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Abstract

Human-Object Interaction (HOI) Detection constitutes
an important aspect of human-centric scene understand-
ing, which requires precise object detection and interac-
tion recognition. Despite increasing advancement in detec-
tion, recognizing subtle and intricate interactions remains
challenging. Recent methods have endeavored to lever-
age the rich semantic representation from pre-trained CLIP,
yet fail to efficiently capture finer-grained spatial features
that are highly informative for interaction discrimination.
In this work, instead of solely using representations from
CLIP, we fill the gap by proposing a spatial adapter that
efficiently utilizes the multi-scale spatial information in the
pre-trained detector. This leads to a bilateral adaptation
that mutually produces complementary features. To further
improve interaction recognition under occlusion, which is
common in crowded scenarios, we propose an Occluded
Part Extrapolation module that guides the model to recover
the spatial details from manually occluded feature maps.
Moreover, we design a Conditional Contextual Mining mod-
ule that further mines informative contextual clues from
the spatial features via a tailored cross-attention mecha-
nism. Extensive experiments on V-COCO and HICO-DET
benchmarks demonstrate that our method significantly out-
performs prior art on both standard and zero-shot settings,
resulting in new state-of-the-art performance. Additional
ablation studies further validate the effectiveness of each
component in our method.

1. Introduction

The rapid progress of modern detection systems [5, 11, 46]
has spawned a growing interest in the research of Human-
Object Interaction (HOI) detection. There are generally two
dispensable objectives in this emerging task: (1) detect-
ing humans and objects in a given image and (2) recog-
nizing human-object interactions, which are articulated as
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Figure 1. (a) Representations from CLIP focus on high-level se-
mantics but ignore fine-grained details, resulting in a high score
(0.83) on salient interaction ⟨ride, bicycle⟩, but a low score (0.01)
on small-scale interaction ⟨wear, backpack⟩. (c) Our bilateral
adaptation complements the semantic branch with spatial adap-
tation (b), resulting in comprehensive interaction understanding
(high scores on both interactions).

verb-object phrases. HOI Detection is important to human-
centric scene understanding and underpins a variety of high-
level tasks such as image captioning [53] and visual ques-
tion answering [1].

As indicated by the two objectives, existing methods im-
prove HOI detection from either better object detection or
improved interaction recognition. Methods in the former
group introduce various detector architectures [5, 11, 46]
with proper adaptation for precise human-object detec-
tion [27, 33, 34, 48, 50, 63, 68, 69]. Pertaining to the meth-
ods in the latter group, early work designs graph-based ar-
chitectures [14, 44, 51, 64] to enable information propaga-
tion between humans and objects, subsequent methods with
the transformer-based architectures [27, 34, 48, 56, 63] uti-
lize the attention mechanism [52] for better interaction un-
derstanding. To improve the representation discriminabil-
ity, various human cues extracted from external knowledge
sources have been utilized, such as pose [13, 17, 42, 54, 59],
intentions [61], 3D representations [32], and motions [38].
Until recently, the CLIP [45] model has delivered im-
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pressive results with its rich semantic representations [24].
As a result, advanced methods have leveraged its visual
and textual representations to enhance interaction recogni-
tion [29, 34, 41].

Albeit the strong performance brought up by CLIP, we
observe that it falls short of exploiting fine-grained spa-
tial information for interaction recognition. For example,
in Figure 1, CLIP in the semantic branch focuses on the
salient interaction, e.g., ⟨ride, bicycle⟩, with a high confi-
dence score but neglects the fine-grained details of insignif-
icant areas. In fact, CLIP is pre-trained with low-resolution
images with coarse textual descriptions, making it power-
ful at learning high-level semantics but less effective at un-
derstanding fine-grained details [30, 62]. As a result, the
detailed spatial information that is important for recogniz-
ing interactions can be easily overlooked, leading to sub-
optimal performance. To overcome this, we propose to in-
corporate finer-grained spatial representations readily avail-
able from pre-trained detectors, resulting in a bilateral adap-
tation of prior knowledge. Specifically, we introduce a set
of adapter modules to the frozen object detector, so as to ef-
ficiently adapt its innate spatial knowledge of multiple gran-
ularity for interaction recognition. As such, the spatial rep-
resentation is efficiently adapted to complement CLIP’s se-
mantic representation, offering a comprehensive interaction
understanding.

