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Abstract

Fine-grained medical action analysis plays a vital role
in improving medical skill training efficiency, but it faces
the problems of data and algorithm shortage. Cardiopul-
monary Resuscitation (CPR) is an essential skill in emer-
gency treatment. Currently, the assessment of CPR skills
mainly depends on dummies and trainers, leading to high
training costs and low efficiency. For the first time, this pa-
per constructs a vision-based system to complete error ac-
tion recognition and skill assessment in CPR. Specifically,
we define 13 types of single-error actions and 74 types of
composite error actions during external cardiac compres-
sion and then develop a video dataset named CPR-Coach.
By taking the CPR-Coach as a benchmark, this paper in-
vestigates and compares the performance of existing action
recognition models based on different data modalities. To
solve the unavoidable “Single-class Training & Multi-class
Testing” problem, we propose a human-cognition-inspired
framework named ImagineNet to improve the model’s multi-
error recognition performance under restricted supervision.
Extensive comparison and actual deployment experiments
verify the effectiveness of the framework. We hope this work
could bring new inspiration to the computer vision and
medical skills training communities simultaneously. The
dataset and the code are publicly available on https:
//github.com/Shunli-Wang/CPR-Coach.

1. Introduction
High professionalism and data shortage seriously hinder the
development of fine-grained medical action analysis tech-
nology [22, 60]. This paper takes Cardiopulmonary Re-
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(b) The proposed CPR-Coach dataset and ImagineNet.
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(a) The CPR test scenario and cameras layout.
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Figure 1. (a) shows the multi-view capture system. (b) illustrates
the structure of the CPR-Coach dataset and the function of the
ImagineNet. Each colored mark represents an error action class.

suscitation (CPR) as the research example, which is a crit-
ical life-saving technique for cardiac and respiratory arrest.
CPR aims to restore the patient’s spontaneous breathing and
circulation. According to the American Heart Association
(AHA), high-quality and standard CPR is the core of ef-
fective treatment, while improper actions will reduce the
treatment effectiveness. Traditional CPR skill assessment
usually requires the participation of the examiner and the
dummy equipped with force sensors. The cost of this hy-
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brid evaluation method is too high to conduct large-scale
training system deployment [72, 74]. In this paper, we build
an intelligent system that automatically identifies wrong ac-
tions in CPR during skill training, thus significantly reduc-
ing the assessment cost and improving training efficiency.

As far as we know, there is no clear definition of spe-
cific error types of CPR actions, and no research has been
done to explore the vision-based CPR skill assessment. To
fill this gap, we first identify 13 types of common error ac-
tions (shown in Figure 2(a)) under the guidance of the latest
version of AHA Guidelines for CPR & ECC [5] and doc-
tors. A visual system is constructed to capture videos of the
rescue process, as shown in Figure 1(a). Subsequently, we
create a dataset named CPR-Coach, which consists of two
parts: Set-1 that contains single-class actions, and Set-2 that
contains composite error actions. Figure 1(b) graphically
depicts the dataset’s structure through colored marks.

Existing action recognition frameworks [12, 21, 31, 58]
have been able to handle the single-class action recogni-
tion task. We can directly migrate these models to CPR-
Coach Set-1 to evaluate the fine-grained errors recognition
performance. However, these models cannot meet the ac-
tual application in the CPR test. In actual CPR skill assess-
ment, rescuers are likely to make multiple mistakes simul-
taneously, and a qualified coach is supposed to point out all
mistakes exactly. If the number of single errors is 13, the
total number of composite errors can reach a frightening
8,191 (

∑13
n=1 C

n
13 = 213 − 1). It is impossible to conduct

exhaustive collection to cover all these error combinations.
To solve this dilemma, let us re-think how a real coach

works. This coach must not have seen all the wrong ac-
tion combinations, but he can still give the correct judg-
ment according to the single-error action knowledge. This
is because human beings have extremely strong knowl-
edge reasoning and generalization abilities [41]. Inspired
by this, this paper proposes a concise framework named
ImagineNet to handle the intractable Single-class Training
& Multi-class Testing problem properly. The function of
the ImagineNet is shown in Figure 1(b). The essence of the
ImagineNet is a human-inspired feature combination train-
ing strategy. As its name implies, it can Imagine composite
error features based on restricted single-class error actions
and achieves high performance in the unseen composite er-
ror recognition task. By regarding Set-1 as the training set
and Set-2 as the testing set, we can examine the ImagineNet,
which plays the role of Coach. Sufficient experimental re-
sults confirm the effectiveness of the framework.

