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Abstract

Visual navigation is to let the agent reach the target ac-

cording to the continuous visual input. In most previous

works, visual navigation is usually assumed to be done in

a static and ideal environment: the target is always reach-

able with no need to alter the environment. However, the

“messy” environments are more general and practical in

our daily lives, where the agent may get blocked by obsta-

cles. Thus Interactive Navigation (InterNav) is introduced

to navigate to the objects in more realistic ”messy” envi-

ronments according to the object interaction. Prior work

on InterNav learns short-term interaction through exten-

sive trials with reinforcement learning. However, interac-

tion does not guarantee efficient navigation, that is, plan-

ning obstacle interactions that make shorter paths and con-

sume less effort is also crucial. In this paper, we introduce

an effect-oriented affordance map to enable long-term in-

teractive navigation, extending the existing map-based nav-

igation framework to the domain of dynamic environment.

We train a set of affordance functions predicting available

interactions and the time cost of removing obstacles, which

informatively support an interactive modular system to ad-

dress interaction and long-term planning. Experiments on

the ProcTHOR simulator demonstrate the capability of our

affordance-driven system in long-term navigation in com-

plex dynamic environments.

1. Introduction

Autonomously navigating to a target in complex environ-

ments is a core challenge for Embodied AI. Interactive Nav-
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igation (InterNav) [40, 45] aims to navigate more efficiently

to a target point with object interaction in cluttered, dy-

namic environments, where the agent may get blocked by

multiple obstacles during the long-term navigation. Com-

pared to non-interactive navigation (e.g. ObjectNav, Point-

Nav), the agent is challenged to plan not only long-term

navigation but also interactions that benefit the navigation.

Prior work of InterNav [45] trains an RL-based policy to

output the executable actions based on sensory egocentric

observations and implicit episodic memories (from recur-

rent neural networks). This approach enables short-term in-

teraction with extensive trials (corresponding to the red ar-

row in Figure 1(b)). However, effective interaction does not

guarantee an efficient tour. For example (see Figure 1(a)),

clearing the shortest path may cost more effort (or even fail-

ure when the obstacle gets stuck) than taking a detour at

some point. Unlike other interactive tasks (e.g. grasp, re-

arrange), the purpose is not interaction itself but the effect

that facilitates long-term navigation.

Overall, research on visual navigation can be catego-

rized into learning-based methods [8, 27, 38] (prior Inter-

Nav works belong to) and map-based methods [4, 5, 25].

The latter builds an explicit map of spatial or semantic in-

formation and plans long-term paths on the map, which can

be translated into action sequences. The stable map repre-

sentation of the environment enables long-term navigation

in unexplored scenes (corresponding to the red arrow in Fig-

ure 1(b)). However, the prerequisite for that to work is the

determined reachability of a location that the agent can not

reach it when it’s occupied, otherwise it can. Therefore, the

shortest path can be planned in the reachable area. On the

contrary, the reachability in InterNav is uncertain, since the

location occupied by or behind the obstacle may become

reachable through interaction. To plan long-term paths in

dynamic environments (towards the green node in Figure

1(b)), the agent needs to estimate whether an obstacle area

can be reached, which depends on the interaction outcome.

As illustrated in Figure 1(b), there is a gap in front of
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(a) Illustration of InterNav driven by affordance (b) Insight of introducing affordance 

Figure 1. (a) In the task of InterNav, the agent marked with the blue circle aims to reach the target point marked with the green star and

is blocked by multiple obstacles marked by orange boxes. Squares on the path denote the object interactions. Aware of the affordance of

obstacles, a more efficient path can be planned by choosing the appropriate obstacle to interact with. (b) Prior methods for InterNav and

map-based methods for visual navigation are limited to learning either short-term interaction or long-term navigation. To plan long-term

paths in dynamic environments, the agent needs to learn affordance.

existing methods that they can’t learn both long-term nav-

igation and short-term interaction. We believe the ”miss-

ing puzzle” is affordance, which indicates the potential

of agent-environment interaction[12]. First of all, the af-

fordance of objects usually refers to the available interac-

tions on them, which indicates how the environment can be

changed unlike the static spatial or semantic information.