Moreover, in real-world scenarios, humans and objects
are often occluded by each other, especially when they are
interacting. This occlusion phenomenon is even more se-
vere when there are multiple humans and objects in the im-
age. Such occlusion severely hinders the understanding of
human and object details, resulting in challenges for pre-
cise interaction recognition. In light of this, we propose an
Occluded Part Extrapolation (OPE) strategy to improve the
model’s interaction recognition capability under occlusions.
In particular, we deliberately occlude the feature map of an
instance, which is then reconstructed based on its context.
Our OPE learns to recover fine-grained details from occlu-
sions, resulting in occlusion-robust representations for in-
teraction recognition. To further utilize the spatial informa-
tion, we design a Conditional Contextual Mining (CCM)
module to mine the most informative clues via a delicate
cross-attention mechanism.

We conducted extensive experiments with our pro-
posed method on two benchmark datasets, namely, HICO-
DET [6] and V-COCO [16]. The experimental results
demonstrate that our method outperforms previous ap-
proaches by a large margin in both standard and zero-shot
settings, resulting in new state-of-the-art performance. We
also perform detailed ablation studies to justify the effec-
tiveness of each component in our method. Furthermore, we
provide in-depth analyses of the proposed method, which
demonstrates our method indeed improves the performance

under occluded scenarios.

2. Related Work
2.1. One-stage HOI Detection

One-stage methods perform both human-object detection
and interaction recognition in an end-to-end manner. In ad-
dition to detecting humans and objects, early work detects
interaction points [33, 57, 68] or human-object union [26]
regions as interaction clues. With the recent success
of Transformer [52] in the computer vision community,
Transformer Detector (DETR) [5]-based architectures have
gained increasing popularity. To empower DETR with the
ability of pairwise detection and interaction recognition,
some methods adopt extra classification heads [48, 70], en-
coder [69] or decoder [8, 34, 63] for effective interaction
classification. Moreover, instead of learning the queries
from scratch, semantically meaningful queries, which can
be extracted from image-level [23] or instance-level [10, 34]
information, are utilized to speed up convergence.

2.2. Two-stage HOI Detection

Two-stage methods first perform object detection with an
off-the-shelf detector and recognize the interactions of each
human-object pair in the second stage. Early work [6, 47]
utilize Faster-RCNN [46] for object detection, followed by
ROIAlign [18] to extract human-object appearance features.
Recent two-stage methods employ DETR [5] as the detector
due to its efficiency [65] and superior performance.

Given the detected instances, methods based on
graphs [14, 44, 51, 55, 64] and attention mechanism [56, 65]
propagate information between humans and objects, en-
abling contextual understanding for interaction recognition.
Some approaches also propose to reject non-interactive
human-object pairs before interaction recognition to im-
prove the performance [31, 37, 59, 67]. Moreover, Some
HOI detection methods take advantage of external knowl-
edge for recognizing interactions. The knowledge typically
includes human pose and body parts [13, 17, 54, 59], hu-
man intentions [61] and motions [38]. Additionally, recent
literature has resorted to the pre-trained CLIP [45], by uti-
lizing its textual [34, 41] and visual representations [29, 42].
Despite its promising results, we argue that these methods
show limitations in effectively utilizing fine-grained spa-
tial features. In this work, we complement the semantic
branch with spatial information, enabling improved interac-
tion recognition with a better understanding of fine-grained
details.