The main contributions of this paper are as follows:
• To the best knowledge, we propose the first dataset named

CPR-Coach in the visual CPR assessment task, which
supports fine-grained action recognition and composite
error recognition tasks.

• Taking the CPR-Coach dataset as a benchmark, we ex-

plore and compare the existing action recognition models
based on different modality information.

• We propose a human-cognition-inspired framework
ImagineNet, which significantly improves the composite
error recognition performance with restricted supervision.

2. Related Work
Human Action Recognition. Video-based Human Action
Recognition (HAR) is one of the representative tasks of
video understanding. There exist some HAR benchmarks
[1, 2, 24, 30, 45] and frameworks [9, 12, 19, 21, 31, 47,
51, 52, 58, 63, 65]. Benefiting from the availability of
sports videos, some fine-grained HAR datasets [46, 54, 62]
are proposed in sports. Fine-grained action recognition in
medical field mainly focuses on surgical workflow recogni-
tion, such as laparoscopic cholecystectomy [26, 37, 53, 56],
cataract surgery [4, 44], and Da Vinci surgical system oper-
ation [6, 22, 36, 43]. Although these benchmarks delineate
surgical workflows, they are usually limited in scale and
focus only on the interaction of surgical instruments with
tissues, without recording and identifying incorrect oper-
ations by subjects. To fill the gap of fine-grained action
recognition in CPR training, this paper proposes the first
dataset named CPR-Coach, which contains indistinguish-
able errors and complex composite error classes, putting
forward higher requirements for action recognition models.
Action Quality Assessment. Action Quality Assessment
(AQA) aims to identify the score or rank specific skilled ac-
tions. Wang et al. [60] found that publicly available AQA
datasets and algorithms in sports [8, 38–40, 42, 59, 61] are
more than those in the medical field [3, 17, 22, 27, 44, 49,
50, 56, 71–73, 76], which is mainly caused by the high pro-
fessionalism of medical data acquisition. Existing studies
on medical AQA can be divided into three categories: sur-
gical skill evaluation [44, 49, 50, 75, 76] under the OS-
ATS system [34], operating skills identification based on
Da Vinci surgical systems [3, 17, 22, 33, 67], and skill as-
sessment in laparoscopic surgery [13, 27, 28, 56, 71–73].
These research only rated medical actions and did not con-
duct detailed analysis. As the CPR testing focuses more on
specific errors and is not suitable for judging through scores,
this paper extends the concept of traditional AQA to CPR.
Multi-Label Learning Algorithms. Different from tra-
ditional classification tasks, multi-label learning faces the
challenge of exponential growth in the number of class
label spaces [32, 70]. Existing solutions are mainly di-
vided into two categories: Convert the multi-label prob-
lem into multiple independent binary classification prob-
lems [11, 16, 69], or improve the algorithm to adapt to
multi-label data [25, 29, 57]. In addition, Dmitriev et al.
[15] explored the setting of samples with one positive label.
Cole et al. [18] explored the same topic in multi-class image
segmentation tasks. Although the composite error recogni-
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Figure 2. Structure of the CPR-Coach. (a) Set-1 consists of a Correct class and 13 types of single-error actions. (b) Set-2 consists of
74 composite error actions (59 paired-, 10 triple-, and 5 quadruple-composite errors). For clarity, different marks with different colors
are adopted to represent 14 single classes. Due to space limitations, this figure only shows the generation process of one paired- and one
quadruple-composite error actions. All 74 composite error actions are enumerated and annotated in detail in the supplementary material.
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Figure 3. The selection strategy of the composite error actions. In
this case, Overlap Hands is selected as the primary class, and two
impossible co-occurrence combinations are deleted.

tion belongs to multi-label learning, the conditions are more
stringent, i.e., the training samples only contain single-class
samples. The proposed ImagineNet follows an algorithm
transformation strategy and thoroughly improves the recog-
nition performance through feature-combining strategies.

3. CPR-Coach Dataset
As shown in Figure 2, the proposed CPR-Coach dataset is
divided into two parts: Set-1 that contains 1 type of correct
action and 13 types of single-error actions, and Set-2 that
contains 74 types of composite error actions.