However, knowing how does not indicate the potential ef-

fect on navigation. We want to further know whether inter-

action with the obstacle can lead to reachable paths given

the agent’s capability of interaction. Then the long-term

paths can be planned on the expected reachable area fol-

lowing the map-based framework.

To help embodied agents plan and conduct interactions,

we introduce three levels of affordance: (1) Object affor-

dance: the object attributes (e.g. pushable, pickable) deter-

mined by its shape, mass, etc. that are invariant to external

factors. (2) Pose affordance: whether the object is cur-

rently interactive given the agent pose, which is dynamic

during navigation. (3) Effect affordance: Whether the ob-

stacle can be removed given agent’s capability and the sit-

uation. As shown in Figure 1(a), the dogbed can be picked

away within 3 actions while the sofa can hardly be removed

with 10 pushes given its mass and the crowded space. In

this paper, we propose a modular approach to address In-

terNav based on a multi-level affordance map. Overall, the

model consists of a set of affordance functions, a mapping

module, and an interactive policy. They are interfaced sim-

ilarly to the map-based system that is widely applied in vi-

sual navigation research [4, 5, 25]. First the egocentric seg-

mentations of multiple affordances are predicted with affor-

dance functions from the RGB observation. Then the map-

ping module geometrically projects the affordance on the

3D voxel from the depth image and updates the top-down

affordance map. The interactive policy produces a distance

map that covers interaction costs according to the effect af-

fordance and plans the most efficient path on the map. In

the end, the policy outputs the action sequence of naviga-

tion or interaction given the agent location and the target

position. The affordance functions are trained with the out-

come of interactions that are conducted by the agent itself

in the simulator.

We perform experiments on ProcTHOR simulator [9],

which provides various multi-room scenes and supports ob-

ject interactions. The proposed model outperforms existing

end-to-end RL methods and map-based baselines. We sys-

tematically study the effective boundary of our affordance

map on InterNav, verifying that our interactive modular

system maintains effectiveness facing different interaction

complexity.

2. Related Work

2.1. Interactive Navigation

Visual navigation, the cornerstone task of Embodied AI,

has been extensively studied in the past decade. Most

approaches address PointGoal [4, 28, 38] and ObjGoal

[2, 5, 39, 48, 49] navigation that work under the assump-

tion of static environment. Interactive navigation (InterNav)

[34, 40, 45] considers dynamic environments and can be re-

garded as the downstream task of PointGoal navigation with

the additional component of object interaction. Zeng et al.

[45] focus on learning interaction with an additional per-

ception module predicting the change of object keypoints
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with end-to-end RL in iTHOR environment [17]. How-

ever, implicit memory of egocentric perception only enables

the short-term ability of interaction. Other interactive tasks

such as manipulation [10, 13] and rearrangement [37, 44]

also require the understanding of environmental dynamics.

InterNav is distinctive in that the agent aims to ”interact for

navigation” rather than to change the environment. Thus

it’s crucial to learn the interaction effect on navigable areas

and plan long-term navigation.

2.2. Map­based Navigation Methods

Classical approaches have formed the navigation paradigm

of geometrical mapping and path planning [3, 16, 29]. Mo-

tivated by the drawbacks of learning-based methods, Chap-

lot et al. [4] proposed a hierarchical modular system that

involves the learning procedure inside the modular to main-

tain efficiency and robustness. On the foundation of that,

semantic information predicted from egocentric observa-

tions has been incorporated to construct semantic map for

ObjectGoal navigation [5, 19, 23, 35, 47, 50]. The addi-

tional semantic memory supports the goal-oriented under-

standing of the environment. Recent modular approaches

[11, 25, 46] further reason and predict the uncertain infor-

mation of the environment like the target location and un-

explored area. Our method learns effect-oriented affordance

to obtain knowledge of interaction uncertainty and to fore-

see the interaction effect on navigation planning.

