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Abstract

Current perceptive models heavily depend on resource-
intensive datasets, prompting the need for innovative so-
lutions. Leveraging recent advances in diffusion models,
synthetic data, by constructing image inputs from various
annotations, proves beneficial for downstream tasks. While
prior methods have separately addressed generative and
perceptive models, DetDiffusion, for the first time, harmo-
nizes both, tackling the challenges in generating effective
data for perceptive models. To enhance image genera-
tion with perceptive models, we introduce perception-aware
loss (PA. loss) through segmentation, improving both qual-
ity and controllability. To boost the performance of spe-
cific perceptive models, our method customizes data aug-
mentation by extracting and utilizing perception-aware at-
tribute (PA. Attr) during generation. Experimental results
from the object detection task highlight DetDiffusion’s su-
perior performance, establishing a new state-of-the-art in
layout-guided generation. Furthermore, image syntheses
from DetDiffusion can effectively augment training data,
significantly enhancing downstream detection performance.

1. Introduction

The effectiveness of current perceptive models is heav-
ily contingent on extensive and accurately labeled datasets.
However, the acquisition of such datasets is often resource-
intensive. Recent advancements in generative models, es-
pecially diffusion models [35], make it possible to generate
high-quality images, and thus pave the way for construct-
ing synthetic datasets. By providing annotations such as
the class labels [35], segmentation maps [41], and object
bounding boxes [4], synthetic data for generative models is
proved to be useful to improve the performance on down-
stream tasks (e.g., classification [11], object detection [2, 4]
and segmentation [24, 42]).
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Figure 1. Pipeline comparison between general L2I models (e.g.,
GeoDiffusion [4]) and our DetDiffusion (perception-aware L2I).
Utilizing perception-aware loss (P.A. loss) and perception-aware
attributes (P.A. Attr), DetDiffusion improves generation quality
and controllability of L2I task. Perception-aware attributes further
boost performance on downstream perceptive models. Moreover,
perceptive model only added 1.3% of parameters.

While most methods focus on improving generative
models or perceptive models separately, the synergy be-
tween generative and perceptive models warrants a closer
integration for mutual enhancement of generation and per-
ception capabilities. In perceptive models, the challenge
lies in effective data generation or augmentation, a topic
previously approached mainly from a data perspective (e.g.
OoD generalization [18, 20] and domain adaptation [10, 16,
31]). Its potential to enhance perceptive models perfor-
mance in general cases remains underexplored. Conversely,
generative model research has focused on refining models
for better output quality and controllability [4, 8]. Nonethe-
less, it is essential to recognize that perceptive models can
also provide valuable additional insights to assist genera-
tive models in achieving better control capabilities. This
synergy between the generative and perceptive models of-
fers a promising avenue for advancement, suggesting a need
for more integrated approaches.
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As the first work to investigate such synergy, we propose
a novel perception-aware generation framework, namely
DetDiffusion, as shown in Figure 1. Our framework en-
ables generative models to harness the information from
perceptive models, thereby augmenting their capacity for
controlled generation. Concurrently, it facilitates the tar-
geted generation of data based on the capabilities of per-
ceptive models, thereby enhancing the performance of mod-
els trained on synthetic data. Specifically, for object de-
tection tasks, we fine-tune models based on Stable Diffu-
sion [35], employing controlled generation techniques to
produce high-quality data that aids in training detection
models. To elevate the quality of generation, we innova-
tively introduce a perception loss. By introducing a segmen-
tation module [5] based on the intermediate feature from the
UNet [36], the generated content is supervised by the object
mask in conjunction with label ground truth to enhance con-
trollability. Moreover, to further enhance the performance
of detection models, we propose to extract and use object at-
tributes from the trained detection model, and then incorpo-
rate these attributes into the training of generative models.
This approach enables the generation of new data specif-
ically tailored to produce distinctive samples, thereby sig-
nificantly improving detectors’ performance.

