
Cloud-Device Collaborative Learning for Multimodal Large Language Models

Guanqun Wang1∗ Jiaming Liu1∗ Chenxuan Li1∗ Yuan Zhang1 Junpeng Ma1 Xinyu Wei1 Kevin Zhang1

Maurice Chong1 Renrui Zhang2 Yijiang Liu3 Shanghang Zhang1†
1National Key Laboratory for Multimedia Information Processing, School of Computer Science,

Peking University 2Shanghai AI Lab 3Nanjing University

CD-CCA
Collaborative Training

Downlink
Dynamic weight update compression

Larger 
MLLM

Smaller 
MLLM

AKD

Uplink
Uncertainty-guided token sampling

How is the young red-haired girl feeling?

A: happy   B: depressed C: angry  D: sad
** ANSWER. A**

CD-CCA
Collaborative Optimization A: happy

DeviceCloud

Text

Text & Image

Image

Multimodal Inputs

Compressed
MLLM

Figure 1. Cloud-Device Collaborative Continual Adaptation framework (CD-CCA). Our CD-CCA, specifically designed for MLLMs,
embodies a cloud-device collaborative paradigm. It is adept at receiving various modalities and executing multimodal comprehension tasks.
As illustrated on the left side of the figure, our approach facilitates collaborative learning between device and cloud, enabling the update
on the device-side deployed MLLM to adapt to dynamically changing scenarios. On the right side, an application instance of CD-CCA is
depicted, demonstrating its capability to achieve accurate multimodal comprehension in the face of evolving scenarios at the device.

Abstract

The burgeoning field of Multimodal Large Language
Models (MLLMs) has exhibited remarkable performance in
diverse tasks such as captioning, commonsense reasoning,
and visual scene understanding. However, the deployment
of these large-scale MLLMs on client devices is hindered by
their extensive model parameters, leading to a notable de-
cline in generalization capabilities when these models are
compressed for device deployment. Addressing this chal-
lenge, we introduce a Cloud-Device Collaborative Contin-
ual Adaptation framework, designed to enhance the perfor-
mance of compressed, device-deployed MLLMs by lever-
aging the robust capabilities of cloud-based, larger-scale
MLLMs. Our framework is structured into three key compo-
nents: a device-to-cloud uplink for efficient data transmis-
sion, cloud-based knowledge adaptation, and an optimized
cloud-to-device downlink for model deployment. In the up-
link phase, we employ an Uncertainty-guided Token Sam-
pling (UTS) strategy to effectively filter out-of-distribution
tokens, thereby reducing transmission costs and improv-
ing training efficiency. On the cloud side, we propose
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Adapter-based Knowledge Distillation (AKD) method to
transfer refined knowledge from large-scale to compressed,
pocket-size MLLMs. Furthermore, we propose a Dynamic
Weight update Compression (DWC) strategy for the down-
link, which adaptively selects and quantizes updated weight
parameters, enhancing transmission efficiency and reduc-
ing the representational disparity between cloud and de-
vice models. Extensive experiments on several multimodal
benchmarks demonstrate the superiority of our proposed
framework over prior Knowledge Distillation and device-
cloud collaboration methods. Notably, we also validate the
feasibility of our approach to real-world experiments.

1. Introduction

In recent years, we have witnessed a proliferation of Large
Language Models (LLMs) and Multimodal Large Language
Models (MLLMs), with models like GPT4 [1] demon-
strating exceptional performance across various tasks, in-
cluding visual question answering (VQA) and common-
sense reasoning. These MLLMs, such as Flamingo [2] and
BLIP-2 [3], empower LLMs with the capability to compre-
hend and reason about visual scenes. Due to their large
amount of parameters, MLLMs are commonly deployed on
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cloud servers, demonstrating strong generalization capabil-
ity. However, their large-scale parameters make it challeng-
ing to directly deploy MLLMs on the device, which also
limits their practicality.

Since the client device is resource-constrained, MLLMs
need to be compressed for the deployment on the device.
The compressed MLLMs indeed demonstrate remarkable
performance when the test data distribution closely matches
the training data distribution. However, this assumption
encounters significant challenges in real-world scenarios,
where non-static environments and distribution shifts are
prevalent [4, 5]. The small-size MLLMs are susceptible
to severe performance degradation when confronted with
dynamic distribution shifts [5–7]. There are two principal
challenges: (1) The limited computational capacity of edge
devices hinders the ability to perform timely model updates,
leading to performance decay when encountering distribu-
tion shifts. (2) Compressed models, which have a relatively
small capacity, struggle to adapt to continuously changing
environments, leading to insufficient generalization ability.