2.3. Affordance

The concept of Affordance has been widely applied in the

field of psychology, computer vision [7, 18, 20, 22, 32, 42,

43], and robotics concerning interaction pose[1, 13, 15, 33],

agent abilities[6], action sequence[31], effect relations[26,

41]. In the domain of embodied AI, several works have in-

troduced affordance to perform effective interactive tasks.

Nagarajan and Grauman [21] develop an embodied agent

seeking new affordances actively through exploratory inter-

actions. However, the learned affordances are still symbol-

ized (denoted as attributes like pickupable and toggleable),

which makes them less informative for execution. The af-

fordance of navigation has been explored as interactive ar-

eas in language-guided interaction [14] and navigable ar-

eas in visual navigation[24]. In this work, we explore com-

posite affordances that address the interactions in InterNav

from actions to poses and their effect on navigation.

3. Method

3.1. InterNav Formulation

The agent aims to navigate to a reachable target point in

an unseen environment with multiple obstacles (e.g. chair,

box) spawned. At each step t, the agent receives egocentric

RGB it, depth dt images, and the relative target coordinate

pt. The agent then decides and executes an action at ∈ A,

where A consists of 5 navigation actions (MoveAhead,

RotateRight, RotatLeft, LookUp, LookDown), 6

interaction actions (DirectionalPush in 4 directions,

PickUp, Drop), and Done. The agent is required to nav-

igate within the distance of a step (0.25m) of the target

and execute Done to claim a successful task episode. The

episode ends when Done is taken or the number of steps

exceeds the maximum budget of T = 500.

3.2. Method Overview

We propose Affordance Driven Interactive Navigation

(ADIN), a modular system addressing long-term interac-

tive navigation (see Figure 2). The system consists of three

components: The affordance functions predict multiple af-

fordances of the objects appearing in the current egocentric

RGB observation. The mapping module builds and updates

a global affordance map mt storing the spatial and affor-

dance information across the scene. The interactive policy

plans a long-term path toward the target on the map and de-

cides the actions of navigation or interaction according to

the current agent location. Each module is introduced in the

following parts.

3.3. Affordance Functions

The proposed affordance functions address interactive nav-

igation by answering the questions of ”how to interact”,

”when to interact”, and ”whether to interact”. We first de-

fine three levels of affordances:

Object affordance. We consider two categories of object

affordances corresponding to the two ways of interactions

in InterNav: pushable and pickable indicate the attributes of

a large object available to be pushed aside or a small object

available to be picked up. Pose affordance. An interaction

can be executed only if the agent is at a feasible pose where

the object is in sight and within a certain distance. Thus we

define an affordance of visible which indicates the interac-

tion with the object is feasible given the current agent pose.

Since visible is relative to the agent pose rather than a con-

stant attribute of the object itself, it provides more guidance

for the agent to decide when to interact.

Effect affordance. To decide whether to interact with an

obstacle during navigation, the agent needs to estimate the

potential effect of interaction including the benefit and the

cost of effort. Considering the objective of InterNav, the de-

sired effect of obstacle interaction is clearing the path effi-

ciently. Therefore we quantize such criterion by measuring

”the time cost of removing the obstacle from its current po-

sition”. A high time cost means a low probability of reach-

ability which suggests the agent should give up interacting

with the obstacle. The limiting case is that it can not be

moved away and it’s a dead end (a heavy table stuck in the

corner). On the other side, the agent should consider a path
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Figure 2. Model overview. The proposed model ADIN consists of a mapping module, four affordance functions, and an interactive policy.