Considering the exponential growth of the total number
of composite error actions (8,191 classes for 13 single-error
actions), this paper mainly focuses on paired combinations
and several common multi-error combinations. Based on
the filtering strategy in Figure 3, we remove 19 impossible
combinations from 78 pairs (C2

13 = 78) and finally get 59

Dataset #Actions Modality #Videos #Views Available

FLS-ASU [71] 1 RGB 28 2 ✘
Sharma et al. [48] 2 RGB 33 1 ✘

Bettadapura et al. [10] 3 RGB 64 2 ✘
Zia et al. [74] 2 RGB 104 1 ✘

Zhang et al. [72] 1 RGB 546 1 ✘
Chen et al. [14] 3 RGB 720 2 ✘

Cataract-101 [44] 2 RGB 101 1 ✔
Hei-Chole [56] 7 RGB 33 1 ✔

MISTIC-SL [17] 4 RGB+Kinematics 49 1 ✘
JIGSAWS [22] 3 RGB+Kinematics 103 1 ✔
UI-PRMD [54] 10 RGB+Kinematics 1,000 1 ✔

CPR-Coach (Ours) 14+74 RGB+Flow+Pose 5,664 4 ✔

Table 1. Comparison with existing fine-grained medical action
analysis analysis and assessment datasets. More detailed compar-
ison results are listed in the supplementary material.

paired-composite error actions. All deleted combinations
have been confirmed by emergency doctors. In addition,
10 triple errors and 5 quadruple errors are selected by these
professional doctors based on actual experience. Finally,
we built a label space containing 74 combination errors.
Data Collection. We build a video capture system with
four high-resolution cameras to record the rescue process,
as shown in Figure 1(a). In order to ensure the diversity of
the dataset, we recruited 12 volunteers to participate in data
collection. Multiple participants enrich the visual feature
diversity of the proposed dataset. Three volunteers were as-
signed to Set-1, while nine were assigned to Set-2. Single-
class actions in Set-1 are performed for 42 times. In Set-2,
paired-composite error actions are performed for 12 times,
while others are performed for 8 times. All actions are car-
ried out under the guidance of professional doctors to ensure
the quality of each external cardiac compression action.
Dataset Statistics. Table 1 compares the proposed CPR-
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(c) ImagineNet-FC (e) ImagineNet-CA(d) ImagineNet-SA(b) Specific components and architecture of the ImagineNet.
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Figure 4. (a) and (b) demonstrate the main idea and specific network architecture of the proposed ImagineNet, respectively. Two error
actions Overleap Hands and Bending Arms are selected for visualization. The ImagineNet simulates the thinking and judgment process of
a real experienced coach concisely. The knowledge base only includes single-class actions, while real applications will encounter unseen
composite errors. (c), (d) and (e) show three feature fusion mechanisms. Note that only two inputs are displayed for clarity.

Item Data

Perspectives 4
FPS 25

Video Resolution 4096×2160 (4K)

Number of Participants 12
Classes of Single-class Actions 1+13=14

Classes of Composite Error Actions 59+10+5=74
Frames (RGB) 2,217,756

Frames (RGB+Flow) 6,644,596

Videos 5,664
Avg. Len. of Videos 19.52s

Storage Size 450GB

Table 2. Summary of statistics of the CPR-Coach dataset.

Coach dataset with existing fine-grained medical action
analysis datasets. The CPR-Coach dataset has surpassed ex-
isting datasets in terms of data scale, action granularity, and
modal complexity. More comparisons with other datasets
are listed in the supplementary materials. Table 2 summa-
rizes the statistics of the CPR-Coach dataset. It contains
4.6K videos and 2.2M frames in total. The storage size of
the entire dataset is 450GB. The CPR-Coach also provides
optical flow images generated by the TV-L1 algorithm [66]
and 2D skeletons of the rescuer obtained by Alphapose [20].
Figure 5 shows three modality information from four per-
spectives: RGB frames, optical flow, and 2D poses.
Supported Tasks. As the first multi-perspective dataset to
explore fine-grained composite actions in medical scenar-
ios, the CPR-Coach can support multiple studies. Firstly,
we can evaluate existing HAR models on fine-grained error
recognition tasks on Set-1. Secondly, by taking Set-1 as the
training set and Set-2 as the testing set, we can explore the
composite error action recognition task under constrained
supervision. Thirdly, the influence of combining different
perspectives and modes on the algorithm can be explored.
The following experiments follow these ideas.
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Figure 5. Three types of modality information on four views pro-
vided by CPR-Coach.

4. ImagineNet

Figure 4(a) shows the main idea of the proposed human-
cognition-inspired framework ImagineNet. With restricted
supervision training data, the Imagine process can freely
combine features to improve the multi-label recognition
performance. Taking the classic Temporal Segment Net-
work (TSN) [58] as the basic network, the detailed archi-
tecture of ImagineNet is shown in Figure 4(b).