2.3. Mask and Modeling in Computer Vision

Mask modeling has been extensively studied in the natural
language processing domain [9, 25]. Recent efforts have
adapted this idea for self-supervised computer vision tasks
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Figure 2. Overview of the BCOM model. (1) We perform object detection in the first stage. (2) In the second stage, we recognize
interactions for each human-object pair. Besides utilizing the CLIP visual encoder for the semantic branch, we also leverage ROI-Align [18]
to crop multi-scale spatial features, i.e., Rh and Ro from the adapted detector backbone (Sec. 3.2). They are first refined with a learned
Occluded Part Extrapolation (OPE) module (Sec. 3.3) and then fed into the Conditional Contextual Mining (CCM) module to extract
informative contexts (Sec. 3.4). The interaction recognition results from fr and fs are fused to obtain the final results.

and witnessed pervasive success. Specifically, during pre-
training, some image patches are deliberately masked and
a neural network is then trained to reconstruct the origi-
nal image. This mask-and-reconstruction paradigm has led
to the success of a series of visual pre-training methods
such as BEiT [3], BEiT-v2 [43], and MAE [19]. Based
on this, following studies have contributed to improving
this paradigm via different pre-training objectives [58, 60],
masking strategies [7], and data modalities [2, 12, 40, 49].
In this work, we adopt a similar philosophy by manually
occluding human/object features and reconstructing them
during training. This approach enables the model to better
understand human/object representations with partial occlu-
sion, leading to occlusion-robust HOI detection.

3. Methodology

3.1. Overview

HOI detection involves detecting and predicting a set of
〈human, verb, object〉 triplets in an image, where inter-
actions are defined as verb-object phrases. In this work,
we propose a two-stage framework named Bilateral adap-
tation Network with occlusion-aware COntextual Mining
(BCOM) for HOI detection. The framework is illustrated
in Figure 2.

In the first stage, we use DETR [5] to detect all instances
(i.e., humans and objects) in the input image. We filter out

the instances with low confidence and keep the number of
detected instances within a certain range, resulting in the de-
tection results {bi, ci, si}ni=1, where bi ∈ R4 is the bound-
ing box, ci and si are scalars representing the class and con-
fidence score of the detected instance, respectively.

In the second stage, we perform interaction recognition
for each human-object pair. Based on the detection re-
sults, we permute over the detected instances to obtain a
set of human-object pairs {⟨h, o⟩ | h, o ∈ {1..n} ∧ ch =
human ∧ h ̸= o}1. To extract discriminative representation
for each human-object pair, we propose to efficiently utilize
the transferrable knowledge from CLIP visual encoder and
detector backbone using a set of semantic adapters and spa-
tial adapters respectively (§ 3.2). For the purpose of inter-
action understanding in occluded scenarios, we propose an
Occluded Part Extrapolation (OPE) module, which is incor-
porated to teach our model to recognize interactions under
occlusions (§ 3.3). To fully utilize the spatial representa-
tions, we design a Conditional Contextual Mining (CCM)
module to mine the most informative contextual clues con-
ditioned on the involved human and object (§ 3.4).

3.2. Bilateral Representation Adaptation

Accurate interaction recognition requires a discriminative
visual representation that captures informative visual clues

1We allow “human” to be a type of “object” to enable the recognition
of human-human interactions.
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from multiple aspects. Early work mainly adopted the spa-
tial representations from detectors [56, 65, 66], while re-
cent work [29, 34, 41] has extensively employed the se-
mantic representations from CLIP [45]. In this work, we
find that they are both crucial for comprehensive interac-
tion understanding and are in fact complementary to each
other. In particular, the limitation of CLIP lies in its uti-
lization of low-resolution images and coarse-grained textual
descriptions during pre-training. This makes CLIP effec-
tive at capturing high-level semantics but struggles in learn-
ing finer-grained interaction clues [9, 30]. A direct solu-
tion is to fine-tune CLIP with high-resolution images [42],
but this inevitably introduces excessive computational over-
head. As such, we propose to adapt the spatial representa-
tions from the detector to complement the semantic repre-
sentation from CLIP [45] for interaction recognition, result-
ing in an efficient bilateral adaptation structure.
Semantic Representation Adaptation. We adapt the rich
semantic knowledge from the CLIP visual encoder to rep-
resent each human-object pair. To efficiently utilize the
knowledge in the pretraining stage, we follow [29] to insert
a set of learnable semantic adapter layers in each block of
the visual encoder while keeping other parameters frozen.
Then, we use ROI-Align [18] followed by mean pooling to
obtain the human representation fh, object representation
fo as well as their union region representation fh,o. These
features are concatenated as the semantic interaction repre-
sentation for the human-object pair:

Fh,o = [fh; fo; fh,o]. (1)

Spatial Representation Adaptation. To complement the
spatial details that CLIP struggles with, we complement the
semantic representation with rich spatial representations.
Instead of learning the spatial clues from scratch, we pro-
pose to utilize the knowledge from the pre-trained detector,
which contains informative representations about instance
locations and identity [66]. In particular, for each block
in the detector backbone, we propose a set of learnable
spatial adapter modules that efficiently transfer the spatial
knowledge from the detector, obtaining multi-level spatial
representations. Different from semantic adapters which
are sequentially inserted into the visual encoder, the spa-
tial adapters are appended to each residual block in parallel.
This design does not interfere with the detector inference
process, making it more efficient with a multi-scale struc-
ture. We then utilize multi-scale ROI-Align to crop the hu-
man region Rh and object region Ro.

3.3. Occluded Part Extrapolation

Accurately recognizing human-object interactions requires
a detailed understanding of human-objects. However, real-
world scenarios can be crowded, resulting in occlusions be-
tween humans and objects. To address this problem, we
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Chosen ROI
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Input ROI
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Reconstructed
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Figure 3. The mechanism of the Occluded Part Extrapolation
(OPE) module. During training, the ROI feature Ri is occluded
by a randomly chosen ROI feature Rj . The OPE module is trained
to reconstruct Ri from the occluded feature. During inference, we
employ OPE to extrapolate the full details of Ri.

propose an Occluded Part Extrapolation (OPE) module to
facilitate interaction understanding in the presence of oc-
clusions.

The pipeline of our proposed OPE is depicted in Fig-
ure 3. The main objective of OPE is to train a module
capable of extrapolating the original details of an instance
from its partially occluded counterpart. For example, given
a human spatial feature Ri ∈ Rd×h×w, we randomly select
another spatial feature Rj , i ̸= j from the same image to
occlude Ri with the following operations:

r̄j = mean(Rj)

Mh×w ∼ I[Uniform(0, 1) > ρ]

R̃i = Ri ∗M+ r̄j ∗ (1−M),

(2)

where ρ is the masking ratio and I is the indicator func-
tion. r̄j and M are broadcasted to the dimension of Ri in
the thrid equation. With this masking strategy, some ele-
ments in Ri are randomly replaced by the average elements
of Rj . This operation is performed to simulate real-world
occlusions at the feature level.

Once we obtain the occluded feature R̃i, we feed it to
the Occluded Part Extrapolation (OPE) module, which is
a stack of multiple transformer encoder layers. The OPE
module aims to reconstruct the feature before occlusion, de-
noted as R̂i = R̃i + OPE(R̃i). To ensure that the recon-
structed feature recovers the original details, we use L2 loss
between the reconstructed feature and the original one [19]:

Lrecon = ||R̂i − sg(Ri)||2, (3)

Here, sg() denotes the stop gradient operation. In this way,
we encourage the OPE module to learn to extrapolate the
original details from the occluded feature, improving its
representation robustness under occlusions. During Infer-
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ence, we augment the ROI feature with the trained OPE:

Ri ← Ri + OPE(Ri). (4)

The residual connection allows the utilization of both recon-
structed and original features, leading to more robust repre-
sentations.

