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Abstract

Diffusion models (DMs) have exhibited superior perfor-
mance in generating high-quality and diverse images. How-
ever, this exceptional performance comes at the cost of ex-
pensive generation process, particularly due to the heavily
used attention module in leading models. Existing works
mainly adopt a retraining process to enhance DM efficiency.
This is computationally expensive and not very scalable. To
this end, we introduce the Attention-driven Training-free
Efficient Diffusion Model (AT-EDM) framework that lever-
ages attention maps to perform run-time pruning of redun-
dant tokens, without the need for any retraining. Specifi-
cally, for single-denoising-step pruning, we develop a novel
ranking algorithm, Generalized Weighted Page Rank (G-
WPR), to identify redundant tokens, and a similarity-based
recovery method to restore tokens for the convolution oper-
ation. In addition, we propose a Denoising-Steps-Aware
Pruning (DSAP) approach to adjust the pruning budget
across different denoising timesteps for better generation
quality.  Extensive evaluations show that AT-EDM per-
forms favorably against prior art in terms of efficiency
(e.g., 38.8% FLOPs saving and up to 1.53x speed-up over
Stable Diffusion XL) while maintaining nearly the same
FID and CLIP scores as the full model. Project webpage:
https://atedm. github.io.

1. Introduction

Diffusion Models (DMs) [9, 29] have revolutionized com-
puter vision research by achieving state-of-the-art perfor-
mance in various text-guided content generation tasks, in-
cluding image generation [28], image editing [12], super
resolution [17], 3D objects generation [27], and video gen-
eration [ 10]. Nonetheless, the superior performance of DMs
comes at the cost of an enormous computation budget. Al-
though Latent Diffusion Models (LDMs) [28, 34] make
text-to-image generation much more practical and afford-
able for normal users, their inference process is still too
slow. For example, on the current flagship mobile phone,
generating a single 512px image requires 90 seconds [19].

“Work was partly done during an internship at Adobe.
Corresponding author.

To address this issue, numerous approaches geared at ef-
ficient DMs have been introduced, which can be roughly
categorized into two regimes: (1) efficient sampling strat-
egy [24, 30] and (2) efficient model architecture [19, 38].
While efficient sampling methods can reduce the number of
denoising steps, they cannot reduce the memory footprint,
making it still challenging to use on devices with limited
memory. On the contrary, an efficient architecture reduces
the cost of each step and can be further combined with sam-
pling strategies to achieve even better efficiency. However,
most prior efficient architecture works require retraining
of the DM backbone, which can take thousands of A100
GPU hours. Moreover, due to different deployment set-
tings on various platforms, different compression ratios of
the backbone model are required, which necessitate mul-
tiple retraining runs later. Such retraining costs are a big
concern even for large companies in the industry.

To this end, we propose the Attention-driven Training-
free Efficient Diffusion Model (AT-EDM) framework,
which accelerates DM inference at run-time without any
retraining. To the best of our knowledge, training-free ar-
chitectural compression of DMs is a highly uncharted area.
Only one prior work, Token Merging (ToMe) [1], addresses
this problem. While ToMe demonstrates good performance
on Vision Transformer (ViT) acceleration [2], its perfor-
mance on DMs still has room to improve. To further enrich
research on training-free DMs, we start our study by profil-
ing the floating-point operations per second (FLOPs) of the
state-of-the-art model, Stable Diffusion XL (SD-XL) [26],
through which we find that attention blocks are the domi-
nant workload. In a single denoising step, we thus propose
to dynamically prune redundant tokens to accelerate atten-
tion blocks. We pioneer a fast graph-based algorithm, Gen-
eralized Weighted Page Rank (G-WPR), inspired by Zero-
TPrune [35], and deploy it on attention maps in DMs to
identify superfluous tokens. Since SD-XL contains ResNet
blocks, which require a full number of tokens for the con-
volution operations, we propose a novel similarity-based to-
ken copy approach to recover pruned tokens, again leverag-
ing attention maps. This token recovery method is critical
to maintaining image quality. We find that naive interpola-
tion or padding of pruned tokens adversely impacts gener-
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Figure 1. Examples of applying AT-EDM to SD-XL [26]. Compared to the full-size model (top row), our accelerated model (bottom row)
has around 40% FLOPs reduction while enjoying competitive generation quality at various aspect ratios.

ation quality severely. In addition to single-step architec-

tural pruning, we also investigate cross-step redundancy in

the denoising process by analyzing the variance of attention
maps. This leads us to a novel pruning schedule, dubbed as

Denoising-Steps-Aware Pruning (DSAP) schedule, where

we adjust the pruning ratios across different denoising steps.