The affordance functions predict four levels of affordance aft of objects from RGB observation. The mapper builds 3D voxel from the

depth observation and obtains the top-down affordance map mt. The interactive policy plans paths on the map toward the target coordinates

and outputs actions accordingly.

interacting with a low time-cost obstacle when it’s more ef-

ficient.

Formally, receiving an RGB observation it, we first ob-

tain the region of interest (RoI) as bounding box bnt of object

n and its local feature fn
t with RoI pooling on the global

feature map f∗

t . Then four affordance functions predict the

multi-level affordances based on the features:

afn
t = {afpu

t , af
pi
t , afv

t , af
e
t }

n = F af (fn
t , f

∗

t ) (1)

,where affordance afn
t contains four affordances (respec-

tive to the ones we define) of object n. Four affordance

functions F af = {F pu, F pi, F v, F e} take the concatena-

tion of local and global features as input. We implement

each function as the sequence of a two-layer MLP. While

the values of af
pu
t , af

pi
t , afv

t are set as binary, the time cost

afe
t is normalized as a continuous value between 0 and 1

with min-max scaling.

Learning. To train functions F af , we collect a static

dataset in various scenes containing the data of features

(fn
t , f

∗

t ) and labels. In particular, the agent is randomly

spawned around the obstacles and attempts to interact with

DirectionalPush or Pick for multiple times. The la-

bels of pushable, pickable, visible are annotated according

to the success or failure of the interaction. The ground truth

time cost of removing an object is obtained by the agent

running trials of interaction and calculating the time steps

it spends. We let the agent learn from the outcome of its

own experience to maintain a robust understanding of the

dynamic environment. The interaction strategy is identical

to the interactive policy applied in our model (introduced

in section 3.5). Affordance functions are trained through

supervised learning with a binary cross entropy loss for dis-

crete output and a mean squared error (MSE) loss for con-

tinuous output.

Essentially, the affordance functions provide the agent

with a gateway to estimate the interaction uncertainty. The

reliability of our approach lies in the proper understanding

of agent’s capability relative to the interaction complexity.

Effective InterNav can be reached within our framework

with both the mastery of interaction and matched estima-

tion.

3.4. Mapping Module

Overall, the affordance mapper is responsible for aggregat-

ing the affordance and reachability information from ego-

centric depth frame dt and affordances afn
t up to time t

into an allocentric map mt. We follow the standard map-

ping procedure from visual navigation methods [5, 25]. The

depth observation is used to compute a point cloud, where

each point is associated with the predicted object affor-

dances. Then the point cloud is projected in 3D space us-

ing differentiable geometric computations to get the voxel
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Top-down view (a) High confidence (b) ADIN-discrete (d) Low confidence(c) ADIN-continuous
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Figure 3. Illustration of four map alterations of the interactive policy. Given the occupancy map mR

t , the agent plans the path based

on its estimation of obstacles and its capability. (a) When the agent is confident, it erases all obstacles on the map and chooses the shortest

path regardless of the interaction cost, which may end up less efficient. (d) When the agent is not confident, the target remains unreachable

and no valid path can be planned. (b) ADIN-discrete erases obstacles selectively according to the effect affordance prediction, altering the

map discretely. (c) ADIN-continuous operates on the continuous distance map, measuring the time cost of different obstacle interactions.

The dashed areas denote the erasion of certain objects and the meshed areas denote the time cost calculated on the distance map.

representation. The top-down maps of multi-level affor-

dances mA
t : 4 × M × M and reachability (occupancy

map) mR
t : 1 × M × M are obtained by adding up the

voxel representation vertically. Each point in the map cor-

responds to a 5cm×5cm area in the physical world. There-

fore the current affordance map contains 8 channels: mt =
{mA

t ,m
R
t ,m

exp
t pmt , lmt } : 8 × M × M , where m

exp
t de-

notes the map of explored area, pmt , lmt represent the target

and agent location in the map coordinate system, and M is

the map size.

