear with the value of IPC. On the other hand,
the lower the compression ratio (i.e., the ratio between the
amount of condensed and original data), the higher the pri-
vacy retention [8]. Therefore, an IPC value lower than 50
should be generally considered as a trade-off between per-
formance, communication cost, and privacy.
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(a) (b) (c) (d)
Figure 5. Impact of IPC on the learning performance of FedAF on CIFAR10. (a) to (c): the resulting learing curves. (d): improvement in
model accuracy compared to FedAvg. Generally, a higher IPC correlates with enhanced performance, with all tested IPC values demon-
strating improvements over FedAvg.

Configuration α=0.02 α=0.05 α=0.1

FedAF 65.15±0.86 67.50±0.76 69.11±0.86

w/o CDC 64.16±0.83 65.88±0.93 67.90±0.53

w/o LGKM 64.12±0.85 66.27±1.31 68.14±0.81

FedDM 60.28±0.82 62.97±0.96 64.88±0.35

Table 4. Impact of core design on the global model accuracy for
learning CIFAR10 under three different degrees of heterogeneity.
“w/o CDC” denotes the FedAF without collaborative data conden-
sation, “w/o LGKM” denotes the FedAF without the local-global
knowledge matching.

Impact of Core Designs. The collaborative data condensa-
tion and local-global knowledge matching act as two funda-
mental techniques of FedAF. We conduct additional exper-
iments on CIFAR10 to further reveal how these two tech-
niques contribute to performance improvement. Specifi-
cally, we compare the full FedAF with two other config-
urations where each fundamental technique is not utilized.
We also compare it with FedDM, where none of these tech-
niques exist. As shown in Table 4, the mean accuracy re-
sulting from using just one of the fundamental techniques
alone still shows noticeable improvement over that obtained
with FedDM. Moreover, the full FedAF exhibits further im-
provement in the mean accuracy. These results verify that
by promoting the utilization of additional knowledge de-
rived from data distributed across clients, FedAF indeed can
empower clients to learn higher quality condensed data and
train the global model with improved performance, which
eventually contributes to the enhancement in the overall
learning performance.

Impact of Model Re-sampling. As the value of model re-
sampling coefficient γ in (17) controls the interpolation be-
tween the parameters of the global model received from the
server and those parameters randomly sampled, we analyze
the effect of this technique by running ten rounds of FedAF
on CIFAR10 with α=0.1 and comparing the resulting accu-
racy over different choices of γ. Note that a larger γ in-
dicates the re-sampled model tends to retain more knowl-
edge learned in the global model from the previous round,
while γ=0 implies clients use a model with randomly ini-
tialized parameters for data condensation. As expected, Ta-

γ 0.2 0.5 0.8 0.9 1.0

Accuracy 61.30 63.52 66.15 66.97 64.92

Table 5. The influence of global model re-sampling on learning
performance. The first row lists the values of γ tested and the
second row reports the corresponding accuracy.

ble 5 shows that larger γ values generally lead to higher
model accuracy. However, the optimal γ is found to be 0.9,
rather than the maximal possible value of 1.0, verifying that
a suitable random perturbation to the true global model can
indeed regulate the data condensation and emhance learning
performance. Notably, γ=0.8 also yields comparable accu-
racy, suggesting that FedAF’s performance is robust to vari-
ations in γ. Additionally, we experimented with γ=0. How-
ever, using purely random weight parameters, the model
struggled to stabilize the data condensation process, lead-
ing to its exclusion from the further comparison.

6. Conclusion
This paper presents FedAF, a novel FL algorithm designed
to tackle data heterogeneity with an aggregation-free frame-
work. FedAF grants clients and the server richer insights
about the original data distributed across clients through
collaborative data condensation and local-global knowledge
matching. This strategy effectively addresses cross-client
data heterogeneity and boosts the learning performance of
both condensed data and the global model. Consequently,
FedAF demonstrates considerable improvement over state-
of-the-art FL methods in terms of model accuracy and con-
vergence speed.
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Pfister. Sliced and radon wasserstein barycenters of mea-
sures. Journal of Mathematical Imaging and Vision, 51:22–
45, 2015. 4

[4] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Dataset distillation
by matching training trajectories. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4750–4759, 2022. 2, 3

[5] Hong-You Chen and Wei-Lun Chao. FedBE: Making
bayesian model ensemble applicable to federated learning.
In International Conference on Learning Representations,
2021. 1, 2

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. IEEE, 2009. 1

[7] Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing.
Generative modeling using the sliced wasserstein distance.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3483–3491, 2018. 4

