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Abstract

Concealed Object Detection (COD) aims to identify ob-
jects visually embedded in their background. Existing COD
datasets and methods predominantly focus on animals or
humans, ignoring the agricultural domain, which often con-
tains numerous, small, and concealed crops with severe
occlusions. In this paper, we introduce Concealed Crop
Detection (CCD), which extends classic COD to agricul-
tural domains. Experimental study shows that unimodal
data provides insufficient information for CCD. To address
this gap, we first collect a large-scale RGB-D dataset,
ACOD-12K, containing high-resolution crop images and
depth maps. Then, we propose a foundational framework
named Recurrent Iterative Segmentation Network (RISNet).
To tackle the challenge of dense objects, we employ multi-
scale receptive fields to capture objects of varying sizes,
thus enhancing the detection performance for dense ob-
jects. By fusing depth features, our method can acquire
spatial information about concealed objects to mitigate dis-
turbances caused by intricate backgrounds and occlusions.
Furthermore, our model adopts a multi-stage iterative ap-
proach, using predictions from each stage as gate atten-
tion to reinforce position information, thereby improving
the detection accuracy for small objects. Extensive exper-
imental results demonstrate that our RISNet achieves new
state-of-the-art performance on both newly proposed CCD
and classic COD tasks. All resources will be available at
https://github.com/Kki2Eve/RISNet.

1. Introduction
With the advancement of smart agriculture, there is a

growing interest in integrating computer vision with agri-
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Figure 1. Results of FSPNet [28] and our RISNet for CCD. It is
evident that our method is better equipped to tackle the challenges
posed by severe occlusion and densely distributed small objects,
resulting in superior performance.

culture [32]. Driven by economic demands, high-density
planting of crops is becoming inevitable in agricultural pro-
duction processes. Consequently, the analysis and under-
standing of dense scenes in agricultural vision problems
[2, 4, 21, 33, 66] assume heightened significance. In these
dense agricultural scenes, numerous small crops are con-
cealed in the surrounding environment, causing significant
interference in monitoring production [14].

Existing COD methodologies [13, 14, 22, 26, 28, 29,
31, 36, 42, 49, 51, 57, 65, 69, 75] primarily emphasize an-
imal camouflage strategies, while CCD shifts its focus to
densely packed small objects heavily occluded within com-
plex scenes. As illustrated in Fig. 1, the state-of-the-art
COD method can only generate inaccurate prediction maps
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(Col 1 and 3) and even fails to detect concealed objects (Col
2). This issue stems from the fact that objects in CCD do
not employ the same camouflage strategy as animals. COD
methods struggle to mitigate interference from occlusion
and effectively capture visual features related to the densely
packed small objects in complex environments.

In this paper, we introduce a new benchmark named
Concealed Crop Detection (CCD), designed for identifying
concealed objects in dense agricultural scenes. We observe
that unimodal information lacks the capacity to discern sub-
tle distinctions between objects and backgrounds. To over-
come this limitation, we integrate depth maps to supple-
ment spatial information absent in RGB data. The geomet-
ric priors from depth maps effectively mitigate interference
caused by noise, thereby enhancing CCD performance.

To facilitate research on CCD, we have curated an ex-
tensive RGB-D dataset, ACOD-12K. Leveraging the ZED2i
depth camera during fieldwork, we capture 6092 images of
concealed objects within dense agricultural scenes, simulta-
neously recording corresponding depth images. As shown
in Tab. 1, in comparison to the existing COD datasets,
ACOD-12K exhibits several advantages:
• ACOD-12K is the sole existing multi-modal COD dataset.
• ACOD-12K is the largest-scale COD dataset with the

highest image resolution among the existing datasets.
• ACOD-12K boasts a higher object density, with these ob-

jects situated in diverse scenes and distributed randomly
across different positions within the images.