3.5. Interactive Policy

Given the affordance map mt and the target pt, the inter-

active policy π plans short-term actions at in an analyti-

cal manner. It differs from the policy for visual navigation

[4, 5] that two modes of navigation and interaction cooper-

ate alternately, since in a short-term view the agent can ei-

ther interact with obstacles or navigate somewhere. At each

step the mode is determined according to the agent location:

the agent is in the interactive mode when an interactable

(pushable or pickable) obstacle is visible and on

the shortest path toward the target point, otherwise it’s in the

navigation mode. The affordance information stored on the

map enables the agent to enter the interaction mode at feasi-

ble positions and take feasible interactions, avoiding failed

and useless action execution.

For the navigation mode, we modify the distance com-

putation of the Fast Marching Method (FMM) [30] for In-

terNav which analyzes the occupancy map mR
t and affor-

dance map mA
t , and plans actions along the shortest path to

the target. Since the reachability of an obstacle area is un-

certain, its approximate distance to the target should neither

be positive infinity (non-interactive obstacles like walls) nor

standard distance (like floor) which ignores the time cost of

interaction. Hence, assuming standard FMM obtains a dis-

tance map mdis
t given mR

t , we compute a time-cost mea-

sured distance map by adding the equivalent distance of ef-

fect affordance map to it:

mdis∗

t = mdis
t + α ·me

t · gridm (2)

, where me
t : 1 × M × M is the effect affordance chan-

nel of mA
t , α is the coefficient of time cost (given afe

t

is normalized), and gridm is a constant denoting the dis-

tance of a step on the map. Thus α · me
t · gridm repre-

sents the distance the agent would travel if it spends the

time of clearing obstacles on navigation. The value of α

therefore is endowed with the meaning of the maximum

time steps an interaction is expected to take. The shortest

path planned on the new distance map now represents the

path that costs the least expected time, namely the most ef-

ficient path. For instance, blocked by a pushable chair,

the agent may choose to bypass it when there’s a path aside,

since the ”chair area” is assigned with additional distance.

When there is no reachable path nearby, the agent will move

toward the chair for interaction since it’s the only area with

the distance value lower than positive infinity. Therefore

through the continuous map alteration above, the model (re-

ferred to as ADIN-continuous) plans more efficient paths

than merely the shortest paths. At each time step, the map

is updated according to the new observation and the shortest

path is replanned.

Besides modifying the distance map, we also perform

a variant (referred to as ADIN-discrete) making alterations

directly on the ocupancy map:

mR∗

t = mR
t − round(me

t − β) (3)

where round(·) is the rounding operation and β is the

threshold of me
t to determine whether the obstacle interac-
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tion should be ruled out given agent’s estimation. The mi-

nus sign denotes the element-wise difference between two

binary arrays. Essentially, the map alteration represents the

’confidence’ level of agent being able to remove the obsta-

cle. By erasing an obstacle from the map or assigning a low

time cost to it, the agent tends to ignore the obstacle during

path planning and is confident to handle it. We illustrate

four map alterations and the path planned corresponding to

them in Figure 3.

For the interaction mode, we let the agent interact with

the closest obstacle and pick the actions by analyzing the

layout of the surroundings and the expected path to nav-

igate based on the map memory. The agent executes a

series of interactions (i.e. series of DirectionalPush

for pushable obstacles, sequence of [PickUp, rotations,

Drop] for pickable obstacles) to place the obstacle out

of the expected path at a vacant location. We refresh the

map with egocentric observation in the interaction mode

rather than update it by adding up the point cloud, so that

the displacement of obstacles can be captured immediately.

If the agent fails to move the obstacle out of the path af-

ter several rounds of interaction, we add it to the occupancy

map mR
t so that FMM computes the infinity distance of that

obstacle area on mdis
t , knowing it’s a dead end and would

choose another path toward the target.

