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Figure 1. (a) Original voxel pooling strategy approximately accumulates the image features contained in a frustum point to the single
corresponding BEV grid center, leading to an irrecoverable position approximation error. We discover that spread operation can reduce
this error, where the weights ω assigned to surrounding BEV grids should be related to the distance and depth. First, weight decay with
distance can effectively retain more location information, which is beneficial for subsequent network learning. Second, same size image
blocks with deeper depth represent objects of larger 3D scales, which results in distant objects containing few image features. Therefore,
it is reasonable to assign larger weights to the surrounding BEV grids for distant targets. (b) We have designed an intuitive experiment to
demonstrate that network can learn accurate position coordinates from the BEV features obtained by spread voxel pooling. (c) Results on
DAIR-V2X-I dataset show that BEVSpread outperforms state-of-the-art method by a significant margin of (1.12, 5.26, 3.01) AP in vehicle,
pedestrian and cyclist categories, respectively.

Abstract

Vision-based roadside 3D object detection has attracted
rising attention in autonomous driving domain, since it en-
compasses inherent advantages in reducing blind spots and
expanding perception range. While previous work mainly
focuses on accurately estimating depth or height for 2D-

*Equal contribution.
†Corresponding author.

to-3D mapping, ignoring the position approximation error
in the voxel pooling process. Inspired by this insight, we
propose a novel voxel pooling strategy to reduce such er-
ror, dubbed BEVSpread. Specifically, instead of bringing
the image features contained in a frustum point to a sin-
gle BEV grid, BEVSpread considers each frustum point as
a source and spreads the image features to the surrounding
BEV grids with adaptive weights. To achieve superior prop-
agation performance, a specific weight function is designed
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to dynamically control the decay speed of the weights ac-
cording to distance and depth. Aided by customized CUDA
parallel acceleration, BEVSpread achieves comparable in-
ference time as the original voxel pooling. Extensive experi-
ments on two large-scale roadside benchmarks demonstrate
that, as a plug-in, BEVSpread can significantly improve the
performance of existing frustum-based BEV methods by a
large margin of (1.12, 5.26, 3.01) AP in vehicle, pedestrian
and cyclist. The source code will be made publicly avail-
able at BEVSpread.

1. Introduction
Vision-centric 3D object detection plays a critical role in
autonomous driving perception, which helps accurately es-
timate the state of the surrounding environment and provide
reliable observations for forecasting and planning at a low
cost. Most existing work focuses on the ego vehicle sys-
tem [16, 17, 23, 26, 36, 38], facing safety challenges due
to a lack of global perspective and the limitation of long-
range perception capacity. To this end, roadside 3D ob-
ject detection has attracted rising attention in recent years
[3, 33, 34, 43, 44]. Since roadside cameras are mounted
on poles a few meters above the ground, they have inher-
ent advantages in reducing blind spots, improving occlu-
sion robustness, and expanding global perception capabil-
ity [1, 45–47]. Therefore, it is promising to improve road-
side perception performance as a complement to improve
the safety of autonomous driving.

Recently, bird’s eye view (BEV) has become the main-
stream paradigm for handling the 3D object detection task
[13, 22], among which frustum-based method [16, 23, 27,
44] is a significant branch and its pipeline is shown in
Fig. 1a. It first maps image features to 3D frustums by esti-
mating depth or height, and then pools frustums onto BEV
grids by reducing the Z-axis degree of freedom. Extensive
work focuses on improving the precision of depth estima-
tion [8–10, 16, 23] or height estimation [17, 39, 44] to im-
prove the performance of 2D-to-3D mapping. However, the
approximation error caused by the voxel pooling process is
rarely considered. As shown in Fig. 1a, the predicted point
is usually not located in a BEV grid center. To improve
the computational efficiency, previous work approximately
accumulates the image features contained in the predicted
point to the single corresponding BEV grid center, leading
to a position approximation error, and this error is irrecov-
erable. Augmenting the density of BEV grids can allevi-
ate this error, but results in a notable increase in compu-
tational workload. Especially in roadside scenarios, due to
the large perception range and limited computing resources,
BEV grids can only be designed relatively sparse to ensure
real-time detection, which exactly exacerbates the impact of
this error. Thus, the question is raised: How can we reduce