• In contrast to the current COD datasets, ACOD-12K fo-
cuses on the distinctive challenges presented by con-
cealed objects in dense agricultural scenes.
CCD primarily faces four key challenges. Firstly, CCD

scenes involve dense objects, where multiple objects of the
same category are distributed across the image at varying
distances, resulting in varying sizes for identical objects.
Secondly, the challenge of intricate backgrounds arises, as
objects closely resemble the background, creating a high
level of background noise. Thirdly, severe occlusion com-
pounds the complexity, as objects are concealed not only by
intricate backgrounds but also by mutual occlusions among
themselves. Lastly, small objects significantly increase the
difficulty of precise detection.

To tackle these challenges, we introduce RISNet, a base-
line method designed specifically for the CCD task. RISNet
utilizes multi-scale, multi-modal, and multi-iteration ap-
proaches to discern subtle distinctions between objects and
backgrounds, yielding robust detection outcomes. Specifi-
cally, we leverage multi-scale receptive fields to capture fea-
ture information of different-sized concealed objects, effec-
tively addressing the challenges associated with dense ob-
jects. To handle complex backgrounds and occlusions, we
incorporate depth data to enhance RGB information, pro-
viding crucial spatial context and emphasizing discrimina-

tive details. To address small objects, we employ a multi-
iteration approach. We use detection results from the pre-
ceding iteration as gate attention to learn the position in-
formation of small objects, iteratively refining the detection
results. Experiments show that RISNet outperforms all con-
sidered algorithms, demonstrating its effectiveness on CCD.

In summary, our contributions are listed as follows:
• We introduce a benchmark of Concealed Crop Detection

(CCD), extending COD into agriculture and making COD
more flexible and practical in real-world scenarios.

• To advance research on CCD, we introduce a new large-
scale RGB-D dataset ACOD-12K, which is the first multi-
modal dataset on COD tasks.

• We propose a new baseline framework, RISNet, which
achieves new state-of-the-art performance on both classic
COD and newly proposed CCD tasks.

2. Related Work
Concealed Object Detection. Concealed object detec-
tion(COD) aims to identify objects that closely blend with
the background, relying on subtle distinctions. To tackle
this challenge, researchers have explored various method-
ologies. In the early stages of research, the prevalent
approach involved manually crafted artificial features for
COD [23, 46, 48]. However, these methods exhibit lim-
ited robustness, heavily relying on specific handcrafted fea-
ture information, making them susceptible to complex sce-
narios. With the advent of large-scale datasets in COD
[13, 34], deep learning methods have surpassed traditional
handcrafted feature-based approaches. These methods fall
into three categories. The first category involves biomimetic
networks. [13] drew inspiration from animal hunting pro-
cesses, employing a progressive search and recognition ap-
proach to uncover concealed objects. [49] mimicked human
behavior by zooming in and out to extract visual informa-
tion. The second category focuses on intricately designed
network architectures. [42] modeled concealment levels,
contributing to a deeper understanding of visual informa-
tion. [65] leveraged Bayesian distributions and attention
mechanisms to handle uncertainty, enhancing concealed ob-
ject detection. The third category introduces additional
information to boost performance. [36] introduced joint
training of SOD and COD, utilizing conflicting information
to improve model performance. [22, 51, 75] incorporated
edge information, elevating the precision of concealed ob-
ject localization. Unlike animals in classic COD employ-
ing various camouflage strategies for active concealment,
dense agricultural scenes primarily involve the passive con-
cealment of densely distributed small objects with complex
backgrounds and severe occlusions. Existing COD mod-
els face limitations in addressing these challenges in new
scenes, stemming from different kinds of objects [16, 30].
Concealed Object Detection Datasets. There are currently
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Figure 2. Example images from the proposed ACOD-12K. The concealed objects increase gradually from the left to the right column.