To empower device models in dynamic environments,
we propose a Cloud-Device Collaborative Continual Adap-
tation (CD-CCA) framework for MLLMs (Figure 1). Our
key insight is harnessing cloud-larger MLLMs to boost the
generalization capability of smaller, compressed MLLMs
deployed on the device. In pursuit of augmenting the gen-
eralization capabilities of device models without compro-
mising their efficiency, as well as facilitating their dynamic
adaptability to ever-changing distributions, we propose a
new learning paradigm: Cloud-Device Collaborative Con-
tinual Adaptation. The paradigm has three key components:
the device-to-cloud uplink, the cloud-side knowledge up-
date, and the cloud-to-device downlink.

First, in order to enable the MLLM deployed on de-
vices to have the capability of dynamic parameter updating,
we design a device-to-cloud uplink for transmitting uncer-
tainty tokens generated on the device side. Specifically, we
propose a coarse-to-fine token filtering approach known as
the Uncertainty-guided Token Sampling (UTS) strategy to
minimize upstream transmission costs. We begin by utiliz-
ing sample-level uncertainty to identify and filter out cor-
ner case samples from the target distribution data. Sub-
sequently, we adopt token-level uncertainty to perform a
secondary filtering process, isolating out-of-distribution to-
kens. This approach helps alleviate network transmission
bandwidth constraints and enhances training efficiency on
the cloud server.

Second, on the cloud side, we develop a novel Adapter-
based Knowledge Distillation (AKD) method, specially de-
signed for MLLMs. The purpose of AKD is to transfer
dark knowledge from the original huge MLLMs to the com-
pressed pocket-size MLLMs. MLLMs typically consist of
three main components: a vision encoder, a large language

model (LLM) [8], and a cross-modal transformer, which
fuses the high-level vision and language context [2, 3, 9].
Therefore, our approach initially focuses on conducting KD
for the learnable query adapter from the cross-modal trans-
former, enhancing the small MLLMs’ vision-to-text align-
ment capabilities. Simultaneously, since the LLM occupies
the majority of parameters in MLLM, the primary objective
for the compressed model is to reduce the LLM’s param-
eter. Consequently, we further conduct KD for learnable
language adapters, which are plugged into the LLM, to en-
hance the student MLLMs’ language communication and
reasoning abilities.

Furthermore, to account for the varying computational
capabilities of edge devices, we employ an adaptive quan-
tization and compression technique for the dynamically up-
dated weight parameters for the device-side MLLMs. These
compressed weight parameters are then transmitted to the
device through the downlink, narrowing the gap in rep-
resentation between the device and cloud MLLMs. We
conducted extensive experiments on two cross-domain vi-
sual reasoning benchmarks, one from VQA-v2 [10] to A-
OKVQA [11] and the other from COCO Captions 2017 [12]
to nocaps [13]. Our proposed framework achieved superior
performance compared to previous methods. Additionally,
for the uplink, we maintain the performance while reducing
transmission costs to 4.71% and 20.6% compared to trans-
ferring the entire dataset. As for the downlink, we can de-
liver the compressed dynamically updated weight parame-
ters with almost negligible transmission cost to the device,
resulting in 3.93% and 2.20% improvements in domain-
shifted VQA tasks and captioning tasks. Our contributions
can be summarized as follows:
• We introduce the CD-CCA framework that involves the

continuous utilization of cloud-based large MLLMs to
enhance the generalization capabilities of smaller, com-
pressed MLLMs on the device.

• For the device-to-cloud uplink, we propose UTS strat-
egy, which serves to filter out-of-distribution tokens dur-
ing data transmission from the device to the cloud.

• On the cloud side, we introduce the AKD manner to fa-
cilitate the transfer of dark knowledge from the original
huge MLLMs to the compressed pocket-size MLLMs.

• For the cloud-to-device downlink, we propose a dynamic
weight updating compression method that significantly
enhances the transmission efficiency of updated weights
from cloud to device, which establishes a practical foun-
dation for the application of the Cloud-Device collabora-
tive learning paradigm.