3.4. Conditional Contextual Mining

People interact with different objects using different parts.
For example, we often kick a football with feet but
hold a baseball pat with hands. Inspired by this,
we propose to mine the fine-grained spatial features that
are most informative for interaction recognition via a Con-
ditional Contextual Mining (CCM) module. CCM is a
stack of transformer decoder layers, with a tailored cross-
attention mechanism at its core. Specifically, given the spa-
tial feature of a human-object pair ⟨Rh,Ro⟩, we obtain the
refined feature with r̂h = CCM(Rh,Ro) as follows:

Q1×d = mean(Ro)

Khw×d,Vhw×d = flatten(Rh)

r̂h = attn(Q,K,V),

(5)

where attn refers to the standard multi-head attention op-
eration [52]. The mean pooling operation summarizes the
information in Ro as the query, which is used to search the
most informative human feature in Rh for interaction un-
derstanding. In addition, we also introduce a mirror opera-
tion to mine informative object clues:

r̂o = CCM(Ro,Rh). (6)

The obtained features Rh,o = [r̂h; r̂o] are then utilized for
interaction recognition together with the semantic features.

3.5. Training and Inference

Training. Given the detection results, we formulate inter-
action recognition as a verb classification task. Since the
semantic representation and spatial representation lie in dif-
ferent spaces, we maintain a classifier for each branch to
obtain the corresponding logits. For the semantic branch,
fs is taken as the concept memory in [29], while for the
spatial branch, the fr is a linear layer learned from scratch.
The logits for each human-object pair ⟨h, o⟩ are taken as the
weighted combination of the two classifiers:

svh,o = σ(αfs(Fh,o) + (1− α)fr(Rh,o)), (7)

where α is a learnable parameter and σ(·) is the sigmoid
function. Since there can be multiple interactions between
a human-object pair, we optimize the model with the binary
cross-entropy loss and focal loss [36]. The whole model is
optimized with:

Lfull = Lcls + βLrecon, (8)

where Lcls is the verb classification loss and β is a factor
balancing the two objectives.
Inference. Following [65], the confidence score of the in-
teraction human-object ⟨h, o⟩ is computed as:

shoih,o = (sh)
λ ∗ (so)λ ∗ svh,o, (9)

where sh and so are the confidence scores from the detector,
while svh,o are the confidence of the verbs for this human-
object pair. λ is set to 1 during training and 2.8 for inference
to suppress overconfident false positive detections.

4. Experiments

4.1. Experimental Setups

4.1.1 Datasets

We conduct experiments using two widely used HOI-
detection benchmarks, namely HICO-DET [6] and V-
COCO [16]. HICO-DET comprises a training set of 38,118
images and a test set of 9,658 images. This dataset includes
80 object categories and 117 verb classes. Their combina-
tion results in a total of 600 interaction classes. On the other
hand, V-COCO is built upon the MS-COCO [35] dataset
and includes 5,400 and 4,946 images for training and test,
respectively. The dataset involves 24 action categories and
80 object classes.

4.1.2 Evaluation Protocol

Mean Average Precision (mAP) is used as the evaluation
metric in our experiments. An HOI detection result was
considered a true positive only if two conditions are satis-
fied: (1) the predicted human and object bounding boxes
have Intersection over Union (IoU) greater than 0.5 with
their corresponding ground-truth boxes, and (2) the pre-
dicted action/interaction class is accurate.
Standard Setting. To evaluate our model’s performance on
HICO-DET, we reported the results for all 600 interaction
classes under the following three categories: full, rare (less
than 10 training instances), and non-rare (10 or more train-
ing instances) classes. For V-COCO, we provide results for
action classes under two evaluation settings: Scenario 1 and
Scenario 2. In the former setting, the detector is required to
report an empty box when no object is involved in the inter-
action, while the object box can be ignored in the latter.
Zero-shot Setting. We also provide the evaluation of our
model under zero-shot settings on HICO-DET. In particu-
lar, we followed [20] to train the model on 480 seen inter-
actions and also evaluated the model on the other 120 un-
seen interactions. We provide results on Rare First and Non-
rare First settings, the former preferably selects unseen cat-
egories from tail HOIs, while the latter prefers head HOIs.
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Table 1. Results (mAP×100) on the HICO-DET and V-COCO datasets. The best results are highlighted in bold while the second best ones
are underscored.