four existing COD datasets: CHAMELEMON [50], CAMO
[34], COD10K [13] and NC4K [42]. CHAMELEMON [50]
is an unreleased dataset comprising 76 concealed images
downloaded from the internet. CAMO [34] consists of 1250
concealed images across eight categories in both natural and
artificial scenes, with 1000 images allocated for the train-
ing set and 250 for the testing set. COD10K [13] is the
largest and most challenging COD dataset, featuring 5066
concealed images spanning 69 categories. Among these,
3040 images are designated for training, while 2026 are re-
served for testing. NC4K [42] serves as a comprehensive
COD test set, comprising 4121 images designed to thor-
oughly assess the generalization capabilities of COD mod-
els. As mentioned in [14], in the early stages of crop growth,
many fruits share a visual similarity with green leaves, com-
plicating production monitoring for farmers. The absence
of relevant concealed object datasets in dense agricultural
scenes hinders existing models from achieving optimal de-
tection results. The proposal of ACOD-12K addresses this
limitation, aiming to advance COD research.
Dense Scenes. In computer vision, dense scenes often pose
various challenging problems. One prominent task in dense
scene visual analysis is counting, which includes exten-
sively studied areas like crowd counting [5, 20, 27, 37–
39, 43, 56, 64, 71], as well as specialized tasks such as ve-
hicle counting [24, 47], penguin counting [3], plant count-
ing [41], and cell counting [1]. Unlike counting, detec-
tion tasks in dense scenes are relatively uncommon. For
instance, [63] introduced DOTA, a large-scale aerial image
dataset tailored for object detection, with regions featuring a
high concentration of instances, significantly amplifying the
detection challenge. Similarly, [19] focused on precise ob-

Dataset Year Img Avg.Res.
Free

Mul.
Object Statistics

Link
View Total Min Avg Max

CHAMELEON[50] 2018 76 742 × 981 % % 79 1 1 3 N/A
CAMO[34] 2019 1250 509 × 653 ! % 1368 1 1 7 Link
COD10K[13] 2020 5066 737 × 964 ! % 5899 1 1 8 Link
NC4K[42] 2021 4121 530 × 709 ! % 4584 1 1 8 Link
ACOD-12K(Ours) 2023 6092 1080 × 1920 ! ! 71417 1 11 412 Link

Table 1. Statistics of related datasets. “Avg.Res.” indicates aver-
age resolution and “Mul.” stands for multimodality.

ject detection in artificially dense scenes, introducing SKU-
110K, a novel dataset designed for retail-dense scenarios.
Due to high background noise and severe occlusions, dense
agricultural scenes present greater challenges than typical
dense scenes. According to [18], single-modal RGB data
is susceptible to environmental interference. Thus, we cap-
ture RGB-D data to leverage multi-modal information, en-
hancing the model’s comprehension of dense agricultural
settings and improving CCD performance.

3. Proposed Dataset
3.1. Image Collection

CCD encounters challenges in dense agricultural scenes,
including dense objects (DO), complex backgrounds (CB),
occlusions (OC) and small objects (SO). Due to the scarcity
of suitable datasets, existing COD methods fail to deliver
competitive results in such agricultural environments. To
facilitate research on CCD, we conducted fieldwork and
generated a comprehensive RGB-D dataset, ACOD-12K,
the co-distribution of challenges is shown in Fig. 3.
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In summary, we meticulously recorded 128 high-quality
videos of varying durations across multiple orchards and
farms using the ZED2i depth camera. Drawing from the
significance of high-resolution priors in object edge and
boundary detection, as highlighted in [55, 70], we main-
tained dataset effectiveness by capturing images at 1080 ×
1920 resolution during the filming. After acquiring the
videos, we preprocessed them to extract both RGB images
and depth maps from the left camera’s perspective. To cu-
rate a representative dataset, we selected one image for ev-
ery 90 frames. Subsequently, we implemented a multi-stage
filtering process to guarantee that each chosen image fea-
tured concealed objects in the foreground and had a clear
and usable depth map. This filtering process consisted of
three rounds: in the initial round, five researchers conducted
the primary selection. Subsequently, two experts conducted
a detailed review to eliminate any unsuitable images. Fi-
nally, a third round of selection, performed by a profes-
sional, concluded the entire dataset cleaning process. Our
dataset now comprises 6092 RGB images, each paired with
a corresponding depth map. See Fig. 2 for example images.

3.2. Image Annotation

Our data annotation process aims to provide mask an-
notations for all concealed objects in the images. Follow-
ing [13], we adopt a multi-stage annotation method, i.e.,
category → bounding box → mask. This ensures the pre-
cision and comprehensiveness of data labeling.