We find DSAP not only significantly improves our method,

but also helps improve other run-time pruning methods like

ToMe [1]. Compared to ToMe, our approach shows a clear

improvement by generating clearer objects with sharper de-

tails and better text-image alignment under the same accel-
eration ratio. In summary, our contributions are four-fold:

* We propose the AT-EDM framework, which leverages
rich information from attention maps to accelerate pre-
trained DMs without retraining.

e We design a token pruning algorithm for a single de-
noising step. We pioneer a fast graph-based algo-
rithm, G-WPR, to identify redundant tokens, and a novel
similarity-based copy method to recover missing tokens
for convolution.

¢ Inspired by the variance trend of attention maps across de-
noising steps, we develop the DSAP schedule, which im-
proves generation quality by a clear margin. The schedule
also provides improvements over other run-time acceler-
ation approaches, demonstrating its wide applicability.

* We use AT-EDM to accelerate a top-tier DM, SD-XL, and
conduct both qualitative and quantitative evaluations. No-
ticeably, our method shows comparable performance with
an FID score of 28.0 with 40% FLOPs reduction relative
to the full-size SD-XL (FID 27.3), achieving state-of-the-
art results. Visual examples are shown in Fig. 1.

2. Related Work

Text-to-Image Diffusion Models. The diffusion-based
generative models enable high-fidelity image synthesis with
variant text prompts [4, 9]. However, DMs in the pixel space

suffer from large generation latency, which severely limits
their applications [36]. LDM [28] encodes the pixel space
into a latent space and deploys a DM in the latent space.
This reduces computational cost significantly while main-
taining generation quality. Subsequently, improved ver-
sions of the LDM, called Stable Diffusion Models (SDMs),
have been released. The most recent and powerful one is
SD-XL [26], which is our default backbone in this work.

Efficient Diffusion Models. Researchers have made enor-
mous efforts to make DMs more efficient. Existing efficient
DMs can be divided into two types: (1) Efficient sampling
to reduce the required number of denoising steps [22, 30—
32]. A recent efficient sampling work [24] managed to re-
duce the number of denoising steps to one by iterative distil-
lation. (2) Architectural compression to make each sam-
pling step more efficient [11, 19, 36, 38]. A recent work
[13] removes multiple ResNet and attention blocks in the
U-Net through distillation. Although these methods can re-
duce computational costs while maintaining decent image
quality, they require expensive retraining of the DM back-
bone to enhance efficiency. Thus, a training-free method
to enhance the efficiency of DMs is needed. Note that our
proposed training-free framework, AT-EDM, is orthogonal
to these methods and can be stacked with them to further
improve their efficiency. We provide corresponding experi-
mental evidence in Supplementary Material (Supp).

Training-Free Efficiency Enhancement. Training-free
(i.e., post-training) efficiency enhancement schemes have
been widely explored for CNNs [14, 33, 39] and ViTs
[2, 7, 15, 35]. However, training-free schemes for DMs
are still poorly explored. To the best of our knowledge, the
only prior work in this field is ToMe [1]. It uses token em-
bedding vectors to obtain pair-wise similarity and merges
similar tokens to reduce computational overheads. While
ToMe achieves a decent speed-up when applied to SD-v1.x
and SD-v2.x, we find that it does not help much when ap-
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plied to the state-of-the-art DM backbone, SD-XL, whilst
our method achieves a clear improvement over it (see Sec-
tion 4). This is mainly due to (1) the significant architectural
change of SD-XL (see Supp); (2) our better algorithm de-
sign to identify redundant tokens.