Our experiments confirm that DetDiffusion sets a new
state-of-the-art in generation quality, achieving 31.2 mAP
on COCO-Stuff. It significantly enhances detector training,
increasing mAP by 0.9 mAP through the strategic use of
perception-aware attribute (P.A. Attr) in training. This is
largely due to DetDiffusion’s refined control in addressing
long-tail data generation challenges. These advancements
underscore DetDiffusion ’s technical superiority and mark a
pivotal advancement in controlled image generation, espe-
cially where precise detection attributes are vital.

The main contributions of this work contain three parts:
1. We propose DetDiffusion, the first framework designed

to explore the synergy between perceptive models and

generative models.

2. To boost generation quality, we propose a perception
loss based on segmentation and object masks. To fur-
ther improve the efficacy of synthetic data in perceptive
models, we introduce object attributes during generation.

3. Extensive experiments on object detection task show that
DetDiffusion not only achieves new SOTA in the layout-
guided generation on COCO but also effectively prompts
the performance for downstream detectors.

2. Related Work

Diffusion Models. Diffusion models, being one kind of
generative model, are trained to learn the reverse denois-
ing process after a forward transformation from the image
distribution to the Gaussian noise distribution [14]. These
models can employ either a Markov process [14] or a non-

Markov process [37]. Due to their adaptability and com-
petence in managing various forms of controls [22, 35, 47]
and multiple conditions [9, 15, 26, 30], diffusion models
have been applied in various conditional generation tasks,
such as image variation [44], text-to-image generation [35],
pixel-wise controlled generation [47]. A notable variation
of these models is the Latent Diffusion Model (LDM [35]).
Unlike traditional diffusion models, the LDM conducts the
diffusion process in a latent space, enhancing the model’s
efficiency. Our framework for perception data generation is
based on the LDM. However, we focus on the synergy be-
tween generative models and perceptive models, proposing
several designs to benefit both generation quality & control-
lability and performance on downstream tasks.

Layout-to-Image (L2I) Generation. Our approach fo-
cuses on converting a high-level graphical layout into a re-
alistic image. In this context, LAMA [23] implements a
locality-aware mask adaptation module for improved ob-
ject mask handling during image generation. Taming [17]
shows that a relatively straightforward model can surpass
more complex predecessors by training in latent space.
More recent developments include GLIGEN [22], which
integrates additional gated self-attention layers into ex-
isting diffusion models for enhanced layout control, and
LayoutDiffuse [6], which employs innovative layout atten-
tion modules tailored for bounding boxes. Our generative
model shares similar architecture with GeoDiffusion [4] and
Geom-Erasing [27], while DetDiffusion focuses on the syn-
ergy between generation and perception, and distinctively
offers 1) a novel perception-aware loss (P.A. loss) that uti-
lizes information from the segmentation head; 2) a novel
object attribute mechanism (P.A. Attr) to help the training
of object detectors.

Data Generation for Perceptive Models. In some L2I
methods, the utility of synthetic data in enhancing object
detection task performance is demonstrated, e.g., GeoDif-
fusion [4]. Similarly, MagicDrive [8] suggests that gener-
ated images aid in 3D perception, and TrackDiffusion [21]
generates data for multi-object tracking. However, they do
not explore enhancing generation using perceptive models
or tailoring data for specific detectors. Beyond controllable
generation, several works convert generators into perceptive
models by extracting annotations from generative features.
DatasetDM [42] uses a Mask2Former-style P-decoder with
Stable Diffusion, while Li et al. [23] develop a fusion mod-
ule for open-vocabulary segmentation. These techniques,
while capable of producing annotated data, are limited by
their reliance on text-based generation with limited anno-
tation control, dependency on pre-trained diffusion mod-
els restricting the cross-domain applicability, and inferior
performance compared to combining diffusion models with
specialized models like SAM [19].
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Figure 2. Model architecture of DetDiffusion. To facilitate the synergy between generative models and perceptive models, we integrate
two components into L21 training pipeline. Perception-aware loss (P.A. loss) leverages the segmentation head for better generation quality
and controllability. Perception-aware attribute (P.A. Attr) enables DetDiffusion to generate highly useable data for training augmentation.