this error while maintaining computational complexity?
In this work, we propose a novel voxel pooling strat-

egy to reduce such position approximation error, dubbed
BEVSpread. Instead of adding the image features contained
in a frustum point to a single BEV grid, BEVSpread con-
siders each frustum point as a source and spreads the im-
age features to the surrounding BEV grids with adaptive
weights. We discover that the weights assigned to surround-
ing BEV grids should be related to distance and depth. First,
weight decay with distance can effectively retain more lo-
cation information, which is beneficial for subsequent net-
work learning. Second, we notice that same size image
blocks with deeper depth represent objects of larger 3D
scales, which results in distant objects containing few im-
age features. Therefore, it is reasonable to assign larger
weights to the surrounding BEV grids for distant targets. In-
spired by this insight, a specific weight function is designed
to achieve superior spread performance, where weights and
distances follow a Gaussian distribution. The variance of
this Gaussian distribution is positively related to the depth
information, which controls the decay speed. In particular,
BEVSpread is a plug-in that can be directly deployed on
existing frustum-based BEV methods.

To validate the effectiveness of BEVSpread, extensive
experiments are conducted on two challenging benchmarks
for vision-based roadside perception, DAIR-V2X-I [46] and
Repo3D [45]. After deploying spread voxel pooling strat-
egy, the 3D average precision (AP3D|R40) of BEVHeight
[44] and BEVDepth [16] increases by a large margin of 3.1
and 4.0 on average across three major categories.

Our contributions can be summarized as:
• We point out a position approximation error existed in

current voxel pooling approach, which seriously affects
the performance of 3D object detection in roadside sce-
narios, while this issue is ignored in previous works.

• We propose a novel spread voxel pooling approach,
namely BEVSpread, which considers both distance and
depth effects during the spread process to reduce the po-
sition approximation error while maintaining comparable
inference time through CUDA parallel acceleration.

• Extensive experiments demonstrate that, as a plug-in,
BEVSpread significantly enhances the performance of
existing frustum-based BEV methods by a large margin
of (1.12, 5.26, 3.01) AP in vehicle, pedestrian, and cyclist
categories, respectively.

2. Related Work
Recently, bird’s eye view (BEV) has become the main-
stream paradigm for 3D object detection in autonomous
driving, as it provides a unified feature space for multi-
sensor and clearly presents the location and scale of objects.
In this section, we introduce BEV perception, roadside BEV
perception and voxel pooling strategy in detail.
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Figure 2. The overall framework of BEVSpread. Spread voxel pooling consists of two main steps, Neighbor Selection and Weight
Calculation. First, each 3D geometry point p is mapped to BEV space, where top − k nearest BEV grid centers are selected as its
neighbors Ωp,k. Correspondingly, the original voxel pooling selects the top− 1 nearest BEV grid center as its neighbor Ωp,1. Second, the
weights are calculated for the neighbors by Weight Function, where the weights ωp,p̂ and the distances dp,p̂ follow a Gaussian distribution
with (0, σ2). Furthermore, the variance σ2 is positively related to depth Dp, which controls the decay speed of ωp,p̂. Ultimately, the image
features contained in each 3D geometry point are accumulated to its neighbors according to the calculated weights.

BEV Perception. Based on the sensor types, BEV ap-
proaches can be mainly divided into three parts includ-
ing vision-based [16, 17, 23, 26, 37, 44], LiDAR-based
[2, 5, 7, 12, 30, 35] and fusion-based [15, 18, 24, 40, 41]
methods. Benefits from its low cost for deployment, vision-
based BEV methods have been a topic of great signif-
icance, which are further divided into transformer-based
and frustum-based schema. Transformer-based methods
[11, 17, 19, 20, 36, 37] introduce 3D object queries or BEV
grid queries to regress 3D bounding boxes. Frustum-based
methods [14, 16, 23, 25, 27, 44] first map image features to
3D frustums by estimating depth or height and then gener-
ate BEV features by voxel pooling. This work focuses on
the voxel pooling process in frustum-based methods, which
has rarely been explored but is critical.