HICO-DET V-COCO
Default Setting Known-Object Setting

Method Feature Extractor Full Rare Non-rare Full Rare Non-rare Scenario 1 Scenario 2

InteractNet [15] ResNet-50-FPN 9.94 7.16 10.77 - - - 40.0 -
HOTR [27] ResNet-50 25.10 17.34 27.42 - - - 55.2 64.4
FCL [22] ResNet-50 25.27 20.57 26.67 27.71 22.34 28.93 52.4 -
HOI-Trans [70] ResNet-50 26.61 19.15 28.84 29.13 20.98 31.57 52.9 -
AS-Net [8] ResNet-50 28.87 24.25 30.25 31.74 27.07 33.14 53.9 -
SCG [64] ResNet-50-FPN 29.26 24.61 30.65 32.87 27.89 34.35 54.2 60.9
QPIC [48] ResNet-50 29.90 23.92 31.69 32.38 26.06 34.27 58.8 61.0
CDN [63] ResNet-50 31.44 27.39 32.64 34.09 29.63 35.42 61.7 63.8
UPT [65] ResNet-50 31.66 25.94 33.36 35.05 29.27 36.77 59.0 64.5
SDT [56] ResNet-50 32.45 28.09 33.75 35.95 31.30 37.34 60.3 65.7
MUREN [28] ResNet-50 32.87 28.67 34.12 35.52 30.88 36.91 68.8 71.0
GEN-VLKT [34] ResNet-50 33.75 29.25 35.10 36.78 32.75 37.09 62.4 64.5
HOI-CLIP [41] ResNet-50 34.69 31.12 35.74 37.61 34.47 38.54 63.5 64.8
PViC [66] ResNet-50 34.69 32.14 35.45 38.14 35.38 38.97 62.8 67.8
Part-Map [59] ResNet-50 35.15 33.71 35.58 37.56 35.87 38.06 63.0 65.1
AGER [50] ResNet-50 36.75 33.53 37.71 39.84 35.58 40.23 65.7 69.7
RmLR [4] ResNet-50+BERT 36.93 29.03 39.29 38.29 31.41 40.34 63.8 69.8
ViPLO [42] ResNet-101+CLIP 37.22 35.45 37.75 40.61 38.82 41.15 62.2 68.0
ADA-CM [29] ResNet-50+CLIP 38.40 37.52 38.66 - - - 58.6 63.9

BCOM (Ours) ResNet-50+CLIP 39.34 39.90 39.17 42.24 42.86 42.05 65.8 69.9

4.1.3 Implementation Details

Our object detection pipeline utilized the DETR [5] with
ResNet-50 as the backbone, which is pretrained on MS-
COCO [35] and fine-tuned on the corresponding dataset as
described in [65]. The images in the test set of V-COCO
are filtered out for detector training. We followed [29] to
use CLIP released by [45] as the backbone for the seman-
tic branch. Both semantic and spatial adapters are imple-
mented as a block of two linear layers, with ReLU as non-
linearity in the middle. After detection, we directly filtered
out instances with confidence less than 0.2 and retained 3-
15 instances with the highest confidence scores for each im-
age. The CCM and OPE are composed of two transformer
decoder and encoder layers, respectively, both with a hid-
den dimension of 256. The ROI feature size h and w are
both set to 7, the masking ratio ρ was set to 0.25, and β is
set to 0.1. The model is optimized with the AdamW [39]
optimizer for 15 epochs. During training, the CLIP visual
encoder and the detector are kept frozen, while only their
adapters, CCM and OPE are optimized. We set the learn-
ing rate of the semantic adapter to 1e-3 and the remaining
modules to 1e-4. Cosine decay is employed throughout the
training process. All models are trained on 4 GPUs with a
batch size of 6 on each.

4.2. Comparison with State-of-the-arts

Standard Setting. Table 1 presents the comparison be-
tween our proposed BCOM and state-of-the-art HOI detec-
tion models on HICO-DET and V-COCO datasets. Specif-
ically, our BCOM achieves new state-of-the-art perfor-
mance on the HICO-DET dataset under regular and known-
object settings, surpassing previous SOTA by a large mar-
gin (+0.94 mAP). In particular, it significantly outperforms
the second-best method ADA-CM, which utilizes only the
CLIP representations. This result indicates the effectiveness
of adapting spatial features for interaction recognition. On
V-COCO, our method achieves the second-best result. It is
only inferior to MUREN [28], which has heavier architec-
ture and a longer training schedule.