3. Method

Our objective is to enhance the generation quality from a
perceptive perspective and facilitate downstream perceptive
tasks. Designing proper and strong supervision is of great
importance in tackling this challenging problem, we pro-
pose to integrate easily accessible but previously neglected
perceptive information i.e., perception-aware attribute (P.A.
Attr) and loss (P.A. loss), into the generation framework
to promote the information interaction between perceptive
models and generative models. We first introduce the pre-
liminaries in Section 3.1 and expand the perception-aware
attribute (P.A. Attr) in detail (Section 3.2), which is gen-
erated via an object detector and designed as special to-
kens to assist diffusion models. In Section 3.3, a tailored
perception-aware loss (P.A. loss) is introduced. The overall
architecture is depicted in Figure 2.

3.1. Preliminaries

Diffusion Models (DMs) have emerged as prominent
text-to-image generation models, characterized by their ef-
fectiveness in generating realistic images. A notable varia-
tion, the Latent Diffusion Model (LDM) [35], innovatively
transfers the diffusion process of standard DMs into a la-
tent space. This transition is significant, as LDMs demon-
strate the ability to maintain the original model’s quality and
flexibility, but with a substantially reduced computational
resource requirement. This efficiency gain is primarily at-
tributed to the reduced dimensionality of the latent space,
which facilitates faster training times without compromis-
ing the generative capabilities of the model.

Stable Diffusion, an exemplary implementation of the
Latent Diffusion Model (LDM), utilizes a distinctive
pipeline for text-to-image (T2I) generation. The process
commences with the encoding of the original image x into
latent space using a pre-trained Vector Quantized Varia-

tional AutoEncoder (VQ-VAE) [40], resulting in a latent
representation z = &£(z) € RY W' *D' where is much
smaller than original dimension. Concurrently, the text con-
dition y undergoes encoding via a pre-trained CLIP [33] text
encoder 7y(-). At a given timestep ¢, random noise is inte-
grated into the latent variable z to form z;. The noise pre-
diction is executed by a UNet e (-), which incorporates both
resnet and transformer networks of varying dimensions for
enhanced generative capability. The integration of the con-
dition variables 7y (y) with the UNet is achieved through
cross-attention mechanisms. The formulation of the objec-
tive function can be expressed as follows:

Loy = Ee@)enon,ille — oz t,mom)I% (1)

This equation represents the mean-squared error between
the original noise € and the noise predicted by the model,
encapsulating the core learning mechanism of the Stable
Diffusion model.

3.2. Perception-Aware Attribute as Condition Input

To enhance the performance of detection models, this
study introduces a novel approach centered around the gen-
eration of perception-aware realistic images. The methodol-
ogy involves a two-step process: initially, object attributes
are extracted from a pre-trained detector. These attributes
encapsulate critical visual characteristics essential for ac-
curate object detection. Subsequently, the extracted at-
tributes are integrated into the training regime of a gener-
ative model. This integration aims to ensure that the gen-
erated images not only exhibit high realism but also align
closely with the perceptive criteria crucial for effective de-
tection. By doing so, the generative model is tailored to
produce images that are more conducive to training robust
detectors, potentially leading to significant improvement in
detection accuracy and reliability.
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Perception-Aware Attribute. We define the perception-
aware attribute (P.A. Attr) of an object as d. For each image
x, a pre-trained detector D(-), such as Faster R-CNN [34]
or YOLO series [1] detectors, is employed to yield n pre-
dicted bounding boxes, represented as b = [by,...,b,] =
D(z). To refine the selection of bounding boxes, a filter-
ing criterion based on a confidence score threshold ~ is ap-
plied. This process effectively retains a subset of bound-
ing boxes that meet the threshold, resulting in a reduced set
b = [b,...,by], where n’ is significantly smaller than n.
This selective approach ensures that only bounding boxes
with a high likelihood of accurate object detection are con-
sidered, thereby enhancing the following reliability of the
perception-aware attribute (P.A. Attr) extracted.