The annotation process consists of five steps. Initially,
700 images are selected, and three researchers annotate con-
cealed objects in these images using bounding boxes to fa-
miliarize themselves with the process. Once these 700 im-
ages receive satisfactory annotations, the process advances
to the next step. The entire dataset is then divided into three
parts, with each researcher responsible for annotating one
part. Following this, the researchers exchange their respec-
tive dataset portions, conduct a thorough review, and dis-
cuss any challenging annotations. Subsequently, a profes-
sional annotation company adds mask annotations to the
dataset, building upon the existing bounding box annota-
tions. In the final step, researchers perform a comprehensive
review, rectifying any missed or inadequate annotations.

3.3. Dataset Information

ACOD-12K comprises 6092 images showcasing con-
cealed agricultural objects spanning ten categories. We al-
locate 4600 images for training and reserve 1492 for testing.
Notably, ACOD-12K is a groundbreaking RGB-D COD
dataset, setting new standards for challenging datasets in
the field. All images in our dataset are of high resolution,
measuring 1080 × 1920 pixels, with over 82% containing
small objects. Within our dataset, detection difficulty corre-
lates with object-background similarity and density. For in-

Figure 3. Left: Co-distribution of challenges in ACOD-12K,
with numbers indicating total images per grid. Right: Multi-
dependencies among challenges, with arc length indicates corre-
lation probability.

stance, watermelons, cucumbers, and zucchinis are straight-
forward, while peppers and plums pose challenges.

4. Methodology

4.1. Overview

The holistic structure of our RISNet is depicted in Fig. 4.
Given an input image and its corresponding depth map,
we utilize the Concealed Feature Encoder (CFE) to ex-
tract multi-level feature information. To comprehensively
capture information about dense objects, we integrate the
Atrous Spatial Pyramid Pooling (ASPP) module [8], lever-
aging multi-scale receptive fields for detecting objects of
varying sizes. The feature map is then fed into the Depth-
Guided Feature Decoder (DFD). During this stage, RGB
features are merged with depth features and passed through
the cascaded residual decoder. This cascade decoder allevi-
ates background and occlusion interference, enhancing the
model’s detection capacity for dense objects. For improved
small object detection, we employ the Iterative Feature Re-
fine (IFR) approach, using the results from the previous de-
tection stage as gate attention to help the model accurately
identify the features of small objects. In this paper, the num-
ber of model iterations is set to 3.

4.2. Concealed Feature Encoder

Following the success of the Transformer [53] in NLP,
researchers are increasingly exploring their adaptation for
computer vision tasks [10]. Similar to HitNet [26], we
utilize the Pyramid Vision Transformer (PVT) [58] as the
feature encoder. Initially, we convert the depth map into
a three-channel image using a basic gray color mapping.
For input images fr, fd ∈ RB×3×H×W , following [17],
we concatenate the RGB map fr and depth map fd along
the batch dimension. This ensures the model focuses on
the shared regions of interest in both the RGB and depth
modalities. Then we pass them through the base encoder,
resulting in the feature set{fk}4k=1 ∈ R2B×3× H

2k+1 × W

2k+1 .
In dense agricultural scenes, multiple objects are dis-
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Figure 4. Overview of the proposed RISNet. Given input images fr and depth images fd, CFE is utilized to extract object features across
multiple scales. DFD consists of MFF and RFD, during the feature decoding stage, MFF is employed to deeply integrate features from
both modalities, followed by the progressive fusion of decoded features using RFD, from top to bottom, to yield a preliminary prediction
Ci for the input image. IFR further enhances feature recognition iteratively by backpropagating the coarse prediction Ci. After multiple
iterations, the final prediction image P is derived. Refer to §4 for more details.

tributed randomly across various locations within the im-
age, resulting in these objects appearing in varying sizes.
Due to occlusions between objects and between objects and
the background, objects of the same category may exhibit
different shapes, introducing substantial interference with
our predictions. Different from HitNet [26], to comprehen-
sively gather information from objects located at diverse
positions within the image, we leverage the ASPP [8] ar-
chitecture after obtaining multi-level features. With ASPP,
we perform sampling on different levels of feature infor-
mation using dilated convolutions with varying sampling
rates. This effectively allows us to leverage multi-scale
receptive fields to capture information from the input fea-
tures at different scales and perceive contextual information
at various proportions, ultimately yielding the feature set
{fk}4k=1 ∈ R2B×C× H

2k+1 × W

2k+1 .