Roadside BEV Perception. Roadside BEV perception
is an emerging field, which has been under-explored.
BEVHeight [43, 44] first concentrates on roadside percep-
tion, which predicts the height distribution to replace the
depth distribution. CBR [3] focuses on device robustness,
which generates BEV features without extrinsic calibration,
while accuracy is limited. CoBEV [29] fuses geometry-
centric depth and semantic-centric height cues to further
improve performance. MonoGAE [34] considers the prior
knowledge of the ground plane. Different from these meth-
ods, this paper proposes a plug-in to improve the perfor-
mance of existing frustum-based BEV methods.

Voxel Pooling Strategy. LSS [23] is the pioneering work of
frustum-based BEV methods, where voxel pooling is pro-
posed for the first time. Extensive work follows this setting
[14, 16, 25, 44]. SA-BEV [27] proposes a novel voxel pool-
ing strategy, SA-BEVPool, which filters out background in-
formation. While the unfiltered out frustum points adopt the
same voxel pooling method as LSS. In this work, we focus
on eliminating the position approximation error in the voxel
pooling process of LSS.

3. Methods
In this section, we first give a brief problem formulation of
vision-based roadside 3D object detection. Next, an overall
architecture of BEVSpread network is presented. Finally,
the core designs of BEVSpread are described in detail.

3.1. Problem Formulation

In this work, we aim to detect 3D bounding boxes of traffic
objects from roadside monocular images. Formally, a 3D
object detector can be defined as:

B = Mθ(I, E,K) (1)

where Mθ is the detection model with the learnable parame-
ters θ, I ∈ RH×W×3 is the input monocular image, (H,W )
represent the height and width of the image, E ∈ R3×4 and
K ∈ R3×3 are the extrinsic and intrinsic matrix of the road-
side camera, respectively. We denote the set of predicted
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3D bounding boxes as:

B = {B̂1, B̂2, ..., B̂n} (2)

where n is the number of predicted objects and B̂ can be
formulated as a vector with 7 degrees of freedom:

B̂ = (x, y, z, l, w, h, r) (3)

where (x, y, z) is the location of the 3D bounding box,
(l, w, h) is the length, width and height of the 3D bound-
ing box, and r is the yaw angle relative to one specific axis.

3.2. BEVSpread

Overall Architecture. As shown in Fig. 2, the overall
framework consists of four main stages. The image en-
coder is composed of a ResNet [6] and a SECONDFPN
[42], aiming to extract the 2D high-dimensional multi-scale
image features fI ∈ RCI× H

16×
W
16 from a monocular road-

side image I , where CI denotes the channel number. The
depth/height projector first takes the 2D image features
fI and camera parameters (E, K) as input to predict the
depth/height distribution fD ∈ RCD× H

16×
W
16 and the con-

text features fC ∈ RCC× H
16×

W
16 , where CD represents the

number of depth/height bins and CC stands for the chan-
nels of the context features. These two are further fused
through an outer product operation to obtain 2.5D frustum
features f2.5D ∈ RCC×CD× H

16×
W
16 . Then, the projector

push the 2.5D frustum features f2.5D into 3D geometry fea-
tures f3D ∈ RX×Y×Z×CC using camera parameters (E,
K). The proposed spread voxel pooling strategy splattes
the 3D geometry features f3D into an unified BEV features
fBEV. Finally, the 3D detection head utilizes the generated
BEV features to produce the 3D bounding boxes B.

Top-k Nearest BEV Grids. Define PBEV to represent the
set of arbitrary positions in BEV grids, ṖBEV ∈ PBEV

to represent the set of BEV grid centers, Ωp,k ⊆ ṖBEV

to represent the set of top-k neareast BEV grid centers to
p = (x, y) ∈ PBEV. For ∀p̂ = (x̂, ŷ) ∈ Ωp,k and
p̄ = (x̄, ȳ) ∈ {ṖBEV\Ωp,k}, it should satisfies:{

|Ωp,k| = k,
dp,p̂ ≤ dp,p̄

(4)

dp,p′ =
√
(x− x′)2 + (y − y′)2 (5)

where | · | denotes the cardinality of a set, k represents the
neighbors number of ∀p ∈ PBEV, {ṖBEV\Ωp,k} denotes the
relative complement of Ωp,k in ṖBEV, and dp,p′ represents
the Euclidean distance between p = (x, y) ∈ PBEV and
p′ = (x′, y′) ∈ PBEV.