Exploiting Attention Maps. We take inspiration from re-
cent image editing works [3, 5, 8, 25], in which attention
maps clearly demonstrate which parts of a generated image
are more important. This inspires us to use the correlations
and couplings between tokens indicated by attention maps
to identify unimportant tokens and prune them. Specifically,
we can convert attention maps to directed graphs, where
nodes represent tokens, without information loss. Based on
this idea, we develop the G-WPR algorithm for token prun-
ing in a single denoising step.

Non-Uniform Denoising Steps. Various existing works
[6, 18, 21, 37] demonstrate that denoising steps contribute
differently to the quality of generated images; thus, it is not
optimum to use uniform denoising steps. OMS-DPM [21]
uses different models in different denoising steps. DDSM
[37] adapts model size to the importance of each denois-
ing step. AutoDiffusion [18] employs evolutionary search
to skip some denoising steps and blocks in the U-Net. Diff-
Pruning [6] uses a Taylor expansion over timesteps to disre-
gard non-contributory diffusion steps. All existing methods
either require an intensive training/fine-tuning/searching
process to obtain and deploy the desired denoising sched-
ule or are not compatible with our proposed G-WPR token
pruning algorithm due to the U-Net architecture change. On
the contrary, based on our investigation of the variance of
attention maps across denoising steps, we propose DSAP.
Its schedule can be determined via simple ablation experi-
ments and it is compatible with any token pruning scheme.
DSAP can potentially be migrated to existing efficient DMs
to help improve their image quality.

3. Methodology

We start our investigation by profiling the FLOPs of the
state-of-the-art DM, SD-XL, as shown in Fig. 2. Notice-
ably, among compositions of the sampling module (U-Net),
attention blocks, which consist of several consecutive at-
tention layers, dominate the workload for image genera-
tion. Therefore, we propose AT-EDM to accelerate atten-
tion blocks in the model through token pruning. AT-EDM
contains two important parts: a single-denoising-step token
pruning scheme and the DSAP schedule. We provide an
overview of these two parts and then discuss them in detail.

3.1. Overview
Fig. 3 illustrates the two main components of AT-EDM:

Part I: Token pruning scheme in a single denoising step.
Step 1: We can potentially obtain the attention maps from

Conv+Res 1623
Attn 5108

0 1000 2000 3000 4000 5000 6000
GFLOPs
Figure 2. U-Net FLOPs breakdown of SD-XL [26] measured with

1024px image generation. Attention blocks cost the most.

self-attention or cross-attention of an attention layer. We
compare the two choices and analyze them in detail through
ablation experiments. Step 2: We use a scoring module to
assign an importance score to each token based on the ob-
tained attention map. We propose an algorithm called G-
WPR to assign importance scores to each token (see Sec-
tion 3.2). Step 3: We generate pruning masks based on
the calculated importance score distribution. Currently, we
simply use the top-k approach to determine the retained to-
kens, i.e., prune tokens with lower importance scores. Step
4: We use the generated mask to perform token pruning.
We do this after the feed-forward layer of attention layers.
We may also perform pruning early before the feed-forward
layers. We provide ablative experimental results for it in
Supp. Step 5: We repeat Steps 1-4 for consecutive atten-
tion layers. Note that we do not apply pruning to the last
attention layer before the ResNet layer. Step 6: Finally, be-
fore passing the pruned feature map to the ResNet block, we
need to recover the pruned tokens. We propose a similarity-
based copy technique to address this (see Section 3.2).

Part II: DSAP schedule. Attention maps in early de-
noising steps are more chaotic and less informative than
those in later steps, which is indicated by their low vari-
ance. Thus, they have a weaker ability to differentiate unim-
portant tokens [8]. Based on this intuition, we design the
DSAP schedule that prunes fewer tokens in early denoising
steps. Specifically, we select some attention blocks in the
up-sampling and down-sampling stages and leave them un-
pruned, since they contribute more to the generated image
quality than other attention blocks [19]. We demonstrate the
schedule in detail in Section 3.3.