4.3. Depth-Guided Feature Decoder

4.3.1 Multi-modal Feature Fusion

In dense agricultural scenes, complex background noise
and significant occlusion are unavoidable challenges. To at-
tain precise detection results, it is crucial to alleviate these
disturbances. The advancement of depth cameras has made
it more cost-effective to access depth images, which pro-
vide essential geometric prior knowledge to help models ef-
fectively understand complex scenes. To combine features
from both modalities, we devise a Multi-modal Feature Fu-
sion (MFF) module. As illustrated in Fig. 4, we separate
the extracted features {fk}4k=1 along the batch dimension,
reverting them to RGB features {fr

k}4k=1 and depth features
{fd

k}4k=1. We observe that a mere concatenation along the
channel dimension would lead to a model bias towards the

RGB modality, which runs counter to our fusion objectives.
Following [17], we use element-wise addition to explore
complementarity of fr

k and fd
k , and element-wise multipli-

cation to explore commonality of fr
k and fd

k :

ff ′

k = fr
k ⊕ fd

k ⊕
(
fr
k ⊗ fd

k

)
, (1)

where⊕ denotes element-wise addition, ⊗ denotes element-
wise multiplication. After obtaining the preliminary fused
feature {ff ′

k }4k=1, we employ a dual attention mechanism
[59] that encompasses both channel and spatial domains to
further integrate noteworthy features. Consequently, the fi-
nal fused feature {ff

k }4k=1 is represented as:

ff
k = (ff ′

k ⊗ CA(ff ′

k ))⊗ SA(ff ′

k ⊗ CA(ff ′

k )), (2)

where CA(·) denotes channel attention module, SA(·) de-
notes spatial attention module.

4.3.2 Residual Feature Decoder

In CNN decoding, each feature channel is convention-
ally treated uniformly, but their importance varies across
tasks. According to [25], explicitly modeling the interde-
pendencies between feature channels enhances the repre-
sentational capacity of the network. Inspired by [72], we
integrate the Residual In Residual (RIR) structure into the
decoding process. To capture subtle visual features for
object-background discrimination, we directly propagate
low-frequency information through long skip connections.
Additionally, we employ residual channel attention to dy-
namically allocate channel weights, emphasizing the most
relevant features. To tackle dense object challenges, we im-
plement a multi-level cascaded decoder. Each decoder level
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focuses on different object scales, with higher-level decoder
outputs serving as auxiliary features for lower-level de-
coders, enhancing the perception of dense objects. Specifi-
cally, our residual cascaded decoder is designed as follows:

fo
3 = g4 ⊕ Conv3(RCA(g4)),

fo
2 = g3 ⊕ Conv3(RCA(Con(g3, f

o
3 )),

fo
1 = g2 ⊕ Conv3(RCA(Con(g2, f

o
2 )),

Ci = Up(Conv1(CBR(fo
1 )),

(3)

where {gk}4k=2 represents the outputs of the guidance-
based gated attenion module, {fo

k}3k=1 denotes the decoder
outputs, RCA(·) refers to the residual channel attention
module, Con(·) signifies channel concatenation, Conv3(·) is
a 3×3 convolution, Conv1(·) is a 1×1 convolution, CBR(·)
indicates stacked “Conv-BN-ReLU” layers, Up(·) denotes
upsampling, and {Ci}3i=1 represents the coarse prediction
maps generated by the model.