Spread Voxel Pooling. In the spread voxel pooling stage,
we first calculate the corresponding positions p = (x, y) ∈
PBEV in BEV space for each point (x, y, z) ∈ P 3D in 3D

Same size image blocks

Part of car rear Entire car rear

Near Far

Depth ↑

Depth ↓

3D Size ↓ 3D Size ↑

Weight ↘

Figure 3. Effect of depth in voxel pooling. Same size image
blocks with deeper depth represent objects of larger 3D scales,
which results in distant objects containing few image features.
Therefore, it is reasonable to assign larger weights to the surround-
ing BEV grids for the distant targets.

geometry by reducing the Z-axis degree of freedom. In-
stead of accumulating the included context feature fC ∈
RCC of p into the corresponding single BEV gird center, we
propagate fC with certain weights to its neighbors Ω, which
are the n nearest BEV grids center around p. Specifically,
the process of spread voxel pooling can be formulated as:

fBEV
p̂ = Add(fBEV

p̂ , ωp,p̂ · fC
p ),∀p̂ ∈ Ωp,k (6)

where Ωp,k is the set of top-k neareast BEV grid centers of
p, fBEV

p̂ denotes the BEV feature of p̂, ωp,p̂ represents the
weight of p̂ determined by the weight decay function, fC is
the context feature included in p, and Add(a, b) = a+ b.

Weight Function. We discover that the weights should be
related to the distance and depth in spread process. (a)
Weight decay with distance can retain more location infor-
mation, which is beneficial to recover the accurate position
of p ∈ PBEV through subsequent network learning, so as
to eliminate the position approximation error in the original
voxel pooling process. Additionally, we have designed an
intuitive experiment to demonstrate this point in Sec. 4.5.
(b) As shown in Fig. 3, same size image blocks with deeper
depth represent objects of larger 3D scales, resulting in dis-
tant objects containing few image features. Therefore, it is
reasonable to assign larger weights to the surrounding BEV
grids for distant targets, manifesting that the weights decay
more slowly with distance, as shown in Fig. 2.

To this end, we design a specific weight function, which
ingeniously utilizes a Gaussian function to integrate the dis-
tance and depth information. The function is defined as:

ωp,p̂ = exp(
−d2p,p̂
σ2

) (7)

σ2 = α ·Dp (8)

where ωp,p̂ represents the calculated weight of p̂, dp,p̂ repre-
sents the the Euclidean distance between p and p̂, Dp is the
predicted depth of p, σ2 is the variance of Gaussian func-
tion which is positively related to Dp and controls the decay
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Algorithm 1 Spread Voxel Pooling
INPUT: 3D geometry points P 3D ∈ RX×Y ×Z , context image
feature of each 3D geometry point fC ∈ RCC , depth vector of 3D
geometry points D.
OUTPUT: BEV features fBEV.
BEGIN:

1: P BEV ∈ RX×Y extracted from P 3D

2: for p in P BEV do
3: Get Ωp,k by Eq. (4) ▷ Top-k Neareast BEV Grids
4: for p̂ in Ωp,k do
5: ωp,p̂ ← exp(−dp,p̂

α·Dp
) ▷ Weight Calculation

6: fBEV
p̂ ← Add(fBEV

p̂ , ωp,p̂ · fC
p ) ▷ Feature Accumulation

7: end for
8: end for
9: return fBEV

END

speed of ωp,p̂, and α is a learnable parameter to maintain σ2

within the interval [0,2]. Through this function, the weights
change adaptively depending on the distance and depth. In
summary, the pseudocode of the spread voxel pooling strat-
egy is shown in Algorithm 1.

4. Experiments

In this section, we first introduce two roadside benchmark
datasets and the implementation details. Then, we compare
our proposed BEVSpread with state-of-the-art methods. Fi-
nally, comprehensive ablation studies are conducted to val-
idate the effects of each component.

4.1. Datasets

DAIR-V2X-I. DAIR-V2X [46] is a large-scale dataset
for vehicle-infrastructure cooperative autonomous driving,
which offers a multi-modal 3D object detection resource.
Here, we focus on DAIR-V2X-I subset, containing 10k im-
ages from mounted cameras to study roadside perception.
DAIR-V2X-I involves 493k 3D bounding box annotations,
spanning distances from 0 to 200 meters. Following the pre-
vious work [44], 50%, 20% and 30% images are split into
train, validation, and testing, respectively. Noting that the
testing set is not yet published and we evaluate the results
on the validation set.