3.2. Part I: Token Pruning in a Single Step

Notation. Suppose A1) ¢ RM*N g the attention map
of the h-th head in the [-th layer. It reflects the correla-
tions between M Query tokens and /N Key tokens. We re-
fer to A" as A for simplicity in the following discus-
sion. Let A; ; denote its element in the 3-th row, j-th col-
umn. A can be thought of as the adjacency matrix of a
directed graph in the G-WPR algorithm. In this graph, the
set of nodes with input (output) edges is referred to as ®;,
(®out). Nodes in @;, (P,,,+) represent Key (Query) tokens,
ie, ®im = {k;}1 (Pour = {qi}iL). Let sh (sfy) de-
note the vector that represents the importance score of Key
(Query) tokens in the ¢-th iteration of the G-WPR algorithm.
In the case of self-attention, Query tokens are the same as
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Figure 3. Overview of our proposed framework AT-EDM. Single-Denoising-Step Token Pruning: (1) we get the attention map from
self-attention; (2) we calculate the importance score for each token using G-WPR; (3) we generate pruning masks; (4) we apply the masks
to tokens after the feed-forward network to realize token pruning; (5) we repeat Steps (1)-(4) for each consecutive attention layer; (6) we
recover pruned tokens through similarity-based copy before the ResNet block. Denoising-Steps-Aware Pruning Schedule: In early steps,

we propose to prune fewer tokens and to have less FLOPs reduction. In later steps, we prune more aggressively for higher speedup.

Key tokens. Specifically, we let {x;}X; denote the N to-
kens and s denote their importance scores in the description
of our token recovery method.

The G-WPR Algorithm. WPR [35] uses the attention map
as an adjacency matrix of a directed complete graph. It uses
a graph signal to represent the importance score distribu-
tion among nodes in this graph. WPR uses the adjacency
matrix as a graph operator, applying it to the graph signal
iteratively until convergence. In each iteration, each node
votes for which node is more important. The weight of the
vote is determined by its importance in the last iteration.
However, WPR, as proposed in [35], constrains the used at-
tention map to be a self-attention map. Based on this, we
propose the G-WPR algorithm, which is compatible with
both self-attention and cross-attention, as shown in Algo-
rithm 1. The attention from Query ¢; to Key k; weights the
edge from g; to k; in the graph generated by A.. In each iter-
ation of the vanilla WPR, by multiplying with the attention
map, we map the importance of Query tokens sﬁg to the im-
portance of Key tokens stljl, i.e., each node in ®,,; votes
for which ®;,, node is more important. For self-attention,
38“1 t+1 since Query and Key tokens are the same. For
cross-attentlon, Query tokens are image tokens and Key to-
kens are text prompt tokens. Based on the intuition that im-
portant image tokens should devote a large portion of their
attention to important text prompt tokens, we define func-

t+1

tion f(A, sk ) that maps sj7 " to st'H One entropy-based

implementation is t+l
(o) F(AL st = T Au 55 ()
— Zj:l Ai,]‘ -1n A@j
where A; ; is the attention from Query g; to Key k;. This is
the default setting for cross-attention-based WPR in the fol-
lowing sections. We discuss and compare other implemen-
tations in Supp. Note that for self-attention, f(A,stt!) =
st+1. The G-WPR algorithm has an O(M x N') complexity,
where M (V) is the number of Query (Key) tokens. We em-
ploy this algorithm in each head and obtain the root mean
square of scores from different heads (to reward tokens that
obtain very high importance scores in a few heads).
Recovering Pruned Tokens. We have fewer tokens after
token pruning, leading to efficiency enhancement. How-
ever, retained tokens form irregular maps and thus cannot
be used for convolution, as shown in Fig. 4. We need to re-
cover the pruned tokens to make them compatible with the
following convolutional operations in the ResNet layer. We
implement several straightforward token recovery methods
as baselines for comparison: (I) Padding Zeros; (II) Inter-
polation; (IIT) Direct Copy of input tokens at the locations
of pruned tokens (check Supp for details).