• Extensive experiments demonstrate CD-CCA outper-
forms previous methods, effectively enhancing the
continuous domain adaptation capability of device-
compressed MLLMs. Moreover, we validate the feasi-
bility of our approach through real-world experiments.
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2. Related Work
MLLMs. Recent advancements in LLMs[8, 14] have

marked a shift from single to multi-modal capabilities, with
MLLMs [2, 3, 15] emerging as a significant development.
However, this expansion has led to increased model sizes,
escalating training costs to prohibitive levels. Despite the
efforts to minimize the trainable parameters [16], model
deployment on device continues to pose significant chal-
lenges, constrained by limited computational power and
network bandwidth. In this work, we conceive a new train-
ing strategies to replicate the magic of large models in
resource-constrained environments.

Cloud-Device Collaborative Learning. Previous ap-
proaches have attempted to offload the computational work-
load to the cloud [17–21], effectively reducing the hard-
ware requirements on devices. However, these methods
usually represent a superficial level of cloud-device collab-
oration. Our method introduces the UTS strategy, designed
to filter out-of-distribution image tokens from devices to
cloud, which significantly reduces the required upstream
bandwidth while ensuring that the selected image tokens
are rich in semantic information. Knowledge Distillation
(KD) methods have been proposed that perform distillation
over intermediate features [22, 23], relation representation
[24–26], attention [27, 28]. However, for MLLMs, there is
currently no specific knowledge distillation method avail-
able to compress them effectively.

Continual Domain Adaptation. Devices are commonly
deployed in real-world scenarios where data is continuously
evolving. In recent years, several works have been proposed
to continually adapt the model to the changing target do-
main [29–32]. Our work proposes a Cloud-Device Col-
laborative Continual Adaptation framework, enabling the
model to adapt to dynamically changing distributions. This
approach allows for the simultaneous improvement of the
teacher model in cloud and student model on devices.

3. Approach
In this section, we propose CD-CCA to enhance device-
deployed MLLMs through efficient cloud-device collabora-
tion. We describe the overall pipeline in Sec. 3.1, and then
introduce the key components in the following subsections.

3.1. Overview of CD-CCA Framework

In the landscape of pervasive computing, edge devices are
increasingly tasked with complex multimodal interactions,
necessitating models that are not only robust but also adap-
tive to continual environmental shifts. The CD-CCA frame-
work, shown in Figure 2, emerges as a paradigm designed
to synergize the computational prowess of cloud resources
with the operational nimbleness of edge devices. This dy-
namic adaptability of the CD-CCA framework can be suc-

cinctly encapsulated in the following optimization process:

M′ = C
(
K

(
U (D,Medge) ,Mteacher

cloud

)
,Mstudent

cloud

)
(1)

where M′ signifies the refined model deployed back on
the edge device, D represents the dataset of multimodal in-
stances, U delineates the UTS for uplink efficiency, K de-
picts the AKD on the cloud, and C denotes the Dynamic
Weight update Compression (DWC) for the downlink trans-
mission.

Initially, the framework employs UTS, a novel approach
that discernibly filters the influx of multimodal data, ear-
marking only the most pivotal tokens for cloud-assisted re-
finement. The selective process is pivotal in distilling the
essence of data that demands the cloud’s attention, thereby
conserving bandwidth and reducing uplink latency. Subse-
quently, the framework leverages an AKD technique in the
cloud, which distills and transfers the rich knowledge from
an expansive teacher model to a compact student counter-
part. The AKD process is fine-tuned to cater to the spe-
cific learning nuances of multimodal data, ensuring that the
student model is endowed with enhanced generalization ca-
pabilities. Culminating the framework’s process is DWC,
an innovative strategy that dynamically quantizes and com-
presses the updated model parameters before transmission
via the downlink, significantly alleviating the latency typi-
cally associated with updating device-resident models. The
DWC ensures that the updated intelligence is delivered
promptly, maintaining the real-time responsiveness crucial
for device applications. Collectively, these components of
the CD-CCA framework constitute a powerful conduit for
continual learning, enabling MLLMs to evolve in situ, with
a level of acuity and efficiency previously unattainable in
device computing paradigms.

3.2. Uncertainty-guided Token Sampling (UTS)

As devices operate within the intrinsic variability of real-
world scenarios, there is a crucial need for the continual
adaptation of MLLMs that can process data selectively,
concentrating computational efforts where they are most
needed. To this end, the UTS component of the CD-CCA
framework serves as an intelligent filtration mechanism, en-
abling the discernment and prioritization of multimodal in-
stances for transmission. This is rooted in the understanding
that not every instance contributes equally to the model’s
learning and that some may be more pivotal for adaptation.