Rope3D. Rope3D [45] is another benchmark for roadside
3D object detection, consisting of 50k images and over
1.5M 3D objects collected across a variety of lighting con-
ditions (daytime / night / dusk), different weather conditions
(rainy / sunny / cloudy) and 26 distinct intersections, span-
ning distances from 0 to 200 meters. Following the split
strategy detailed in Rope3D, we use 70% of the images as
training, and the remaining 30% as testing.

Metrics. For both DAIR-V2X-I and Rope3D datasets, we

report the 40-point average precision (AP3D|R40) [31] of
3D bounding boxes, which is further categorized into three
modes: Easy, Middle and Hard, based on the box character-
istics, including size, occlusion and truncation, following
the metrics of KITTI [4].

4.2. Implementation Details

For fair comparison with state-of-the-art methods, we use
ResNet-101 [6] as image encoder, BEV grid size is set to
0.4 meters, the range of X axis is set to 0-100 meters, and
the neighbors number is set to 6. ResNet-50 and 0.8m grid
size are used for ablation studies. Following BEVHeight
[44], we adopt image data augmentations including random
intrinsic and extrinsic changes. We use AdamW [21] as an
optimzer with a learning rate set to 2e− 4. All experiments
are conducted on 8 RTX-3090 GPUs.

4.3. Comparison with state-of-the-art

For a comprehensive evaluation, we compare the proposed
BEVSpread with state-of-the-art BEV detectors on DAIR-
V2X-I and Rope3D. Since the proposed spread voxel pool-
ing strategy is a plug-in, we deploy it to BEVHeight,
dubbed BEVSpread. The results are described as follows.

Results on DAIR-V2X-I. Tab. 1 illustrates the perfor-
mance comparison on DAIR-V2X-I. We compare our
BEVSpread with the state-of-the-art vision-based methods,
including ImVoxelNet [28], BEVFormer [17], BEVDepth
[16] and BEVHeight [44], and the traditional LiDAR-based
methods, including PointPillars [12], SECOND [42] and
MVXNet [32]. The results demonstrate that BEVSpread
outperforms state-of-the-art methods by a significant mar-
gin of (1.12, 5.26 and 3.01) AP in vehicle, pedestrian, and
cyclist categories, respectively. We notice that previous
methods are trained only in 0-100m, while DAIR-V2X-I
contains the labels of 0-200m. To this end, we cover a
longer range of 3D object detection, locating targets in 0-
200m, which is denoted as DAIR-V2X-I∗ in Tab. 1.

Results on Rope3D. We compare our BEVSpread
with the state-of-the-art vision-centric methods, including
BEVDepth [16] and BEVHeight [44], on the Rope3D val-
idation set in homologous settings. As shown in Tab. 1,
BEVSpread outperforms all other methods across the board,
with significant improvements of (2.59, 3.44 and 2.14) AP
in vehicle, pedestrian, and cyclist, respectively.

Visualization Results. As shown in Fig. 4, we present
the visualization results of BEVHeight [44] and our
BEVSpread in the image and BEV view. It can be ob-
served in the upper half that BEVSpread detects the targets
which BEVHeight misses in multiple scenes. The main
reason is shown in the lower half. Image features show
that BEVSpread focuses more attention on the foreground
area. And the BEV features generated by BEVSpread are
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Table 1. Comparison AP3D|R40 results of 3D object detection on the validation set of DAIR-V2X-I [46] and Rope3D [45] . ResNet-101
is used as image encoder, the BEV grid size is set to 0.4 meters, and top-k (k=6) nearest BEV grid centers are selected as neighbors. “∗”
denotes covering the longer range between 0∼200m, while others cover 0∼100m.