The ImagineNet is divided into three stages: feature ex-
traction, feature fusion, and loss computing. Firstly, two
video samples (V1, C1) and (V2, C2) are selected from
Set-1 in the feature extraction phase. Note that two videos
V1 = {Ii}N1

i=1 and V2 = {Ii}N2
i=1 come from different

classes, i.e., C1 ̸= C2, C ∈ {1, · · · , 13}. N1 and N2 repre-
sent the total frames of two videos, respectively. Ii denotes
the i-th frame in the video. The TSN model selects T clips
from raw videos for feature extraction. After spatial aver-
age pooling, video features X1 ∈ RT×D and X2 ∈ RT×D

are obtained, where D denotes the dimension of the feature.
Secondly, in the feature fusion stage, two different features
will be subsequently fused and generate X12 ∈ R

T×D.
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This process is also expressed as X1 ⊕ X2. We regard
this feature fusion process as the Imagine process. As illus-
trated in Figure 4(c&d&e), this paper provides three feature
fusion schemes to realize the imagination process: Fully-
Connected Layer based fusion (FC), Self-Attention based
fusion (SA), and Cross-Attention based fusion (CA). Fi-
nally, in the loss computing stage, the Binary Cross Entropy
(BCE) loss is adopted to measure the divergence between
the predicted score and the Ground-Truth (GT) labels. Note
that the GT labels are in the form of multi-hot encoding.

4.1. Fusion Mechanisms of the ImagineNet

Subfigures in Figure 4(c&d&e) demonstrate three different
feature fusion mechanisms: ImagineNet-FC, ImagineNet-
SA, and ImagineNet-CA, respectively. The formula repre-
sentation is omitted in these figures for clarity. Two thick
lines with different colors are adopted to represent two
video features.
ImagineNet-FC. As shown in Figure 4(c), the video fea-
tures X1 and X2 are fused through the feature addition
mechanism. Then a two-layer fully connected neural net-
work maps the fusion feature X12 into predicted scores of
14 classes. This process is formulated as

SFC = FFC(X1 ⊕X2;θFC), (1)

where FFC(·) denotes the neural network, and the plus sign
⊕ represents the feature aggregation strategy, which will be
described in detail later. θFC represents the trainable pa-
rameters of FFC(·).

The BCE loss function is selected for the network opti-
mization:

θ∗
FC = argmin

θFC

BCE(SFC , GT ), (2)

where GT = onehot(C1) ∪ onehot(C2) denotes the com-
posite label in multi-hot encoding form. All parameters are
omitted in the subsequent statements for clarity.
ImagineNet-SA. The ImagineNet-SA adds a self-attention
module based on the ImagineNet-FC, as shown in Figure
4(d). The motivation is to equip the ImagineNet with a
stronger feature extraction and fusion capability to improve
the generalization and reasoning ability. The process is ex-
pressed as

SSA = FFC(FSA(X1 ⊕X2)), (3)

where FSA(·) includes the self-attention and feed forward
stages, FFC(·) is the same as Equ.1. By substituting X12

for X1 ⊕X2, the self-attention mechanism is expressed as

X
′

SA = LN

[
X12 + softmax

(
X12X

T
12√

D

)
X12

]
, (4)

and the feed forward layer

XSA = LN [X
′

SA + FFFN (X
′

SA)]. (5)

Note that D represents the dimension of video features and

D = 2048 in TSN [58]. LN [·] denotes the LayerNorm op-
eration. For clarity, the LayerNorm operation and residual
links are omitted in Figure 4(d&e) .
ImagineNet-CA. The structure of ImagineNet-CA is
shown in Figure 4(e). The main difference between
ImagineNet-SA and ImagineNet-CA lies in the feature fu-
sion strategy. Consistent with the above, the computing pro-
cess is expressed as

SCA = FFC(FCA(X1,X2)), (6)
where FCA(·, ·) includes a cross-attention module and a
feed forward layer. The cross-attention mechanism inte-
grates two video features from different classes:

X
′

CA = LN

[
X1 + softmax

(
X1X

T
2√

D

)
X2

]
, (7)

and the feed forward layer

XCA = LN [X
′

CA + FFFN (X
′

CA)]. (8)
After defining three fusion mechanisms, we can instanti-

ate three ImagineNets and compare their performance.

4.2. Feature Aggregation Strategy

Three feature fusion mechanisms mentioned above are
frameworks for implementing ImagineNet, while feature
aggregation is a local operation denoted as ⊕. Effective
feature aggregation methods can make full use of lim-
ited samples in Set-1, thus improving the generalization
performance under the setting of Single-class Training &
Multi-class Testing. The simplest way to instantiate ⊕ in
ImagineNet-FC and -SA models is taking the summation of
two features. To increase the diversity of the aggregation
process, we adopt a random weighted summation mecha-
nism similar to MixUp [68]. The aggregated feature is ex-
pressed as follows with two inputs.