To avoid the effect of distribution shift, we propose a
similarity-based copy technique, as shown in Fig. 4. We
select tokens that are similar to pruned tokens from the re-

stT1
SQ

t+1
K

) = (¢Y)
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Algorithm 1 The G-WPR algorithm for both self-attention
and cross-attention
Require: M, N > 0 is the number of nodes in ®oyt, Pin; A €
RM*N: 565 € RM s € RY; f(A, s1,) maps the importance
of Key to that of Query
Ensure: s € R represents the importance score of image tokens
0 1
SQ < Vi X em
t«+0
while (|sg; — s&57'| > €) or (t = 0) do
siet AT x sh
stQJrl — f(A, st
stQ+1 «— stQ+l/|sg1|
t—t+1
end while
54 sh
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with ResNet
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Similarity-based copy resolves the
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Figure 4. Our similarity-based copy method for token recovering
resolves the incompatibility between token pruning and ResNet.
Token pruning incurs the non-square shape of feature maps and
thus is not compatible with ResNet. To address this, we recover
the pruned tokens through their most similar retained tokens. Af-
ter recovering, tokens can be translated into a spatially-complete
feature map to serve as input to ResNet blocks.

tained tokens. We use the self-attention map to determine
the source of the highest attention received for each pruned
token and consider that as the most similar one. This is
based on the intuition that attention from token z, to token
Zp, Aqp, is determined by two factors: (1) importance of
token xy, i.e., s(xp), and (2) similarity between token z,
and z;,. If we observe the attention that x; receives, i.e.,
compare {4; ;}ien, since s(xyp) is fixed, index ¢ = 7 that
maximizes {4, ;};cn is the index of the most similar to-
ken, i.e., x,. Finally, we copy the value of token x,, to fill
(i.e., recover) the pruned token .

3.3. Part II: Denoising-Steps-Aware Pruning

Early denoising steps determine the layout of generated im-
ages and, thus, are crucial. On the contrary, late denoising
steps aim at refining the generated image, natively including
redundant computations since many regions of the image do
not need refinement. In addition, early denoising steps have
a weaker ability to differentiate unimportant tokens, and late

Regionl | Regionll | Region IIT { RegionIV |

Variance

0 10 20 30 a0 50

Step
Figure 5. Variance of attention maps in different denoising steps.
We divide the denoising steps into four typical regions: (I) Very-
early steps: Variance of attention maps is small and increases
rapidly; (II) Mid-early steps: Variance of attention maps is large
and increases slowly; (III) Middle steps: Variance of attention
maps is large and almost constant; (IV) Last several steps.

denoising steps yield informative attention maps and differ-
entiate unimportant tokens better. To support this claim, we
investigate the variance of feature maps in different denois-
ing steps, as shown in Fig. 5. It indicates that attention maps
in early steps are more uniform. They assign similar atten-
tion scores to both important and unimportant tokens, mak-
ing it harder to precisely identify unimportant tokens and
prune them in early steps. Based on these intuitions, we
propose DSAP that employs a prune-less schedule in early
denoising steps by leaving some of the layers unpruned.

The prune-less schedule. In SD-XL, down-stages, up-
stages, and the mid-stage include attention blocks. Each
attention block includes 2-10 attention layers. In our prune-
less schedule, we select some attention blocks to not per-
form token pruning. Since previous works [13, 19] indicate
that the mid-stage contributes much less to the generated
image quality than the up-stages and down-stages, we do
not select the attention block in the mid-stage. Based on the
ablation study, we choose to leave the first attention block
in each down-stage and the last attention block in each up-
stage unpruned. We use this prune-less schedule for the first
7 denoising steps. We explore setting 7 in different regions
shown in Fig. 5 and find 7 = 15 is the optimal choice. We
exhibit all the related ablative experimental results in Sec-
tion 4.4. A detailed description of the prune-less schedule is
provided in Supp. To further consolidate our intuitions, we
also investigate a prune-more schedule in early denoising
steps and find it inferior to our current approach (Supp).