4.4. Iterative Feature Refinement

4.4.1 Guidance-based Gated Attenion

Deep network architectures tend to amalgamate various
types of information, such as color, shape, and texture, dur-
ing the prediction process. This blending of diverse infor-
mation can potentially cause the model to overlook specific
object details, thereby impairing its capacity to discern vital
features [52], especially when dealing with small objects.
For more effective small object detection, we implement a
Guidance-based Gated Attention (GGA) module to learn lo-
cation information specific to these objects:

gk = Conv1(ff
k ⊗ (σ(GA(Con(ff

k , Ci)))⊕ 1)), (4)

where GA(·) refers to “BN-Conv-Relu-Conv-BN” layers,
and σ denotes the sigmoid function.

4.4.2 Iterative Refinement Mechanism

When observing small objects in images, humans often
start by roughly determining their position and then itera-
tively refine the details, resulting in a comprehensive ob-
servation. Drawing inspiration from this human observa-
tion strategy, we incorporate an iterative mechanism to en-
hance the model’s detection of small objects. After obtain-
ing the coarse prediction map Ci, we propagate it backward
through the network, utilizing GGA to pinpoint the loca-
tion information of small objects. This assists the model
in focusing on the feature information within the object re-
gion. This process is iteratively performed to acquire a more
accurate coarse detection map. Given that lower-level fea-
tures contain finer details, we fuse the bottom-level feature
f1 with the final coarse prediction map C3 to obtain the ul-
timate fusion result, denoted as P:

P = FAF (Con(ff
1 , C3)), (5)

Model Publications
ACOD-12K

Sα ↑ Fω
β ↑ Eθ ↑

Concealed Object Detection

SINet[13] CVPR20 0.745 0.474 0.826
MGL[67] CVPR21 0.808 0.685 0.872
PFNet[45] CVPR21 0.805 0.685 0.942
UGTR[65] ICCV21 0.798 0.632 0.858
SINet-V2[14] TPAMI22 0.804 0.691 0.947
C2FNet[7] TCSVT22 0.833 0.746 0.947
PreyNet[69] MM22 0.832 0.760 0.937
SegMaR[31] CVPR22 0.799 0.677 0.930
ZoomNet[49] CVPR22 0.832 0.747 0.934
DaCOD[57] MM23 0.803 0.705 0.910
PopNet[61] ICCV23 0.844 0.778 0.955
HitNet[26] AAAI23 0.853 0.787 0.955
FSPNet[28] CVPR23 0.719 0.526 0.819

RGB-D Salient Object Detection

CLNet[68] ICCV21 0.826 0.747 0.936
SPNet[74] ICCV21 0.818 0.731 0.949
DCMF[54] TIP22 0.779 0.631 0.872
HINet[6] PR22 0.776 0.651 0.853
SPSN[35] ECCV22 0.834 0.739 0.930
CIRNet[9] TIP22 0.794 0.675 0.865
HIDANet[60] TIP23 0.822 0.734 0.950
XMSNet[62] MM23 0.844 0.754 0.961

Ours 0.866 0.803 0.967

Table 2. Quantitative comparisons of different methods on CCD
task. The best three results are highlighted in red, blue and green.

where FAF(·) denotes the Feature Adaptive Fusion module,
comprising the ASPP module and convolution operations.
FAF is designed for the multi-scale fusion of low-level se-
mantic information to enhance detection results.

4.5. Loss Function

The loss function of our RISNet primarily consists of the
loss from the coarse prediction maps {Ci}3i=1 and the loss
from the final prediction map P . According to [14], to bet-
ter detect challenging pixels, we employ weighted binary
cross-entropy loss Lω

BCE and weighted intersection-over-
union loss Lω

IoU to supervise the prediction results, so our
detection loss Ld = Lω

BCE +Lω
IoU . Following [26], we ap-

ply different weights to supervise its coarse prediction maps
at different iterative stages. Overall, given weight parame-
ters γ, our total loss function is formulated as:

Ltotal = Ld(P,GT ) +

3∑
i=2

(γ × i)(Ld(Ci, GT )), (6)
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Image GT Ours FSPNet HitNet XMSNet PopNet

Figure 5. Visual comparisons with recent COD and RGB-D SOD methods on different types of samples. Please zoom in for more details.