4. Experiments

4.1. Experiment Setup

Dataset settings. We evaluate InterNav in the simulator of

ProcTHOR [9], which supports various sensory signals and

object interactions, and provides 12k flexible multi-room

scenes (1∼10+ rooms). In an episode, we randomly set the

starting and target points in different rooms and randomly

spawn multiple obstacles across rooms. The dataset con-

sists of 450k training episodes (across 9k scenes), 5k valida-

tion episodes (across 100 scenes), and 100 testing episodes

(across 100 scenes). The static datasets for detection and af-

fordance prediction training are collected within the train-

ing set. To evaluate the ability of long-term planning and

multiple interactions, we especially report the results on the

hard split of the test set, which contains episodes collected

in the scenes with more than 4 rooms.

Following the environmental setting of [45], we let

MoveAhead move the agent ahead by grid = 0.25m,

RotateRight and RotateLeft change the agent’s az-

imuth angle by ±90 degrees, LookUp and LookDown ro-

tate the agent’s camera elevation angle by ±30 degrees. The

DirectionalPushs let the agent push (along ±z and ±x

axis) the closest visible object with a constant force. The

Pick puts the object in an invisible pocket and is valid

when the pocket is empty. The Drop put the object in the

pocket in front of the agent at a distance. The interactions

are valid when the object has the corresponding attributes

such as pickable and movable. The agent takes the END to

indicate that it has completed an episode.

Evaluation metrics. We adopt Success Rate (SR), Final

Distance to Target (FDT), Success weighted by Path Length

(SPL), and Success weighted by Time Steps (STS). SR is

the ratio of successful episodes in total episodes. FDT is

the average geodesic distance between the agent and the

goal when the episode is finished. SPL is calculated as
1
N

∑N
n=1 Sucn

Ln

max(Pn,Ln)
, where N is the total episodes

number, Sucn is the successful indicator of n-th episode,

Ln is the shortest path length, and Pn is the length of

the real path. STS is introduced to measure the time ef-

ficiency of task completion, given that the time spent by

interactions can not be measured by path length: STS =
1
N

∑N
n=1 Sucn

Ln/grid
TSn

, where TSn is the timesteps the

agent takes to complete the task, and grid = 0.25m is

the unit distance of a step. STS can be regarded as a time-

measurement variant of SPL and the score is higher when

the agent accomplishes the task with less time.

4.2. Implementation Details

Our method is implemented and evaluated with the Allen-

Act [36] framework. The egocentric observation is set as

300*300 RGB and depth images. The size of affordance

map M is set as 400, the resolution is 0.05, thus a point on

the map corresponds to a cell of 25cm2 and a step on the

map crosses gridm = 5 cells. A cell is determined as occu-

pied with an obstacle when the sum of point clouds number

in this area exceeds 10. The hyper-parameters of ADIN α, β

are set as 5, 9 according to the ablation results. We obtain

the regions of interest bnt with a detection model Yolov7,

which is COCO-pretrained and finetuned on 150k images

from our training set with 20 categories of obstacles (same

as prior work [45]). The global feature f∗

t is the feature map

extracted with the backbone of Yolov7 and the size of local

feature fn
t is set as 256×7×7. We avoid using the semantic

information from the detection results and train the affor-

dance functions with the experimental interaction results.

The hidden size of the affordance functions is 256. All af-

fordance functions are trained with the static dataset with

100k training samples for 20 epochs and we pick the model

based on the result on 10k validation samples. The model

is trained with a batch size of 128 and the Adam optimizer

with a start learning rate of 1e-5.

4.3. Baselines

We compared our model with two learning-based models

(DD-PPO[38] and NIE[45]) and two map-based baselines.