Zero-shot Settings. Thanks to the effective adaptation of
CLIP’s knowledge, our method is able to perform HOI de-
tection under zero-shot settings. The comparison with pre-
vious methods is shown in Table 2. It can be observed
that our method also surpasses previous methods under both
rare-first (RF) and Non-rare First (NF) settings. The results
show that BCOM can effectively produce highly discrimi-
native features, even for unseen verb-object compositions.
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Table 2. Comparison with previous methods under zero-shot set-
tings on the HICO-DET dataset. ”RF” denotes Rare-First setting
while NF indicates Non-rare First setting.

Method Type Unseen Seen Full

ATL [21] RF 9.18 24.67 21.57
VCL [20] RF 10.06 24.28 21.43
GEN-VLKT [34] RF 21.36 32.91 30.56
ADA-CM [29] RF 27.63 34.35 33.01
BCOM (Ours) RF 28.52 35.04 33.74

VCL [20] NF 16.22 18.52 18.06
ATL [21] NF 18.25 18.78 18.67
GEN-VLKT [34] NF 25.05 23.38 23.71
ADA-CM [29] NF 32.41 31.13 31.39
BCOM (Ours) NF 33.12 31.76 32.03

4.3. Ablation Studies

In this section, we conducted a series of ablation studies on
the HICO-DET dataset to evaluate the effectiveness of each
component in our proposed BCOM.
Results on Bilateral Adaptation. We present the results on
the importance of bilateral adaptation in BCOM in Table 3.
The results show that both semantic adaptation and spatial
adaptation are crucial for interaction recognition. Specif-
ically, with only the spatial adaptation, the performance
drops by 6.32 mAP. On the other hand, discarding the spa-
tial adaptation branch leads to a decrease of 3.01mAP, indi-
cating the spatial and semantic branches complement each
other. Our work adopts a late fusion strategy by fusion the
prediction of the two branches. We also compared it with
the early fusion strategy, which combines the features of
the two branches before being fed into a classifier. As can
be seen from this table, the early fusion strategy underper-
forms the late fusion. One possible reason for this is that the
semantic and spatial features lie in different feature spaces.
Results with Different Degrees of Occlusion. We explore
how our model performs in different occlusions. Since oc-
clusion occurs in crowded scenarios, we partition all im-
ages in the HICO-DET test set into three groups, according
to the number of instances (i.e., humans and objects) in the
image. We compared the performance of the three groups
with and without our OPE in Table 4. The results show
that our OPE brings the highest improvement in crowded
scenes (>10 instances/image), showing its effectiveness for
occlusion-robust HOI understanding.
Results on Different OPE layers. We compare the com-
plexity of the Occlude Part Extrapolation (OPE) module in
Table 5. The results demonstrate that an OPE module with
2 layers delivers the best results. Increasing the layers to 3
does not lead to further performance improvements.
Results with Different Occlusion Strategies. Our work
adopts a pixel-level occlusion strategy, which occludes the

Table 3. Ablation study on the effect of bilateral adaptation.

Method Full Rare Non-rare

Spatial Adaptation 33.02 28.44 34.39
Semantic Adaptation 36.33 38.00 35.83

Early Fusion 36.90 38.49 36.42
Late Fusion (Ours) 39.34 39.90 39.17

Table 4. Performance under various degrees of occlusion.

#Instances/image 2-5 6-10 >10 Full

wo OPE 54.23 27.35 16.88 38.62
w/ OPE 54.41 27.66 18.53 39.34

∆ +0.33% +1.13% +9.78% 1.87%

Table 5. Ablation Study on the number of OPE layers.

# layer Full Rare Non-rare

0 38.57 39.82 38.19
1 38.96 39.61 38.77
2 39.34 39.90 39.17
3 39.00 39.78 38.77

Table 6. Ablation Study on the occlusion strategy in OPE.