In the first stage of UTS, an MLLM with parameters
Θ deployed on an edge device processes a multimodal in-
stance (vi, ti) ∈ D, and its predictive uncertainty U is eval-
uated as follows:

U(vi, ti; Θ) = −
∑
j

p(yij |vi, ti; Θ) log p(yij |vi, ti; Θ)

(2)
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Figure 2. The overall pipeline of CD-CCA. (a) Cloud: Upon receiving a token from the device, the Teacher MLLM generates pseudo
labels and distills knowledge for the smaller model. (b) Device: Upon receiving an image and a human prompt, it generates the corre-
sponding answer. (c) First stage of Uncertainty-guided Token Sampling (UTS). (d) Second stage of UTS.

Eq. 2 calculates the entropy of the predicted token prob-
abilities, which serves as a measure of uncertainty for the
given instance. Instances with high uncertainty are flagged
as candidates for further analysis.

In the subsequent phase, we propose Variance-Informed
Sampling (VIS) technique as a refinement step to further
sift through the pre-selected instances. VIS applies Monte
Carlo dropout to the encoded multimodal input tensors, de-
riving a variance measure across multiple forward passes to
identify which tokens within these instances exhibit signifi-
cant variability in their representations:

σ2(vi, ti; Θ) =
1

M

M∑
m=1

(
Fm(vi, ti; Θ)− F̄(vi, ti; Θ)

)2
(3)

Here, tokens with a variance σ2 exceeding a predefined
threshold β are retained, ensuring that only the most infor-
mative tokens are considered for cloud processing, as shown
in Eq. 4:

τ(σ2(vi, ti; Θ), β) =

{
1, if σ2(vi, ti; Θ) > β

0, otherwise
(4)

By implementing this two-stage approach, UTS signifi-
cantly reduces the volume of data required for uplink trans-

mission, thereby optimizing bandwidth usage and minimiz-
ing latency. The VIS, in particular, plays a critical role by
ensuring that the model’s enhancement is driven by data
points that are likely to contribute the most to its learning
progress, embodying the essence of targeted and efficient
learning within the CD-CCA framework.

3.3. Adapter-Based Knowledge Distillation (AKD)

The AKD strategy hones the capabilities of device-
deployed MLLMs by leveraging the computational abun-
dance of cloud resources. In this process, a high-capacity
teacher MLLM and a structurally identical student MLLM
coexist on the cloud, engaging in a targeted knowledge
transfer. This exchange is facilitated by adapters—auxiliary
linear layers that introduce minimal parameters to the model
while providing pathways for significant updates.

During the AKD phase, we focus on fine-tuning the
student model Mstudent to encapsulate the high-level mul-
timodal comprehension exhibited by the teacher model
Mteacher. Specifically, the adapters are employed to fine-
tune the query representations and the cross-attention out-
puts, which are critical for processing and integrating mul-
timodal information. These adapters act as targeted mod-
ification modules, aligning the student’s latent space with
the teacher’s refined feature space, effectively compressing
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the teacher’s extensive knowledge into the student’s more
concise structure.

This fine-grained distillation process is facilitated
through adapters that are strategically placed to intercept
and transform the query vectors and the attention-mediated
multimodal representations. By so doing, the adapters en-
able a direct knowledge flow from the teacher’s rich feature
space to the student’s corresponding layers, ensuring the re-
tention of critical multimodal insights.

The effectiveness of this adapter-based fine-tuning is
measured by a composite loss function, comprising:

Query Alignment Loss (Lquery): Minimizes the differ-
ence between the query representations of the student and
teacher models, thereby ensuring that the student can gen-
erate queries that encapsulate the complexity of the multi-
modal data as effectively as the teacher. Regularly, Q(t) ∈
RB×L×C and Q(s) ∈ RB×L×Cs denote the feature maps
of teacher and student queries respectively, and the Query
Alignment imitation can be fulfilled via:

Lquery =
1

BLC

∥∥∥Q(t) − ϕ(Q(s))
∥∥∥2
2
, (5)

where ϕ is a linear projection layer to adapt Q(s) to the same
channels as Q(t).

Representation Alignment Loss (Lrepr): Aims to syn-
chronize the attention-driven multimodal representations
between the student and teacher models, enhancing the stu-
dent’s ability to process and integrate multimodal cues.