4. Experimental Results

In this section, we evaluate AT-EDM and ToMe on SD-XL.
We provide both visual and quantitative experimental re-
sults to demonstrate the advantages of AT-EDM over ToMe.

4.1. Experimental Setup

Common settings. We implement both our AT-EDM
method and ToMe on the official repository of SD-XL. The
resolution of generated images is 1024 x 1024 pixels and the
default FLOPs budget for each denoising step is assumed to
be 4.1T, which is 38.8% smaller than that of the original
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“Ultra realistic illustration of an old man cyborg, cyberpunk, sci-fi fantasy”

[

“A single beam of light enters the room from the ceiling. The beam of light is illuminating an easel. On the

easel there is a Rembrandt painting of a raccoon.”

(&) SDXL w/o DSAP
a -

(b) ToMe

(c) Ours

w/ DSAP

(d) ToMe (e) Ours (AT-EDM)

Figure 6. Comparing AT-EDM to the state-of-the-art approach, ToMe [1]. While the full-size SD-XL [26] (Col. a) consumes 6.7 TFLOPs,
we compare the accelerated models (Col. b-e) at the same budget of 4.1 TFLOPs. Compared to ToMe, AT-EDM provides clearer generated
objects with sharper details and finer textures, and a better text-image alignment where it better retains the semantics in the prompt (see the
fourth row). Moreover, we find that DSAP provides better structural layout of the generated images, which is effective for both ToMe and
our approach. AT-EDM combines the novel token pruning algorithm and the DSAP schedule (Col. e), outperforming the state of the art.

model (6.7T) unless otherwise noted. The default CFG-
scale for image generation is 7.0 unless otherwise noted.
We set the total number of sampling steps to 50 and use the
default sampler of SD-XL, i.e., EulerEDMSampler.

AT-EDM. For a concise design, we only insert a pruning
layer after the first attention layer of each attention block
and set the pruning ratio for that layer to p. To meet the
FLOPs budget of 4.1T, we set p = 63%. In the prune-less
schedule, we leave the first (last) attention block in each

down-stage (up-stage) unpruned. We use this prune-less
schedule for the first 7 = 15 denoising steps.

ToMe. The SD-XL architecture has changed significantly
compared to previous versions of SDMs (see Supp). Thus,
the default setting of ToMe does not lead to enough FLOPs
savings. To meet the FLOPs budget, it is necessary to use
a more aggressive merging setting. Therefore, we expand
the application range of token merging (1) from attention
layers at the highest feature level to all attention layers, and
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(2) from self-attention to self-attention, cross-attention, and
the feedforward network. We set the merging ratio r = 50%
to meet the FLOPs budget of 4.1T.

Evaluations. We first compare the generated images with
manually designed challenging prompts in Section 4.2.
Then, we report FID and CLIP scores of zero-shot image
generation on the MS-COCO 2017 validation dataset [20]
in Section 4.3. Tested models generate 5k images based on
the captions. We provide ablative experimental results and
analyze them in Section 4.4 to justify our design choices.
We provide more implementation details in Supp.

4.2. Visual Examples for Qualitative Analysis

We use manually designed challenging prompts to evalu-
ate ToMe and our proposed AT-EDM framework. The gen-
erated images are compared in Fig. 6. We compare more
generated images in Supp. Visual examples indicate that
with the same FLOPs budget, AT-EDM demonstrates bet-
ter main object preservation and text-image alignment
than ToMe. For instance, in the first example, AT-EDM
preserves the main object, the face of the old man, much
better than ToMe does. AT-EDM’s strong ability to pre-
serve the main object is also exhibited in the second exam-
ple. ToMe loses high-frequency features of the main ob-
ject, such as texture and hair, while AT-EDM retains them
well, even without DSAP. The third example again illus-
trates the advantage of AT-EDM over ToMe in preserving
the rapper’s face. The fourth example uses a relatively com-
plex prompt that describes relationships between multiple
objects. ToMe misunderstands “a Rembrandt painting of
a raccoon” as being a random painting on the easel and a
painting of a raccoon on the wall. On the contrary, the im-
age generated by AT-EDM understands and preserves these
relationships very well, even without DSAP. As a part of
our AT-EDM framework, DSAP is not only effective in AT-
EDM but also beneficial to ToMe in improving image qual-
ity and text-image alignment. When we deploy DSAP in
ToMe, we select corresponding attention blocks to not per-
form token merging, while keeping the FLOPs cost fixed.