Dataset Method Modality Venue Vehicle (IoU=0.5) Pedestrian (IoU=0.25) Cyclist (IoU=0.25)
Easy Middle Hard Easy Middle Hard Easy Middle Hard

DAIR-V2X-I [46]
PointPillars [12] LiDAR CVPR’ 19 63.07 54.00 54.01 38.53 37.20 37.28 38.46 22.60 22.49
SECOND [42] LiDAR Sensors 71.47 53.99 54.00 55.16 52.49 52.52 54.68 31.05 31.19
MVXNet [32] LiDAR & Camera ICRA’ 19 71.04 53.71 53.76 55.83 54.45 54.40 54.05 30.79 31.06
ImVoxelNet [28] Camera WACV’ 22 44.78 37.58 37.55 6.81 6.75 6.74 21.06 13.57 13.17
BEVFormer [17] Camera ECCV’ 22 61.37 50.73 50.73 16.89 15.82 15.95 22.16 22.13 22.06
BEVDepth [16] Camera AAAI’ 23 75.50 63.58 63.67 34.95 33.42 33.27 55.67 55.47 55.34
BEVHeight [44] Camera CVPR’ 23 77.78 65.77 65.85 41.22 39.29 39.46 60.23 60.08 60.54
BEVSpread (Ours) Camera - 79.07 66.82 66.88 46.54 44.51 44.71 62.64 63.50 63.75
w.r.t. BEVHeight +1.29 +1.05 +1.03 +5.32 +5.22 +5.25 +2.41 +3.42 +3.21

DAIR-V2X-I∗ [46]
BEVHeight [44] Camera CVPR 23 81.62 75.90 75.94 40.89 38.98 39.18 60.29 60.60 61.13
BEVSpread (Ours) Camera - 82.84 77.10 77.19 43.96 42.03 42.13 62.31 64.44 64.89
w.r.t. BEVHeight +1.22 +1.21 +1.25 +3.07 +3.05 +2.95 +2.02 +3.84 +3.76

Rope3D [45]
BEVDepth [16] Camera AAAI 23 76.90 66.91 66.89 30.42 28.08 28.11 55.34 53.53 53.51
BEVHeight [44] Camera CVPR 23 77.93 67.50 67.49 36.26 30.35 30.30 61.49 56.98 56.90
BEVSpread (Ours) Camera - 80.61 70.04 70.03 38.65 34.32 34.25 63.66 59.11 59.03
w.r.t. BEVHeight +2.69 +2.55 +2.54 +2.39 +3.97 +3.95 +2.17 +2.13 +2.13
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Figure 4. Visualization results of BEVHeight and our proposed BEVSpread in image and BEV view. It can be observed in the
upper half that BEVSpread detects the targets which BEVHeight have not detected in multiple scenes. The lower half demonstrates the
reasons. We notice that BEVHeight misses the pedestrian because no corresponding image features are projected onto the correct BEV
grids. However, BEVSpread spreads the image features to the surrounding BEV grids and thus successfully detects the target.
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Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
BEVDepth 0.436 0.330 0.702 0.280 0.535 0.553 0.227

BEVDepth∗ 0.432 0.325 0.701 0.283 0.572 0.531 0.224
BEVDepth∗ + ours 0.450 0.327 0.688 0.275 0.489 0.470 0.217

Table 2. Comparison on the nuScenes val set. The experiment is
reproduced based on the official BEVDepth repository with con-
fig named bev depth lss r50 256x704 128x128 24e 2key. Both
CBGS and EMA are not used. BEVDepth denotes the official
result of this config. ∗ denotes the results we reproduce.

smoother than those generated by BEVHeight. BEVHeight
misses the pedestrian because no corresponding image fea-
tures are projected onto the correct BEV grids. While
BEVSpread spreads the image features to the surrounding
BEV grids and exactly covers the correct BEV grids, so as
to successfully detect the target.

4.4. Results on nuScenes.

Our approach specifically targets the roadside scenario. To
further assess its robustness, we conduct additional experi-
ment on nuScenes following BEVDepth [16]. Tab. 2 shows
that BEVSpread still works in ego-vehicle settings, and the
improvement (4.2% NDS) is comparable to that in roadside
scenario (5.5% Avg-AP).

4.5. Proof Experiment for Position Recovery

We have designed an intuitive experiment to demonstrate
that the proposed spread voxel pooling strategy can achieve
accurate position recovery in BEV space. Initially, 10 ran-
dom vectors of C dimensions representing image features
are randomly generated. Then, we randomly generate 3D
points and assign for these 10 features. Based on the orig-
inal voxel pooling and spread voxel pooling, the 3D points
are projected onto the 16×16 BEV grids to obtain the BEV
features. The U-Net encoder network is utilized to regress
the accurate position of the first image feature in the BEV
space, and MSE loss is used. Note that the training process
contains 5,000 iterations, and the batch size is set to 128 per
iteration. The inputs are random for each iteration. The ex-
perimental process is shown in Fig. 1. As shown in Fig. 5,
our spread voxel pooling recovers the random point posi-
tion with 0.003 MSE loss when the neighbors number ≥ 3,
while the original voxel pooling obtains 0.095 MSE loss.