Cross-Entropy Loss (LCE): Utilizes the teacher
model’s output on challenging multimodal instances, which
have been identified and transmitted via the uplink after
UTS, as pseudo-labels. These labels serve to calibrate the
student model’s parameter updates, enhancing its capacity
to address the complexities inherent in multimodal data.
The inclusion of UTS-selected instances ensures that the
student model focuses its learning on the data points that
are most indicative of its current limitations, thereby pro-
moting a more efficient and targeted learning process.

The distillation procedure optimizes a weighted sum of
these loss components, carefully calibrated to achieve a har-
monious balance between mimicking the teacher’s output
and maintaining the student’s intrinsic characteristics:

Ltotal = λqueryLquery + λreprLrepr + λCELCE (6)

By minimizing Ltotal, AKD ensures that the student
MLLM not only accurately reflects the teacher’s adeptness
in handling multimodal data but also remains agile and ef-
ficient, key for deployment within the resource-constrained
environments typical of device computing.

3.4. Dynamic Weight update Compression (DWC)

DWC forms an integral pillar of the CD-CCA frame-
work, addressing the transmission efficiency of model up-
dates from cloud to device. DWC specifically targets the

challenge of bandwidth constraints and latency in updat-
ing device-deployed MLLM by introducing a quantization-
based compression mechanism for model parameters.

DWC operates on the premise that efficient model up-
dates are not solely contingent on the volume of data trans-
mitted but also on the significance of the parameters up-
dated. This leads to the development of a quantization
scheme that selectively targets the parameters refined during
the AKD phase, optimizing the update payload for trans-
mission efficiency without compromising the model’s per-
formance integrity.

The DWC process can be formalized through the follow-
ing quantization operation:

Θcompressed = Quantize(Θupdated −Θbase,Q) (7)

Here, Θupdated represents the parameters post-AKD,
Θbase denotes the pre-update baseline parameters, and Q
is the quantization function that adaptively maps parame-
ters to a compact, lower-bit representation. This function is
meticulously calibrated to ensure that the most critical up-
dates are preserved, while the overall update size is reduced.

The quantization process strategically applies a higher
compression ratio to less impactful parameters, while pre-
serving the fidelity of more significant updates:

Θedge = Θbase +Θcompressed (8)

The edge device, upon receiving Θcompressed, integrates
these updates directly into the MLLM. This direct integra-
tion circumvents the need for dequantization, as the device
MLLM operates effectively within the quantized parameter
space, reflecting the nuanced enhancements learned through
cloud-based distillation.

DWC thus enables a practical and scalable approach to
model updating in device computing environments, where
transmission overhead is a critical concern. By facilitat-
ing smaller, yet impactful updates, DWC ensures that the
device-deployed MLLMs can continually evolve and adapt
to new data without the latency typically associated with
large-scale model retraining or full-model updates.

3.5. Collaborative Learning Strategy

The essence of CD-CCA resides in its Collaborative Learn-
ing Strategy, a synergistic approach that harmonizes the
model refinement process across cloud and device plat-
forms, shown in Algorithm 1. This strategy encapsulates
the concerted efforts of edge devices and cloud services
to perpetually enhance the MLLMs seamlessly and effi-
ciently. The optimization pivots on two key fronts: the edge
devices perform UTS to identify and forward challenging
multimodal instances to the cloud, while the cloud engages
in AKD and DWC to refine and compress the parameter
updates, respectively. The culmination of this process is
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Algorithm 1 Collaborative Learning in CD-CCA

1: Initialize edge model Medge with parameters Θedge
2: Deploy teacher model Mteacher and student model

Mstudent on cloud
3: Define UTS, AKD, and DWC procedures
4: repeat
5: Edge performs inference and UTS to identify high-

uncertainty instances
6: Transmit selected instances to cloud
7: Cloud performs AKD, utilizing Mteacher to refine

Mstudent
8: Compress updated parameters Θupdated using DWC

to obtain Θcompressed
9: Transmit Θcompressed back to device

10: Update Medge with Θcompressed
11: until convergence or a predefined number of cycles are

completed

the application of compressed updates to the device-side
MLLM, ensuring it remains adept and up-to-date with min-
imal transmission overhead. The Collaborative Learning
Strategy is a testament to the potential of CD-CCA in foster-
ing a dynamic learning environment where edge-deployed
MLLMs can thrive. By leveraging the strengths of both
cloud and device computing, it stands as a paradigmatic
shift towards more intelligent and adaptable multimodal in-
teractions in real-world applications.