4.3. Quantitative Evaluations

FID-CLIP Curves. We explore the trade-off between the
CLIP and FID scores through various Classifer-Free Guid-
ance (CFQG) scales. We show the results in Fig. 7. AT-EDMT
does not deploy pruning at the second feature level (see
Supp). It indicates that for most CFG scales, AT-EDM not
only lowers the FID score but also results in higher CLIP
scores than ToMe, implying that images generated by AT-
EDM not only have better quality but also better text-image
alignment. Specifically, when the CFG scale equals 7, AT-
EDM (ToMe) results in 28.0 (35.3) FID score. Compared
with the sweet spot of the full-size model (27.3), AT-EDM
reduces the FID gap from 8.0 to 0.7.

40
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Figure 7. FID-CLIP score curves. The used CFG scales are [1.0,
1.5,2.0, 25, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 12.0, 15.0]. This figure is
zoomed in to the bottom-right corner to compare the best trade-off
points. See complete curves in Supp.

Table 1. Deploying ToMe and AT-EDM in SD-XL under different
FLOPs budgets. We generate all images with the CFG-scale of
7.0, except for SD-XL, for which we use the CFG-scale of 4.0.

Model FID CLIP TFLOPs
SD-XL 31.94  0.3284 6.7
SD-XLF 2730  0.3226 6.7
ToMe-a  58.76 0.2954 2.9

AT-EDM-a 52.00 0.2784 2.9
ToMe-b  40.94 0.3154 3.6

AT-EDM-b  29.80 0.3095 3.6
ToMe-c 3527 0.3198 4.1

AT-EDM-c  28.04 0.3209 4.1
ToMe-d  32.46 0.3235 4.6

AT-EDM-d 27.23 0.3245 45

Various FLOPs Budgets. We deploy ToMe and AT-EDM
on SD-XL under various FLOPs budgets and show the re-
sults in Table 1. It indicates that AT-EDM achieves bet-
ter image quality than ToMe (lower FID scores) under all
FLOPs budgets. When the FLOPs saving is 30-40%, AT-
EDM achieves not only better image quality (lower FID
scores) but also better text-image alignment (higher CLIP
scores) than ToMe. Compared to the sweet spot of the full
model (CFG-scale equals 4), AT-EDM achieves not only
a lower FID score but also a higher CLIP score while
reducing FLOPs by 32.8%. We provide more visual ex-
amples under various FLOPs budgets in Supp.

Latency Analysis. SD-XL uses the Fused Operation (FO)
library, xformers [16], to boost its generation. The Current
Implementation (CI) of xformers does not provide attention
maps as intermediate results; hence, we need to additionally
obtain the attention maps. We discuss the sampling latency
for three cases: (I) without FO, (IT) with FO under CI, and
(IIT) with FO under the Desired Implementation (DI), which
provides attention maps as intermediate results. Table 2
shows that with FO, the cost of deploying pruning at the
second feature level exceeds the latency reduction it leads
to. Hence, AT-EDM is faster than AT-EDM. We show the
extra latency incurred by different pruning steps in Supp.
With a negligible quality loss, AT-EDM achieves 52.7 %,
15.4%, 17.6% speed-up in terms of latency w/o FO, w/
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Table 2. Comparison of sampling latency in different cases.