X12 = λX1 + (1− λ)X2, λ ∼ U(0, 1), (9)
where λ is a weight sampled from a uniform distribution
U(0, 1). The effectiveness of this concise technique is veri-
fied in ablation studies. As representatives of feature aggre-
gation methods, CBP [23] and BLOCK [7] are selected for
comparison. Weighted summation, CBP, and BLOCK are
denoted as Agg-1, Agg-2, and Agg-3, respectively.

4.3. Inference of the ImagineNet

Figure 4(b) only demonstrates the training process of the
ImagineNet. It can be found that ImagineNet requires two
video features X1 and X2 as inputs during training. How-
ever, there is only one input video feature of the composite
error action during inference. To resolve this mismatch is-
sue, this paper directly adopts the replication method to fill
the input. Although the cross-attention in ImagineNet-CA
degenerates into the self-attention in ImagineNet-SA dur-
ing inference, different training process leads to different
recognition performance. The two models are still compa-
rable, and the experimental results confirm this analysis.
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Model Modality Backbone Config Epoch Pre-training
CE Loss BCE Loss Multi-Margin Loss

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

TSN [58]
RGB ResNet-50 1x1x8 50 ✗ 0.8879 0.9940 0.8829 0.9960 0.8502 0.9901
RGB ResNet-50 1x1x8 50 Kinetics-400 0.9067 0.9921 0.8919 0.9940 0.8690 0.9901
Flow ResNet-50 1x1x8 50 ✗ 0.7907 0.9603 0.8304 0.9851 0.7073 0.9355

TSM [31] RGB ResNet-50 1x1x8 50 ✗ 0.9067 0.9901 0.9325 0.9950 0.8433 0.9881
I3D [12] RGB ResNet-50 32x2x1 50 ✗ 0.9692 0.9960 0.9117 0.9940 0.8591 0.9861
TPN [64] RGB ResNet-50 8x8x1 50 ✗ 0.9802 0.9960 0.9087 0.9980 0.8720 0.9901
C3D [52] RGB C3D 16x1x1 50 Sports1M 0.9722 0.9931 0.9702 0.9931 0.8621 0.9802
TIN [47] RGB ResNet-50 1x1x8 50 ✗ 0.8800 0.9901 0.7192 0.9335 0.8393 0.9861

SlowFast [21] RGB ResNet-50 4x16x1 256 ✗ 0.8695 0.9734 0.8719 0.9781 0.8625 0.9688
TimeSFormer [9] RGB ViT 8x32x1 50 ✗ 0.8879 0.9921 0.8998 0.9940 0.8462 0.9762

ST-GCN [63] Pose ST-GCN 1x1x300 50 ✗ 0.9246 0.9970 0.9187 0.9881 0.9196 0.9970
PoseC3D [19] Pose ResNet3D-50 1x1x300 240 ✗ 0.9208 0.9922 0.9035 0.9715 0.8837 0.9606

Two-Stream [51] RGB+Flow TSN+TSN Flow Late-Fusion 50 ✗ 0.9533 0.9891 0.9479 0.9825 0.9296 0.9802
RGB+Pose TSN+ST-GCN Late-Fusion 50 ✗ 0.9782 0.9962 0.9608 0.9941 0.9692 0.9960

MMNet [65] RGB+Pose+RoI MS-G3D+Incep.-v3 Late-Fusion 80 ✗ 0.9756 0.9960 0.9772 0.9940 0.9512 0.9876

Table 3. Single-class recognition performance of existing HAR models on CPR-Coach Set-1. The first and second accuracy in each column
are highlighted in bold and underlined, respectively. More results in different settings are summarized in the supplementary materials.

TSN I3DTSMTPN

Correct
OverlapHands

ClenchingHands
SingleHand

BendingArms
TiltingArms

JumpPressing
Squatting

Standing
WrongPosition

InsufficientPressingSlowFrequency
ExcessivePressing RandomPositionPressing

ST-GCN MMNet

Figure 6. Visualization of the action features through t-SNE. The red box in the legend highlights four confusing classes. We use red
circles to highlight these four classes of scatters in figures to compare the performance of these networks more clearly.