Occlusion Full Rare Non-rare

Patch 38.99 39.54 38.82
Pixel (Ours) 39.34 39.90 39.17

Table 7. Ablation Study on the effect of CCM layers.

# layer Full Rare Non-rare

0 37.44 38.88 37.00
1 38.27 39.73 37.84
2 39.34 39.90 39.17
3 39.18 40.06 38.91

feature map at random locations. Another strategy is to
perform patch-level masking as is done in previous ap-
proaches [3, 19, 43]. The comparison is shown in Table. 6.
The results show that the patch masking strategy that is of-
ten adopted on images is less effective on feature maps.
Results on Different CCM Layers. We study the number
of layers in Conditional Contextual Mining (CCM) in Ta-
ble 7. It can be observed that, without CCM (0 layers), the
overall performance drops by 1.90 mAP, showing that CCM
is important for spatial representation mining. The perfor-
mance on rare classes increases when CCM has 3 layers.
Nevertheless, the overall performance degrades by 0.16, in-
dicating potential overfitting issues.
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w/   OPE: 0.3214
wo/ OPE: 0.2617 

w/   OPE: 0.4351
wo/ OPE: 0.2938 

w/   OPE: 0.2647
wo/ OPE: 0.1538 

w/   OPE: 0.3299
wo/ OPE: 0.1633 

（a) <pet, giraffe> (b) <ride, horse> (c) <hold, umbrella> (d) <catch, frisbee>

Figure 4. Qualitative results on HICO-DET test set. Our method is able to accurately recognize interactions under various occlusions and
give higher confidence scores in interactions with occlusions.

<sit_on,  chair> <hold,  book>

534.92

<sit_on,  chair> <hold,  handbag>

<hold,  person> <feed,  giraffe>Input images

Figure 5. Attention maps generated by our Conditional Contextual
Mining (CCM) mechanism. The first column displays the input
image, while the small image indicates the query object w.r.t. the
person. CCM is capable of focusing on the most important body
parts of the person based on the query object.

4.4. Qualitative Results

Visualization of Occlusion Robustness. We present sev-
eral qualitative results on the HICO-DET test set in Fig-
ure 4. The results demonstrate that our method is capable
of accurately recognizing interactions, even under various
levels of occlusion. For example, in Figure 4 (b), the person
is partially occluded by a bicycle, yet our method still recog-
nizes the interaction as sitting on. In Figure 4 (c), de-
spite the heavy occlusion of the person by the involved ob-

ject, our method can accurately recognize the interaction as
holding an umbrella with a higher confidence score.
Visualization of CCM Attention Maps. To qualitatively
understand our proposed Conditional Contextual Mining
(CCM) mechanism, we randomly selected several images
from the HICO-DET test set and visualized the attention
maps produced by CCM in Figure 5. The results demon-
strate that our CCM module allows the model to focus on
the most informative contextual clues, especially human
parts, for interaction recognition. For example, when us-
ing chair as the query in the second row of Figure 5, our
CCM focuses on the bottom of the person. When book is
used as the query, the attention highlights the area around
the human hands. Similar phenomena can also be observed
in the other two examples, showing that CCM is able to
identify the most informative context.

5. Conclusion and Future Work

In this work, we proposed a Bilateral adaptation network
with occlusion-aware COntextual Mining (BCOM) for en-
hancing human-object interaction recognition. Our method
jointly adapts the knowledge from the pre-trained CLIP and
object detector backbone to fully utilize the knowledge ef-
ficiently. Additionally, we also designed an Occluded Part
Extrapolation (OPE) strategy to improve the robustness of
HOI recognition under occluded scenarios. Then, we pro-
posed a Conditional Contextual Mining (CCM) module that
mines the most informative visual context in each human-
object pair. Through extensive experiments on benchmark
datasets, our method demonstrates superior performance
over existing state-of-the-art methods. Ablation studies
validate the importance of each component in our ap-
proach. For future work, we plan to explore masked-image-
modeling pre-trained models to further facilitate occlusion-
robust HOI understanding, which potentially empowers
HOI detection with stronger capabilities.
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