[8] Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free:
How does dataset condensation help privacy? In Interna-
tional Conference on Machine Learning, pages 5378–5396.
PMLR, 2022. 3, 7

[9] Chun-Mei Feng, Bangjun Li, Xinxing Xu, Yong Liu, Huazhu
Fu, and Wangmeng Zuo. Learning federated visual prompt
in null space for mri reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8064–8073, 2023. 2

[10] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and
Cheng-Zhong Xu. Feddc: Federated learning with non-iid
data via local drift decoupling and correction. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10112–10121, 2022. 1, 2

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 3

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[13] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Mea-
suring the effects of non-identical data distribution for feder-
ated visual classification. arXiv preprint arXiv:1909.06335,
2019. 1, 2

[14] Wenke Huang, Mang Ye, and Bo Du. Learn from others and
be yourself in heterogeneous federated learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10143–10153, 2022. 2

[15] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for feder-
ated learning. In International conference on machine learn-
ing, pages 5132–5143. PMLR, 2020. 1, 2

[16] Soheil Kolouri, Yang Zou, and Gustavo K Rohde. Sliced
wasserstein kernels for probability distributions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5258–5267, 2016. 4

[17] Soheil Kolouri, Phillip E. Pope, Charles E. Martin, and Gus-
tavo K. Rohde. Sliced wasserstein auto-encoders. In Inter-
national Conference on Learning Representations, 2019. 4

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multi-
ple layers of features from tiny images. Technical report,
Toronto, ON, Canada, 2009. 5

[19] Qinbin Li, Bingsheng He, and Dawn Song. Model-
contrastive federated learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 10713–10722, 2021. 1, 2, 5

[20] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Fed-
erated learning on non-iid data silos: An experimental study.
In 2022 IEEE 38th International Conference on Data Engi-
neering (ICDE), pages 965–978. IEEE, 2022. 1

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimiza-
tion in heterogeneous networks. Proceedings of Machine
learning and systems, 2:429–450, 2020. 2, 5

[22] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and
Zhihua Zhang. On the convergence of fedavg on non-iid
data. In International Conference on Learning Representa-
tions, 2020. 1

[23] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp,
and Qi Dou. FedBN: Federated learning on non-IID features
via local batch normalization. In International Conference
on Learning Representations, 2021. 2, 5, 7, 3

[24] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin
Jaggi. Ensemble distillation for robust model fusion in fed-
erated learning. Advances in Neural Information Processing
Systems, 33:2351–2363, 2020. 1, 2

[25] Ping Liu, Xin Yu, and Joey Tianyi Zhou. Meta knowledge
condensation for federated learning. In The Eleventh Inter-
national Conference on Learning Representations, 2023. 2,
3

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017. 1, 2, 5

[27] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1406–1415, 2019. 5

26241



[28] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research, 9
(86):2579–2605, 2008. 1

[29] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and
H Vincent Poor. Tackling the objective inconsistency prob-
lem in heterogeneous federated optimization. Advances
in neural information processing systems, 33:7611–7623,
2020. 1, 2

[30] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi,
H Brendan McMahan, Maruan Al-Shedivat, Galen Andrew,
Salman Avestimehr, Katharine Daly, Deepesh Data, et al.
A field guide to federated optimization. arXiv preprint
arXiv:2107.06917, 2021. 1

[31] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang,
Shuo Wang, Guan Huang, Hakan Bilen, Xinchao Wang, and
Yang You. Cafe: Learning to condense dataset by align-
ing features. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12196–
12205, 2022. 2, 3

[32] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018. 2, 3

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
5

[34] Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu,
and Cho-Jui Hsieh. FedDM: Iterative distribution matching
for communication-efficient federated learning. In Workshop
on Federated Learning: Recent Advances and New Chal-
lenges (in Conjunction with NeurIPS 2022), 2022. 2, 3, 5

[35] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-
Yu Duan. Fine-tuning global model via data-free knowledge
distillation for non-iid federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10174–10183, 2022. 1

[36] Bo Zhao and Hakan Bilen. Dataset condensation with differ-
entiable siamese augmentation. In International Conference
on Machine Learning, pages 12674–12685. PMLR, 2021. 2,
3

[37] Bo Zhao and Hakan Bilen. Dataset condensation with dis-
tribution matching. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
6514–6523, 2023. 2, 3, 1

[38] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In International Con-
ference on Learning Representations, 2021. 2

[39] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018. 1

[40] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Fed-
erated learning on non-iid data: A survey. Neurocomputing,
465:371–390, 2021. 1

[41] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free
knowledge distillation for heterogeneous federated learn-
ing. In International conference on machine learning, pages
12878–12889. PMLR, 2021. 1, 2, 5

26242