5. Experiments
5.1. Action Recognition on CPR-Coach Set-1

Compared with traditional HAR datasets, the CPR-Coach
focuses on distinguishing subtle errors in CPR. In Fig-
ure 2, it is difficult to find the nuances of these actions.
CPR-Coach puts forward higher requirements for the action
recognition models. Therefore, we take Set-1 of the CPR-
Coach as a benchmark and conduct single-error recognition
experiments on existing HAR models. 60% of Set-1 is used
for training and 40% for testing. Table 3 summarizes the
detailed settings and Top-1&3 accuracy of the models. Fig-
ure 6 visualizes some features generated by these models
through the t-SNE algorithm [55].
Implementation Details. Three different types of action
recognition models are implemented: video-based methods
(TSN [58], TSM [31], TPN [64], I3D [12], C3D [52], TIN
[47], SlowFast [21], TimeSFormer [9]), pose-based meth-
ods (ST-GCN [63], PoseC3D [19]), and multimodal fusion
methods (Two-Stream [51], MMNet [65]). Detailed config-
urations of these models are summariaed in Table 3. All
models are trained for 50 epochs through the SGD opti-
mizer, except the SlowFast with the Cosine Annealing opti-
mizer for 256 epochs, the PoseC3D for 240 epochs, and the
MMNet for 80 epochs. The network input size is 224x224,
while the coordinates of 2D poses remain unchanged at

4096x2160. All models are built on Pytorch and trained
on an NVIDIA A800 GPU. Cross Entropy (CE), BCE, and
Multi-Margin losses are adopted to compare the perfor-
mance comprehensively.
Performance Analysis. Results in Table 3 suggest that dif-
ferent network-loss combinations will affect the final per-
formance. Under the CE loss setting, TPN achieves the best
performance, while the MMNet achieves the optimal per-
formance with the BCE loss. Methods that integrates mul-
timodal information has the most stable performance and
can achieve superior performance under different losses.
The performance under CE loss is superior to the other two
losses, which is caused by the stronger label dependency as-
sumption. Surprisingly, the performance of PoseC3D is in-
ferior to ST-GCN. This is mainly because that the PoseC3D
stacks 2D keypoints to form a 3D heatmap volume, while
the repeatability and circularity of CPR hit its inherent flaw,
leading to inferior results. In Figure 6, the scatters of four
confusing classes are very close in TSN, TPN, and TSM,
while the I3D, ST-GCN, and MMNet that pay more at-
tention to temporal information can handle these situations
well. Class-wise prediction results and the pros and cons
of these HAR models are analyzed in the supplementary
material. Overall, existing HAR models are able to handle
single-error recognition tasks well. Next, we will explore
composite error performance on these models.
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Model Config Modality Pre-training
CE Loss BCE Loss Multi-Margin Loss

mAP mmit mAP mAP mmit mAP mAP mmit mAP

TSN [58] 1x1x8 RGB Kinetics-400 0.5598 0.6143 0.4627 0.5629 0.4838 0.5579
TSM [31] 1x1x8 RGB ✗ 0.5662 0.6618 0.5721 0.6688 0.5470 0.6255

ST-GCN [63] 1x1x300 Pose ✗ 0.5776 0.6692 0.5868 0.6865 0.5874 0.6719
PoseC3D [63] 1x1x300 Pose ✗ 0.5498 0.6393 0.5556 0.6241 0.5358 0.6142
MMNet [65] Late-Fusion RGB+Pose+RoI ✗ 0.5948 0.6735 0.5871 0.6973 0.5894 0.6830

Table 4. Composite error action recognition performance on Set-2 by direct migration. Only the results of four models in RGB and pose
modality are reported due to the limited space. Significant performance degradation can be observed compared to the results in Table 3.

Model mAP ∆ mmit mAP ∆

TSN [58] 0.5598 — 0.6143 —
w/ ImagineNet-FC 0.6259 ↑ 6.61% 0.6893 ↑ 8.50%

TSM [31] 0.5662 — 0.6618 —
w/ ImagineNet-FC 0.7053 ↑ 13.91% 0.7566 ↑ 9.48%

ST-GCN [63] 0.5776 — 0.6692 —
w/ ImagineNet-FC 0.6404 ↑ 6.28% 0.7115 ↑ 4.23%

MMNet [65] 0.5948 — 0.6735 —
w/ ImagineNet-FC 0.6927 ↑ 9.79% 0.7478 ↑ 7.43%

Table 5. Performance comparison between direct migration and
ImagineNet-FC. All model settings are consistent with Table 4.