Model SD-XL ToMe AT-EDM AT-EDMf
Ave. FLOPs/step  6.7T 41T 41T 45T

w/o FO 31.0s 21.0s 20.3s 22.1s
w/ FO under CI 18.0s 17.7s 18.3s 15.6s
w/ FO under DI 18.0s 17.7s 16.3s 15.3s

Pruning Mask
(Black: Pruned Tokens)
(b) CA-WPR  (c) SA-WPR : (d) CA-WPR  (e) SA-WPR

Generated Image é

(a) SD-XL
Figure 8. Comparison between implementations of G-WPR: CA-
based WPR and SA-based WPR. CA-based WPR may remove too
many background tokens, making the background not recoverable,
while SA-based WPR preserves the image quality better.

FO under CI, w/ FO under DI, respectively, which out-
performs the state-of-the-art work by a clear margin. We
provide the memory footprint of AT-EDM in Supp.

4.4. Ablation Study

Self-Attention (SA) vs. Cross-Attention (CA). G-WPR
can potentially use attention maps from self-attention (SA-
based WPR) and cross-attention (CA-based WPR). We pro-
vide a detailed comparison between the two implementa-
tions. We visualize their pruning masks and provide gener-
ated image examples for a visual comparison in Fig. 8. This
figure indicates that SA-based WPR outperforms CA-based
WPR. The reason is that CA-based WPR prunes too many
background tokens, making it hard to recover the back-
ground via similarity-based copy.

Similarity-based Copy. We provide comparisons between
different methods to recover the pruned tokens in Fig. 9,
which demonstrate the advantages of our similarity-based
copy method. Images generated by bicubic interpolation are
quite similar to those generated by padding zeros because
interpolation usually assigns near-zero values to pruned to-
kens that are surrounded by other pruned tokens and can
hardly recover them. Direct copy means directly copying
corresponding token values before the first pruning layer to
fill the pruned tokens, where the following attention layers
do not process the copied values. Thus, the copied values
cannot recover the information in pruned tokens. On the
contrary, similarity-based copy uses attention maps and to-
kens that are retained to recover the pruned tokens, provid-
ing significantly higher image quality.
Denoising-Steps-Aware Pruning. We provide ablation ex-
periments on the prune-less schedule design in Supp. Here,

Feature map

Generated image

(c) Bicubic
Interpolation

Figure 9. Different methods to recover the pruned tokens. Zero
padding, bicubic interpolation, and direct copy can hardly recover
pruned tokens and result in noticeable image degradation (incom-
plete moon). On the contrary, similarity-based copy provides bet-

(e) Similarity-based

(a) SD-XL Copy

(b) Padding Zeros (d) Direct Copy

ter image quality and keeps the complete moon.

#
e

(a) SD-XL (b) 0 Step (c) 5 Steps (d) 15 Steps (e) 30 Steps (f) 45 Steps

Figure 10. Comparison between different numbers of prune-less
steps. Pruning less on the first 15 steps achieves the best quality.

we explore how the number of early prune-less denoising
steps affects the generated image quality in Fig. 10. Note
that we fix the FLOPs budget and adjust the pruning rate ac-
cordingly when we change the number of prune-less steps.
This figure shows that the setting of 15 early prune-less
steps performs best. Note that the setting of zero prune-
less step is identical to the setting without DSAP, and 5,
15, 30, 45 prune-less steps represent setting the boundary in
Regions I, II, 111, IV of Fig. 5, respectively. The results in-
dicate that placing the boundary between the prune-less and
normal schedule in Region II performs best. This meets our
expectation because the variance of attention maps becomes
high enough to identify unimportant tokens in Region II.

5. Conclusion

We proposed AT-EDM, a novel framework for accelerating
DMs at run-time without retraining. In single-denoising-
step pruning, AT-EDM exploits attention maps to identify
unimportant tokens and prunes them to accelerate the gen-
eration process. To solve the compatibility issue, AT-EDM
again uses attention maps to reveal similarities between to-
kens and copies similar tokens to recover the pruned ones.
DSAP further improves the generation quality of AT-EDM.
Such a pruning schedule is also applicable to other methods
like ToMe. Experimental results demonstrate the superior-
ity of AT-EDM with respect to image quality and text-image
alignment compared to state-of-the-art methods.
Acknowledgment. This work was supported in part by an
Adobe summer internship and in part by NSF under Grant
No. CCF-2203399.
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