Model Publications CAMO COD10K NC4K
Sα ↑ Fω

β ↑ Eθ ↑ M ↓ Sα ↑ Fω
β ↑ Eθ ↑ M ↓ Sα ↑ Fω

β ↑ Eθ ↑ M ↓

SINet[13] CVPR20 0.745 0.644 0.804 0.092 0.776 0.631 0.864 0.043 0.808 0.723 0.871 0.058
LSR[42] CVPR21 0.787 0.696 0.838 0.080 0.804 0.673 0.880 0.037 0.840 0.766 0.895 0.048
R-MGL[67] CVPR21 0.775 0.673 0.812 0.088 0.814 0.666 0.852 0.035 0.833 0.740 0.867 0.052
JSCOD[36] CVPR21 0.800 0.728 0.859 0.073 0.809 0.684 0.884 0.035 0.842 0.771 0.898 0.047
PFNet[45] CVPR21 0.782 0.695 0.841 0.085 0.800 0.660 0.877 0.040 0.829 0.745 0.887 0.053
ZoomNet[49] CVPR22 0.820 0.752 0.877 0.066 0.838 0.729 0.888 0.029 0.853 0.784 0.896 0.043
FDNet[73] CVPR22 0.841 0.775 0.895 0.063 0.840 0.729 0.919 0.030 0.834 0.750 0.893 0.052
SegMaR[31] CVPR22 0.815 0.753 0.874 0.071 0.833 0.724 0.899 0.034 0.841 0.781 0.896 0.046
DGNet[29] MIR23 0.839 0.769 0.901 0.057 0.822 0.693 0.896 0.033 0.857 0.784 0.911 0.042
PopNet[61] ICCV23 0.808 0.744 0.859 0.077 0.851 0.757 0.910 0.028 0.861 0.802 0.910 0.042
DaCOD[57] MM23 0.855 0.796 0.905 0.051 0.840 0.729 0.907 0.028 0.874 0.814 0.924 0.035
HitNet[26] AAAI23 0.844 0.801 0.902 0.057 0.868 0.798 0.932 0.024 0.870 0.825 0.921 0.039
FEDER[22] CVPR23 0.822 0.738 0.886 0.067 0.851 0.716 0.917 0.028 0.863 0.789 0.917 0.042
FSPNet[28] CVPR23 0.856 0.799 0.899 0.050 0.851 0.735 0.895 0.026 0.879 0.816 0.915 0.035

Ours 0.870 0.827 0.922 0.050 0.873 0.799 0.931 0.025 0.882 0.834 0.925 0.037

Table 3. Detailed comparison results of different methods on COD task. The best three results are highlighted in red, blue and green.

5. Experiment

5.1. Experimental Settings

Evaluation metrics. Traditional COD tasks typically use
four evaluation metrics, which include mean absolute er-
ror M , weighted F-measure Fω

β [44], mean E-measure Eθ

[12] [15], and structure measure Sα [11]. However, the spe-
cific challenges in dense agricultural scenes, characterized
by predominantly small objects, diminish the suitability of

M . Even in the absence of many object pixels within high-
resolution images, M has a limited impact, thereby reduc-
ing its effectiveness as an evaluation metric for CCD. Con-
sequently, in experiments, we exclusive the M measure.

Implementation details. RISNet is implemented in Py-
Torch on an RTX 3090 GPU with the AdamW optimizer
[40]. The training process spans 100 epochs with a batch
size of 4, initiating with a learning rate of 1e-4 and divid-
ing it by 10 every 50 epochs. The feedback loss weight
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parameter γ is set to 0.2, and the model undergoes three op-
timization iterations. To minimize information loss, high-
resolution input at 704× 704 pixels is employed.