Since InterNav has not been addressed with map-based

method before, map-based baselines are set as several vari-

ants of our system and existing non-interactive model:

Map+RI: This model takes no affordance and tries random
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Methods
all hard

SR↑ FDT↓ SPL↑ STS↑ SR FDT SPL STS

DD-PPO [38] 38.3 5.31 23.0 13.1 21.3 8.68 11.3 6.35

NIE [45] 50.0 4.50 29.1 14.4 37.3 7.38 20.5 8.72

Map+RI 18.5 6.33 12.0 7.93 4.12 9.30 3.02 2.16

ADIN+GP 41.2 5.18 21.8 13.1 25.9 8.22 13.1 6.42

ADIN-discrete 54.3 3.85 27.3 14.2 40.2 6.29 20.4 9.04

ADIN-continuous 59.0 3.46 31.3 16.6 46.1 5.52 23.6 11.3

Table 1. Comparison with learning-based models and map-

based baselines. We report the average performance of 3 tests.

Component ablation all hard

OA PA TC EA GT SR FDT SPL STS SR FDT SPL STS

✓ 45.9 3.90 25.9 14.2 36.4 6.39 17.4 8.33

✓ ✓ 49.0 3.78 27.4 14.9 35.9 6.08 18.9 8.17

✓ ✓ ✓ 55.0 3.40 30.1 15.7 42.0 5.49 20.4 9.19

✓ ✓ ✓ ✓ 59.0 3.46 31.3 16.6 46.1 5.52 23.6 11.3

✓ ✓ ✓ ✓ ✓ 61.2 3.37 32.3 17.2 48.3 5.40 27.7 12.1

Table 2. Model component ablations. OA: object affordance,

PA: pose affordance, TC: time cost (k=5), EA: effect affordance

(continuous variant), GT: ground truth object mask.

interactions when getting stuck during navigation. The

policy plans paths seeing all objects on the map as non-

interactive and executes actions following the local policy

of [5].

ADIN+GP: Instead of directly setting the target point as

the goal of the policy, this model learns to plan subgoals

with a global policy like ObjectGoal navigation methods

[5]. The global policy is trained with reinforcement learning

(PPO) and the reward is set as the change of target distance.

The global policy is trained on the training set for 3 million

steps. We add the global policy to study whether the agent

can learn to plan which obstacles to interact with by setting

subgoals.

4.4. Ablations

We evaluate several variants of our model to study the fol-

lowing questions. First, we study the impact of model com-

ponents by ablating different affordance components (Table

2) and hyper-parameters (Figure 4(b)(c)). Note that we ad-

just the strategy of interaction policy accordingly since the

agent executes interactions based on the affordances. Sec-

ond, we alter agent’s interactive capability to study the per-

formance boundary of the modular system (PI, NI in Figure

4(a)), since the interaction may not bring the same outcome

when transferring to the real world. Third, we also study

the impact of agent’s ”confidence” in its capability (see Fig-

ure 4(a)), namely how much obstacles affect path planning.

The more confident the agent is, the less likely it will take a

longer path due to obstacles.

PI (upper bound): This model takes in the ground truth

affordances and performs perfect interactions, considering

PI

NI

65

Figure 4. Parameter ablations of TC, α, β. The SR perfor-

mances of PI (upper bound) and NI (upper bound) and the effective

range between them are marked with the red gradient area.

the ideal interaction situation under our system. The agent

removes the visible obstacle from the scene once it takes the

interaction. In this case, the planned paths are equivalent to

the ones planned in open environments with few obstacles.

NI (lower bound): This model is equipped with no interac-

tion capability that it regards all objects as non-interactive.

NI is different from Map+RI by removing the random in-

teractions. In this case, the planned paths are equivalent to

the ones planned in cluttered environments with multiple

obstacles.

ADIN w/k TC: This line of models quantize agent’s ”con-

fidence” in interaction with k steps of time cost added to

the distance map mdis
t . Instead of estimating the time cost

on obstacles with effect affordance afe
t , the higher constant

value k uniformly increases the expected cost of interaction

and reduces the interaction as a result.