4.6. Ablation Study

Performance as a plugin. The proposed spread voxel pool-
ing strategy, as a plug-in, can significantly improve the
performance of existing frustum-based BEV methods. As
shown in Tab. 3, after being deployed to BEVDepth [16],
the performance has been significantly improved by a mar-
gin of (4.17, 8.93 and 8.2) AP in three categories. After be-
ing deployed to BEVHeight [44], the performance has been
improved by a margin of (1.55, 5.58 and 7.56) AP in three

Figure 5. Proof Experiment for Position Recovery. Spread voxel
pooling recovers the random point position with 0.003 MSE loss
when the neighbors number k ≥ 3, while the original voxel pool-
ing (k = 1) obtains 0.095 MSE loss.
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Figure 6. Hyperparameter sensitivity experiment on neighbors
number k. It can be observed that the performance of k ≥ 2 is
significantly better than k = 1 (baseline). As k increases, the
performance gradually improves and becomes stable.

categories. It is worth noting that the recognition ability for
pedistrian and cyclist has been greatly improved.

Analysis on Neighbor Selection. Fig. 6 shows how the
mAP of three categories changes with neighbors number k.
For each hyperparameter selection, we repeat 3 times, and
the light-blue area indicates the error range. It can be ob-
served that the performance of k ≥ 2 is significantly better
than k = 1 (baseline). As k increases, performance gradu-
ally improves and becomes stable.

Analysis on Weight Function. We validate the effective-
ness of the depth and the learnable parameter α for weight
function in Tab. 4. The improvement in three major cate-
gories proves that the application of depth and the learnable
parameter α allows for better spread performance. When
applying both, considerable performance (65.80%, 31.00%,
56.34%) is gained for three categories in middle difficulty.

Analysis on Different Backbones. We further compared
BEVSpread with BEVHeight using different backbones.
Results of ResNet-50/101 are listed in Tab. 1 and Tab. 3,
and experiments for ConvNeXt-B can be found in Tab. 5.
Results show that stronger backbones lead to greater per-
formance and our method can further improve it.
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Table 3. Ablation study of spread voxel pooling on the DAIR-V2X-I [46]. ResNet-50 is used as image encoder, the BEV grid size is set
to 0.8 meters, and the detection range is set to 0∼100m, and top-k (k=2) nearest BEV grid centers are selected as neighbors.

Method Vehicle (IoU=0.5) Pedestrian (IoU=0.25) Cyclist (IoU=0.25)
Easy Middle Hard Easy Middle Hard Easy Middle Hard

BEVDepth [16] 71.09 60.37 60.46 21.23 20.84 20.85 40.54 40.34 40.32
+ spread voxel pooling 76.15 64.09 64.19 30.87 29.27 29.57 48.06 48.53 49.21
w.r.t. BEVDepth +5.06 +3.72 +3.73 +9.64 +8.43 +8.72 +7.52 +8.19 +8.89
BEVHeight [44] 76.24 64.54 64.13 26.47 25.79 25.72 48.55 48.21 47.96
+ spread voxel pooling 77.91 65.80 65.86 32.48 31.00 31.25 54.19 56.34 56.88
w.r.t. BEVHeight +1.67 +1.26 +1.73 +6.01 +5.21 +5.53 +5.64 +8.13 +8.92

Table 4. Ablation study of weight function on DAIR-V2X-I [46]. ResNet-50 is used as image encoder, the BEV grid size is set to 0.8
meters, and the detection range is set to 0∼100m, and top-k (k=2) nearest BEV grid centers are selected as neighbors.