5.2. Results on CCD

Quantitative Analysis. Tab. 2 presents quantitative results
for our proposed RISNet compared to 11 state-of-the-art
COD models and 8 state-of-the-art RGB-D SOD models on
the CCD dataset. To ensure fairness, all compared mod-
els are trained using their default settings, and test results
are evaluated using the same code. Clearly, our approach
consistently outperforms other methodologies, resulting in
significant improvements on both the Sα and Fω

β metrics.
On average, it surpasses the second-ranking method, Hit-
Net, by 1.45%. It is noteworthy that, in contrast to single-
modal approaches, RGB-D techniques exhibit a lower Fω

β ,
Nevertheless, our Fω

β still surpasses all single-modal meth-
ods, exceeding the second-best RGB-D method, XMSNet,
by a substantial 4.9%. This can be attributed to the efficacy
of our multi-scale deep-level modality integration, affirm-
ing the robustness of our model.
Qualitative Analysis. As shown in Fig. 5, visual compar-
isons of various methods on typical concealed objects are
presented. These concealed objects are arranged by their
density, ranging from sparse to dense. These objects are
generally small, prone to severe occlusion, and possess col-
ors similar to the background. Such challenges, prevalent in
CCD images, can potentially confound existing COD and
RGB-D SOD techniques, resulting in issues like incorrect
detections and missing results. Visual results intuitively
demonstrate that, in comparison to other approaches, our
method delivers more comprehensive and accurate detec-
tion outcomes with clearer object outlines, showcasing the
superior performance of our approach.

5.3. Ablation Study

Effect of RISNet. Following [14], we train our RISNet
using 3040 images from COD10K and 1000 images from
CAMO, excluding the multi-modal fusion module. Sub-
sequently, tests are conducted on the remaining images.
Remarkably, even without the multi-modal fusion module,
RISNet maintains state-of-the-art performance. This can be
attributed to the architecture of our model, which leverages
multi-scale and multi-level feature information while itera-
tively optimizing detection results. Experimental results are
presented in Tab. 3.
Effect of Each Module. In our proposed RISNet, we incor-
porate three crucial modules. We investigate their individ-
ual impacts on model performance systematically. Tab. 4
illustrates the effects of systematically disabling these mod-
ules. “w/o CFE” replaces PVT with Res2Net-50 and re-
moves ASPP for multi-scale object information percep-
tion. “w/o DFD” involves simply concatenating informa-

Metric w/o CFE w/o DFD w/o IFR RISNet

Sα ↑ 0.855 0.861 0.850 0.866
Eθ ↑ 0.964 0.965 0.949 0.967
Fω
β ↑ 0.785 0.790 0.785 0.803

Table 4. Ablation study of Each Module.

Metric in=1 in=2 in=3 in=4 in=5

Fω
β ↑ 0.792 0.793 0.803 0.802 0.802

Table 5. Ablation study of Iteration Number.

tion from the two modalities instead of using our carefully
designed MFF for in-depth modality fusion, accompanied
by the exclusion of our RFD module. “w/o IFR” removes
the iterative optimization process, directly outputting pre-
diction results. Results show an expected decline when each
module is deactivated, emphasizing the significance of the
collaborative efforts among these modules. Their synergy is
vital for achieving optimal detection results, validating the
rationale and effectiveness of our module design.
Evaluation of Iteration Number. In Tab. 5, we illustrate
the impact of iteration number on model performance in
our iterative optimization mechanism. The results reveal
a gradual improvement with an increased number of itera-
tions. Considering both performance and efficiency, we find
that 3 iterations represent the optimal choice.

6. Conclusion
We analyze and address the limitations inherent in clas-

sical COD tasks, particularly their inadequacy in dealing
with concealed objects in agricultural environments. Build-
ing upon this foundation, we introduce a new benchmark
called Concealed Crop Detection (CCD), aiming to identify
concealed crops in dense agricultural settings. To facilitate
CCD research, we compile a large-scale RGB-D agricul-
tural concealed object dataset, ACOD-12K. We propose an
effective baseline model, RISNet, which integrates depth
information to unearth subtle visual cues for distinguishing
concealed objects from the background. RISNet achieves
state-of-the-art performance on both COD and CCD tasks,
demonstrating the effectiveness of our framework. The
CCD task we introduce extends classical COD tasks into
the agricultural domain, opening up new applications such
as crop growth monitoring, automated agricultural harvest-
ing, weed control, and more.
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