4. Experiments
4.1. Experimental Setups

Datasets. To validate the persistent generalization ability
of our proposed CD-CCA for multimodal large language
model (MLLM) in the scenario of language domain-shifted
distribution, we conducted experiments based on two pairs
of datasets, VQA-v2 [10], A-OKVQA [11]. and COCO
Caption 2017 [12], Nocaps [13].
Evaluation Metrics. To demonstrate the MLLM’s persis-
tent generalization capability under the proposed CD-CCA
and other SOTA domain adaptation methods, VQA Accu-
racy, BLeU-4, and CIDEr scores are uniformly used as the
evaluation metrics. In addition, in real-world validations,
we further calculate the quantity of transmitted parameters
and data size in the uplink and downlink of CD-CCA, as
well as the Cloud-Device transfer delay (TD), respectively.
Implementation Details. In our experiments, we use
LLaMA-Adapter [33] with LLaMA2-13B [8] as the large
teacher MLLM on the cloud, and we employ LLaMA-
Adapter [33] with LLaMA2-7B [8] as the small student
MLLM (same as the device model). In addition, to fur-
ther reduce the quantity of device-side model parameters,

we reduce the student MLLM’s Q-former [34] hidden lay-
ers, from 12 to 6. The above MLLMs are first pre-trained
on large-scale image-text pairs: COYO [35], LAION [36],
CC3M [37], CC12M [38], SBU [39]. Then, they are further
tuned with 52K single-turn instruction data from GPT4-
LLM [40] and 567K captioning data from COCO Caption
[12]. For both cloud and device models, all the parameters
in LLaMA normalization layers, linear layer bias, LoRA
[41], and query tokens in Q-Former [34] are set to be up-
dated during finetuning with the remaining parameters kept
frozen. In the specific experiments, we further finetuned the
MLLMs on the corresponding datasets elaborated before.

4.2. Comparison Analysis

In this subsection, we conduct comparison experiments be-
tween our CD-CCA and the existing SOTA domain adap-
tation methods [4, 5, 42, 43].Tent[4] updates the trainable
parameters in the Batchnorm layer to adapt to the test data
by minimizing entropy. Cotta[5] employs weight-averaged
and augmentation-averaged predictions to reduce the accu-
mulation of errors in pseudo-labeling and utilizes stochasti-
cally restore to prevent the issue of catastrophic forgetting.
PKD[42] utilizes feature imitation based on the Pearson
Correlation Coefficient, relaxing constraints on the magni-
tude of the features while focusing on the relationship in-
formation from the teacher. ChannelWiseDivergence[43]
normalizes the activation maps of each channel, yielding
soft probability maps for the two networks, and minimizes
the Kullback-Leibler divergence between the channel prob-
ability maps. All the experiments are carried out using
LLaMA-Adapter [33] as the underlying MLLM. First, to
verify the persistent generalization ability of our proposed
CD-CCA under the condition of language domain-shifted
distribution, we use the VQAv2-to-AOKVQA datasets for
evaluation. Specifically, we adopt VQA-v2 [10] to fine-
tune the pre-trained MLLM, LLaMA-Adapter (7B & 13B).
Then, the VQA accuracy results on A-OKVQA [11] un-
der different conditions (multiple choices (MC) & direct
answers (DA)) are evaluated and recorded in Table 1 and

Figure 3. Comparative analysis of CD-CCA and source-only
method. The MC and DA accuracy are evaluated over five rounds.
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Table 1. Persistent generalization capability on VQAv2-to-AOKVQA. Visual question-answering results are evaluated on the VQAv2-
to-AOKVQA online continual adaptation task. MC and DA are VQA accuracy (%) calculated following [11] under different conditions
(multiple choices and direct answers). Gain (%) refers to the accuracy improvement compared with the source-only method.