Spacing Vehicle (IoU=0.5) Pedestrian (IoU=0.25) Cyclist (IoU=0.25)

spread Depth α Easy Middle Hard Easy Middle Hard Easy Middle Hard

- - - 76.24 64.54 64.13 26.47 25.79 25.72 48.55 48.21 47.96

✓ - - 77.67 (+1.43) 65.61 (+1.07) 65.69 (+1.56) 31.34 (+4.87) 29.94 (+4.15) 30.08 (+4.36) 53.53 (+4.98) 54.65 (+6.44) 55.17 (+7.21)

✓ ✓ - 77.88 (+1.64) 65.79 (+1.25) 65.76 (+1.63) 32.40 (+5.93) 30.97 (+5.18) 31.18 (+5.46 ) 53.69 (+5.14) 55.54 (+7.33) 55.46 (+7.50)

✓ - ✓ 77.71 (+1.47) 65.66 (+1.12) 65.74 (+1.61) 31.72 (+5.25) 30.31 (+4.52) 30.52 (+4.80) 53.97 (+5.42) 55.64 (+7.43) 55.58 (+7.62)

✓ ✓ ✓ 77.91 (+1.67) 65.80 (+1.26) 65.86 (+1.73) 32.48 (+6.01) 31.00 (+5.21) 31.25 (+5.53) 54.19 (+5.64) 56.34 (+8.13) 56.88 (+8.92)

Table 5. Ablation study of different backbones on the DAIR-V2X-I [46]. ConvNeXt-B is used as image encoder, the BEV grid size is
set to 0.4 meters, and the detection range is set to 0∼100m, and top-k (k=4) nearest BEV grid centers are selected as neighbors.

Method Vehicle (IoU=0.5) Pedestrian (IoU=0.25) Cyclist (IoU=0.25)
Easy Middle Hard Easy Middle Hard Easy Middle Hard

BEVHeight (ConvNeXt-B) 78.08 65.99 66.07 41.76 40.84 40.03 58.76 60.69 60.76
BEVSpread (ConvNeXt-B) 79.29 67.03 67.09 47.06 44.97 45.14 62.34 64.14 64.60
w.r.t. BEVHeight +1.21 +1.04 +1.02 +5.30 +4.13 +5.11 +3.58 +3.45 +3.84

Method Neighbors Avg-AP ↑ Latency-Total(ms) ↓ Latency-Pooling(ms) ↓
BEVHeight (ResNet-101) k = 1 56.69 74.3 5.5
BEVSpread (ResNet-101) k = 1 56.69(+0.00) 69.8(-6.1%) 0.8
BEVSpread (ResNet-101) k = 2 58.68(+1.99) 73.9(-0.5%) 4.9
BEVSpread (ResNet-101) k = 3 59.01(+2.32) 76.6(+3.1%) 7.7
BEVSpread (ResNet-101) k = 6 59.83(+3.14) 85.6(+15.2%) 15.3

BEVHeight (ResNet-50) k = 1 55.90 61.4 5.5
BEVSpread (ResNet-50) k = 1 55.90(+0.00) 57.1(-7.0%) 0.8
BEVSpread (ResNet-50) k = 2 58.12(+2.22) 61.6(+0.3%) 4.9
BEVSpread (ResNet-50) k = 3 58.55(+2.65) 64.2(+4.6%) 7.7

Table 6. Speed under different neighbor size k on DAIR-V2X-I.

5. Limitations and Analysis

The proposed spread-voxel pooling brings a certain amount
of calculation, resulting in an increase in latency. While
our approach is flexible to balance accuracy and speed by
adjusting the spread scope, which is denoted as neighbor
size k. As shown in Table 6, when k=2, BEVSpread still
achieves significant improvement in Avg-AP without la-
tency increase, benefiting from our CUDA optimization.
Besides, the coordinates of these spread points are calcu-
lated online in this version. During the practical deploy-
ment phase, BEVSpread can use a preprocessing look-up
table, akin to BEVPoolv2, for enhanced acceleration.

6. Conclusion
In this paper, we point out a approximation error in the
current voxel pooling method. We proposed a novel voxel
pooling strategy named BEVSpread to reduce this error.
BEVSpread considers each frustum point as a source and
spreads the image features to the surrounding BEV grids
with adaptive weights. Additionally, a specific weight
function is designed to dynamically control the decay speed
based on distance and depth. Experiments in DAIR-V2X-I
and Rope3D show that BEVSpread significantly improves
the performance of existing frustum-based BEV methods.
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