5.2. Composite Error Action Recognition on Set-2

Taking Set-1 as the training set and Set-2 as the testing set,
we can simulate the real CPR assessment. A naive ap-
proach is directly migrating the pre-trained model in single-
class task to the composite error recognition task. Table 4
summarizes the performance of five selected models. All
three losses cannot handle the huge gap between the two
tasks, while the MMNet [65] achieves better migration per-
formance through the fusion mechanism and bigger model
size. The sharp decline in performance indicates that the
new task has exceeded the representation capability of orig-
inal models. Next, the deployment details and results of
the ImagineNet will be introduced. Note that our core con-
tribution is not to create a novel HAR model but to build
a better composite error detector through existing models.
Therefore, we adopt classic models (TSN, TSM, ST-GCN)
and the SOTA model MMNet to instantiate ImagineNets for
ensuring the reproducibility and stability, instead of those
sophisticated methods such as TimeSFormer and PoseC3D.
Implementation Details. All ImagineNet models are
trained for 60 epochs through the SGD optimizer. The
learning rate is set to 0.001 initially and attenuated by 0.1
at 20 and 40-th epochs. The temporal length T is set to 8.
Only the models trained with CE loss are explored. mAP
and mmit mAP [35] are adopted as metrics for evaluation.
Quantitative Analysis. Table 5 compares the ImagineNet-
FC model with the vanilla migration method. Through
the Imagine mechanism, the ImagineNet-FC significantly
improves the composite error recognition performance un-
der restricted supervision, regardless of the input modal-
ity. In particular, the ImagineNet-FC brings 13.91% mAP
and 9.48% mmit mAP improvement on TSM. The perfor-
mance and computational complexity of ImagineNet-SA,
ImagineNet-CA, and their variants are summarized in Table

Model Variants GFLOPs mAP mmit mAP

ImagineNet-FC FC 0.001 0.7053 0.7566

ImagineNet-SA
SA 0.068 0.7011 0.7630

SAx2 0.136 0.7007 0.7656
SAx3 0.203 0.6995 0.7572

w/o PosEmb 0.068 0.6822 0.7593

ImagineNet-CA
CA 0.068 0.6752 0.7346

CA+SA 0.136 0.6766 0.7406
CA+SAx2 0.203 0.6728 0.7377

w/o PosEmb 0.068 0.6725 0.7339

Table 6. Performance and FLOPs comparison of the proposed
three ImagineNet models and their variants based on the TSM.

6. The results reveal that the ImagineNet-SA outperforms
the other two models. The CA mechanism does not improve
performance as well as SA. More layers and computational
complexity will lead to overfitting. The Positional Embed-
ding module is essential in ImagineNets because chrono-
logical information is indispensable for distinguishing these
fine-grained error actions. In Figure 8, we explore the rela-
tionship between the number of error combinations and the
final performance on Set-2. The mmit mAP of ImagineNet-
FC gradually decreases as the number of composite errors
increases, which is consistent with our intuition that more
complex error combinations imply higher task difficulty.
Qualitative Analysis. To explore how ImagineNet impacts
the network, we visualize and compare the features gen-
erated by TSM and TSM w/ ImagineNet-FC on Set-2 in
Figure 9(a&b). Macroscopically, features obtained by the
direct migration are messy, while the ImagineNet can help
the network reduce intra-class distance and expand inter-
class distance. The enhancement of feature clustering con-
firms the effectiveness of the proposed ImagineNet. High-
resolution t-SNE figures of more ImagineNet models are
demonstrated in the supplementary materials.

5.3. Combination of Perspectives
As shown in Figure 1(a), the video capture system includes
four views. It is not practical to use all perspectives in de-
ployment, which will cause redundant computation. Four-
perspective settings can help us discover the best combi-
nation and achieve the optimal performance-computation
trade-off. We evaluate the performance of the ImagineNet-
FC on all different perspectives combinations. The results
are shown in Figure 7. Overall, the performance increases
with combing more perspectives. Perspective #3 provides
more valuable information, while #4 is the opposite. This
discovery is of great value for subsequent deployment.

18788



1 2 3 4 [1,2] [1,3] [1,4] [2,3] [2,4] [3,4] [1,2,3][2,3,4][1,3,4][1,2,4] [1,2,3,4]
Perspective Combination

0.6
25

0.6
50

0.6
75

0.7
00

0.7
25

0.7
50

0.7
75

Av
er

ag
e 

Pr
ec

isi
on

Performance of TSN w/ ImagineNet-FC 
mAP
mmit_mAP

1 2 3 4 [1,2] [1,3] [1,4] [2,3] [2,4] [3,4] [1,2,3][2,3,4][1,3,4][1,2,4] [1,2,3,4]
Perspective Combination

0.5
5

0.6
0

0.6
5

0.7
0

0.7
5

Av
er

ag
e 

Pr
ec

isi
on

Performance of ST-GCN w/ ImagineNet-FC 
mAP
mmit_mAP

Figure 7. Performance of combining different perspectives. Dif-
ferent numbers of views are grouped by black dividing lines.