Time t
Round 1st 2nd 3rd All
Condition MC DA MC DA MC DA MeanMC MeanDA GainMC GainDA

Source-only [33] 47.95 45.55 47.95 45.55 47.95 45.55 47.95 45.55 / /
TENT-continual [4] 47.42 45.17 48.12 45.52 47.34 44.86 47.63 45.18 -0.32 -0.37
CoTTA [5] 47.77 45.02 47.77 45.30 48.30 45.02 47.95 45.11 +0.00 -0.44
PKD [42] 48.21 45.05 48.73 45.24 47.77 45.24 48.23 45.18 +0.28 -0.37
ChannelWiseDivergence [43] 48.03 44.78 48.21 44.65 48.47 44.93 48.24 44.79 +0.29 -0.76
Ours (CD-CCA) 50.65 48.80 51.79 48.37 53.19 49.05 51.88 48.74 +3.93 +3.19

Table 2. Persistent generalization capability on COCO-to-nocaps. Image captioning results are evaluated on the COCO-to-nocaps
online continual adaptation task. BLeU@4, CIDEr scores (%) are calculated following [12] under different conditions (in-domain, near-
domain, out-domain, etc.). Gain (%) refers to the improvement compared with the source-only method.

Condition In-domain Near-domain Out-domain All Gain
Score BLeU CIDEr BLeU CIDEr BLeU CIDEr BLeU CIDEr BLeU CIDEr
Source-only [33] 39.55 72.33 39.72 77.32 31.20 76.95 36.82 75.53 / /
TENT-continual [4] 39.92 71.81 39.60 74.49 30.28 72.69 36.60 73.00 -0.22 -2.53
CoTTA [5] 40.12 73.87 40.08 76.52 30.04 74.19 36.74 74.86 -0.08 -1.34
PKD [42] 39.43 73.67 39.46 76.33 31.12 76.88 36.67 75.63 -0.15 +0.10
ChannelWiseDivergence [43] 39.03 73.82 39.10 75.87 30.15 75.77 36.18 75.15 -0.64 -0.38
Ours (CD-CCA) 41.34 74.47 40.67 77.78 33.04 80.93 38.35 77.73 +1.53 +2.20

Figure 3. In the VQA task, our CD-CCA framework of 1-
round scenario has already surpassed the highest accuracy
of the comparative models both in MC and DA questions.
Notably, we observe that previous methods sometimes lead
to performance deterioration. We attribute this to the fact
that most of the previous methods were not specifically de-
signed for MLLM, as the model parameter size increases,
methods like CoTTA and Tent tend to exhibit a decrease
in performance. In contrast, our approach is specifically
designed for MLLM, as shown in Table 2, our accuracy
is higher by 3.64% (MC) and 3.19% (DA) compared to

Q：Where is the pie most likely shown?

Source-only: Cafeteria. CD-CCA: Restaurant.

Q：What is reflected in the ball?

Source-only: Goat. CD-CCA: Person.

Figure 4. Visual results of CD-CCA. The figure demonstrates
the improvement in visual reasoning of device-deployed MLLM
facilitated by CD-CCA. ’Source-only’ refers to MLLM deployed
on the device side without undergoing Cloud-Device Learning.

the best-performing comparative model on average. This
strongly demonstrates that our framework can maintain a
high level of accuracy when faced with constantly changing
data distributions. Figure 4 visually illustrates the exper-
imental results on multimodal comprehension of our pro-
posed framework.

Second, we use the COCO-to-nocaps datasets for further
evaluation. We finetune the pre-trained LLaMA-Adapter
(7B & 13B) on the COCO Captions 2017 dataset [12].
Then, the visual caption results (BLeU@4, CIDEr) on no-
caps [13] are evaluated and recorded in Table 2. Based
on the overlap of the training-test image categories, follow-
ing reference [13], the test images are categorized into in-
domain, near-domain, and out-domain cases.

In the image caption task, our framework significantly
outperforms the best comparative methods in all cases. In
the In-domain and Near-domain tasks, our framework sur-
passes the best comparative method by 1.22% and 0.59%
(BLeU), 0.6%, and 0.46% (CIDEr) respectively. In the out-
domain task, our CD-CCA’s superiority is even more pro-
nounced, with 1.84% (BLeU) and 3.98 %(CIDEr). This
reflects the strong generalization ability of our CD-CCA
framework, which can effectively help the model extract in-
trinsic knowledge from images and understand them when
transferring to new tasks. Moreover, the experimental re-
sults in Table 2 reaffirm that previous methods sometimes
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do not apply to MLLM, while our CD-CCA consistently
improves performance. This further reflects the effective-
ness of our method specifically designed for MLLM.

Table 3. Ablation studies. We conduct experiments on VQAv2-
to-AOKVQA. PL refers to Pseudo Labels. UTS-1 and UTS-2 rep-
resent the first and second stage in UTS, respectively.