4.5. Results Analysis

Comparison with baselines. As shown in Table 1,

the proposed models gain the best performance on both

splits. ADIN-continuous outperforms the prior learning-

based model NIE by 9.0% and 8.8% SR in the all and hard

split, respectively. The advantage on the hard split shows

that the explicit map memory helps long-term planning bet-

ter compared to the implicit neural memory. Both variants

of ADIN outperform the map-based baseline Map+RI by

a large margin (+40.5%/+35.8% SR and +8.67%/+6.27%

STS on the all split), showing the effectiveness of our mod-

ular system that extends the map-based framework to the

domain of interactive tasking. The gap between ADIN-

discrete and ADIN-continuous suggests that a fine estima-

tion of interaction effect facilitates the path planning bet-

ter. ADIN+GP gains poorer performance than ADIN, in-

dicating that planning interactions with subgoal is hard to

learn through RL and may result in ineffective navigation.

ADIN’s advantage over RL-based methods on STS is less

significant since they end the task actively before consum-

ing too much time.

Ablation study. As shown in Table 2, each component

of the affordance map contributes to the efficacy of ADIN
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Methods ∆ BR ISR PuSR PiSR

DD-PPO [38] 10.1 31.8 49.1 27.3

NIE [45] 19.3 47.9 51.1 47.4

Map+RI 6.7 12.6 14.7 6.52

Map+OA 6.8 54.0 58.3 10.3

Map+OA+PA 10.7 64.5 86.8 25.0

ADIN-continuous 21.2 72.9 83.3 31.4

Table 3. Obstacle interaction results. ∆BR: decreased blocked

ratio, ISR: interaction success rate, PuSR: push success rate, PiSR:

pick success rate

progressively, including object affordance (how), pose af-

fordance (when), time cost on the distance map, and effect

affordance (whether) concerning the process of interaction

navigation. Note that the effect affordance is applied on top

of the time cost calculation on the distance map, and further

considers the features of different obstacles.

As shown in Figure 4(a), the performance of our inter-

active modular system falls in the range between PI and NI

(40%-65% SR) and it’s better when the ”confidence” TC

matches its real capability. Thus in our case, the agent’s ca-

pability is around TC=5, meaning it takes an average of 5

steps to remove the obstacle off the path. The results of α, β

ablations (see Figure 4(b)(c)) indicates that a proper estima-

tion of interaction effect leads to better path planning.

Study of obstacle interaction. We evaluate the interac-

tion outcome more directly with additional metrics in Table

3, different from SR, SPL that assess the overall comple-

tion of the task:(1) Ratio of episodes (∆BR) that the agent

is blocked initially and makes clear paths in the end. This

metric measures the effect of obstacle interaction on naviga-

tion objective. (2) Overall (ISR) and separate (PuSR, PiSR)

success rates of interaction are the ratios of conducting valid

interactions, which measure the accuracy of actions. The re-

sults indicate that object affordance (line 4) and pose affor-

dance (line 5) effectively increase the interaction accuracy

but benefit less for the navigation objective (i.e. clearing

the path) without the guidance of effect affordance (line 6).

The performances of map-based models on PiSR are rela-

tively low since pickable objects are usually small and hard

to recognize from a distance.

Case study. We visualize the paths and affordance maps

produced by ADIN with and without the help of effect af-

fordance in an episode (see Figure 5). Although ADIN w/o

EA may finally complete the task, it plans interactions with

over 5 obstacles and costs unnecessary effort, while ADIN

achieves a more efficient tour with 45 steps less and only 3

necessary interactions.

5. Conclusion

We propose an effect-oriented affordance map for Inter-

active Navigation (InterNav). The insight is to model the

interaction uncertainty with affordance and extend the

existing map-based framework into the domain of dynamic

environments. We construct an interactive modular system

consisting of a set of affordance functions, a mapping mod-

ule, and an interactive policy. The system plans long-term

paths considering the potential effect and effort of obstacle

interaction. Experiments in ProcTHOR verify the effec-

tiveness of our approach in complex dynamic environments.
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