Model Agg-1 Agg-2 Agg-3 mAP mmit mAP

TSN [58] – – – 0.5598 0.6143

w/ ImagineNet-FC
✘ ✘ ✘ 0.6198 0.6738
✔ ✘ ✘ 0.6259 0.6893
✘ ✔ ✘ 0.6019 0.6775
✘ ✘ ✔ 0.6033 0.6725

TSM [31] – – – 0.5662 0.6618

w/ ImagineNet-FC
✘ ✘ ✘ 0.6871 0.7353
✔ ✘ ✘ 0.7053 0.7566
✘ ✔ ✘ 0.6434 0.7308
✘ ✘ ✔ 0.6569 0.7219

ST-GCN [63] – – – 0.5776 0.6692

w/ ImagineNet-FC
✘ ✘ ✘ 0.6374 0.7089
✔ ✘ ✘ 0.6404 0.7115
✘ ✔ ✘ 0.5783 0.6877
✘ ✘ ✔ 0.6159 0.6864

Table 7. Ablation studies on three feature aggregation strategies.

5.4. Ablation Studies
Ablation studies are conducted to explore the effectiveness
of feature aggregation strategies. Table 7 summarizes the
results of ImagineNet-FC and its variants based on TSN,
TSM, and ST-GCN. Performance of the random weighted
summation mechanism surpasses the vanilla method and
other two bilinear pooling aggregation methods both in
RGB and pose modes. This reveals that the proposed mech-
anism can generate richer feature combinations concisely
and effectively, thus enabling ImagineNet to achieve better
generalization performance on unseen error combinations.

5.5. Cross Modality Studies

In previous experiment settings, inputs of the ImaginNet
belong to different categories but the same modality. The
structure of ImagineNet inherently supports multi-modal
data fusion. Taking TSM and ST-GCN as basic models,
Table 8 compares the ImagineNet-CA with the Two-Stream
fusion method, two bilinear pooling fusion methods, and
MMNet under cross modality settings. The latency of these
fusion models is reported by averaging 1,000 running times,
while basic models are excluded. Results show that the
ImagineNet-CA surpasses the other three multimodal fu-
sion methods. Although BLOCK performs similarly to
ImagineNet-CA, its latency is nearly 7.8x longer, which is
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Figure 8. mmit mAP Performance on different subsets of Set-2.

(a) TSM (b) TSM w/ ImagineNet-FC (c) Deployment testing

Figure 9. (a&b) Feature visualization comparison via t-SNE on
Set-2. Black auxiliary lines are marked for clarity. (c) System
deployment and testing performance comparison.

Model Modality Latency (ms)↓ mAP mmit mAP

TSM [31] RGB – 0.5662 0.6618
ST-GCN [63] Pose – 0.5776 0.6692

Two-Stream [51] RGB+Pose 0.1501 0.6003 0.6815
CBP [23] RGB+Pose 0.3043 0.7089 0.7506

BLOCK [7] RGB+Pose 1.294 0.7107 0.7675
MMNet [65] RGB+Pose+RoI 0.2479 0.6927 0.7478

w/ ImagineNet-CA RGB+Pose 0.1642 0.7110 0.7515

Table 8. Cross modality studies on RGB and Pose information.

mainly caused by the complex approximate outer product
computation. The Two-Stream fusion model can reduce la-
tency but has poor performance.

5.6. System Deployment and Testing

To verify the performance of the ImagineNet in real deploy-
ment, we collaborate with the skill training center of a hos-
pital to collect CPR videos in real training scenarios. After
video collection and selection, we obtain a set contains 187
videos with various errors. Note that these videos are out-
side of the CPR-Coach. The comparison between human
and ImagineNets is shown in Figure 9(c). Results show that
the skeleton-based method has better generalization perfor-
mance than the RGB-based method. The proposed system
has preliminary capabilities to assist decision-making.

6. Conclusion
This paper proposes the CPR-Coach dataset, which sup-
ports fine-grained action recognition and composite error
action recognition tasks in CPR training under restricted su-
pervision. We extensively evaluate and compare the exist-
ing HAR models and propose different ImagineNet frame-
works inspired by human cognition to improve the perfor-
mance of the model under the composite error settings. Suf-
ficient comparison and actual deployment experimental re-
sults verified the effectiveness of the proposed framework.
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