PL AKD UTS-1 UTS-2 MC DA GainMC GainDA

47.95 45.55 / /
✓ 50.48 48.89 2.53 3.34
✓ ✓ 50.39 49.05 2.44 3.50
✓ ✓ ✓ 50.82 48.93 2.87 3.38
✓ ✓ ✓ ✓ 53.19 49.05 5.24 3.50

Table 4. Performance (MC/DA) comparison in UTS (Token-
Level). We report VQA score (MC/DA) using different token
sampling strategies. Optimal performance is obtained using the
uncertainty token guided sampling (UTS) strategy in CD-CCA.

25% 50% 75%
MC DA MC DA MC DA

Random 50.74 49.46 50.13 48.40 50.91 49.09
UTS 52.49 48.92 53.19 49.05 53.19 48.96
Gain +1.75 -0.54 +3.06 +0.65 +2.28 -0.13

4.3. Ablation Studies

In this section, we meticulously dissected the proposed CD-
CCA framework and its performance across various test
scenarios. To gain granular insights into the individual con-
tributions of various components to the framework’s effi-
cacy, we systematically dismantle key components.

Effectiveness of UTS strategy. Our UTS strategy ef-
fectively reduces transmission costs while maintaining per-
formance, as shown in Table 5, we achieve the same per-
formance with only 0.21% in transmission data volume and
0.20% in transfer latency compared to transmitting the en-
tire dataset. To further validate the effectiveness of UTS,
we explore VQA results at different mask ratios, as shown
in Table 4. The model performs best when the mask ratio is
set at 50%. Specifically, we achieved a notable increase of
3.06% in the accuracy of MC and a 0.65% increase in the
accuracy of DA. Furthermore, we also investigate the effec-
tiveness of each stage in UTS, as shown in Table 3, and the
results indicate that each stage of UTS contributes to im-
proving the performance of the model. When both stages
are used in conjunction, there is a significant improvement
of 5.24% and 3.50% in the MC and DA problems.

Effectiveness of Cloud-device joint optimization with
AKD. our proposed AKD strategy utilizes adapters for
targeted knowledge transfer between teacher and student
models, enhancing the generalization ability of the stu-
dent model. As shown in Table 3, compared to the pure
pseudo-labeling method, AKD improves performance by

2.53% (MC) and 3.34% (DA) in VQA tasks, while combin-
ing AKD with other modules further enhances performance
steadily. The model parameters obtained after AKD are fur-
ther quantitatively compressed through the DWC method.

Effectiveness of DWC. The DWC strategy in the cloud
aims to quantitatively compress model parameters, ensuring
that only the most effective parameters are updated on the
device. This alleviates the performance burden on the de-
vice and effectively reduces the amount of data transmitted
to the device during downlink. Here, we utilize the widely
adopted 4-bit NormalFloat quantization, QLora [44], as the
basic quantization function. As shown in Table 5, compared
to no processing, our approach significantly reduces the
weight parameter quantity, data quantity, and transmission
latency of the model transmitted to the device, by 99.98%,
99.99%, and 99.98% respectively. This effectively guaran-
tees real-time updates of device parameters.

Table 5. Validation of transmission parameters in real ma-
chine. We report a quantitative analysis of bidirectional trans-
mission parameters size (P), transmission data volume (D), and
transfer latency (TL) in a real-world robot system. Uplink param-
eters are calculated with a five-frame input.

P D TL
Uplink / 31.10 MB 0.498s
Uplink-UTS / 65.54 KB 0.001s
Downlink 7.78B 14.48 GB 65.490s
Downlink-DWC 1.65M 0.791 MB 0.013s

4.4. Real-world Validations

We utilized Gigabit Ethernet as the actual network environ-
ment with a theoretical peak of 1000Mbps, adhering to the
802.11ac (Wi-Fi 5) standard. We employed the Realsense
D435i as the image capture device on the device, collect-
ing images at a resolution of 1920×1080. The effectiveness
of our CD-CCA was further validated through experiments
on a real machine, as shown in Table 5, which includes the
bidirectional transmission parameters size (P), transmission
data volume (D), and transfer latency (TL).

5. Conclusion
We propose CD-CCA to empower device models in
dynamic environments. Experimental results in the open-
world scenario demonstrate performance improvements
of 2.20% (CIDEr) and 3.93% (MC), 3.19% (DA) in the
domain-shifted captioning and VQA tasks. Furthermore,
real-world experiments have shown that the system delay
of CD-CCA is able to support practical applications.
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