Furthermore, for each image x, there are m ground truth
objects bounding boxes, represented as o = [01, ..., Op)-
The detection difficulty of each ground truth box o; is as-
sessed based on its intersection with the n’ predicted boxes.
Specifically, for each ground truth box, if any predicted
bounding box b;, where i € [1,...,n], has an intersec-
tion over union (IoU) with the ground truth box exceeding a
threshold S, it is classified as [easy] to detect. Conversely,
the ground truth boxes without such overlapping predicted
boxes are labeled as [hard]. This classification mechanism
is encapsulated in the following expression:

d; = {[easy}, if exists 7, IoU(bj, 0;) > B,

[hard], else. @

Perception-Aware Attribute as Prompt Token. In this
approach, each ground truth box within an image is char-
acterized by three attributes. These include the pre-existing
attributes of category (c;) and location (I;), along with the
newly introduced attributes perception difficulty attribute
(d;). The category attribute c; is the category text itself. For
the location attribute /;, the original representation is contin-
uous coordinates. Here we discretize it via partitioning the
pixel image space into a grid of location bins, and each loca-
tion bin corresponds to a unique token (check more details
in [4]). So that we can feed the specific location token into
a text encoder of L2I diffusion model [4, 46] to obtain the
final location attribute ;. In this way, attributes representing
location, category, and ease of detection are organized into
a unified representation.

Furthermore, in contrast to existing methods [22, 46]
utilizing captions as the text prompt. We design an
effective text prompt equipped with multiple pairs of
perception-aware attributes. Specifically, the prompt is
“An image with {objects}”, where objects are
[(e1,11,d1),s vy (Cmy i,y din )] @and m is number of ground
truth bounding boxes. This comprehensive attribute set and
effective prompt aim to encapsulate a more holistic under-
standing of each object’s characteristics, potentially provid-
ing a much richer description for perception.

An image with
person <2> <23> [hard]
Origin person <17><59> [easy]
car <32><66> [easy]
An image with
person <2> <23> [easy]
Easy person <17><59> [easy]
car <32><66> [easy]
An image with
person <2> <23> [hard]
person <17><59> [hard]
car <32><66> [hard]

Hard

Figure 3. Three strategies for attribute application. Check the
detailed definition in Sec. 4.1.

3.3. Perception-Aware Loss as Supervision

During training diffusion generation model, the objec-
tive is to minimize the reconstruction distance between the
predicted image (or noise) and its ground truth counter-
part. Traditional generation methodologies predominantly
utilize L1 or L2 losses for this purpose. However, these
standard loss functions often fall short of producing images
with high-resolution details and precise control over image
attributes. To address this limitation, a novel perception-
aware loss (P.A. loss) is proposed. This loss function is
constructed to leverage rich visual features, thereby facili-
tating more nuanced image reconstruction.

Visual Features. Recent studies have indicated that the fea-
ture maps in the UNet model exhibit effectiveness in class-
discriminative and localization tasks [12, 42, 43, 48]. In-
spired by these papers, we try to extract multi-scale feature
maps f = [f1, f2, f3, f4] from four layers of the U-Net €5(+)
of the encoding and decoding path during the training pro-
cess, corresponding to resolutions of (£ x ¥, 2 x W H
W H xW). And we upsample Upsample(-) and mix con-
volution layers Conv(-) to concatenate the final multi-scale

feature maps, which can be expressed as:

n=234
(3)

P Conv (fy,, Upsample (F},_1)),
" fna n=1

Thus, we have obtained the visual features F = Fj.

Perception-Aware Loss. To achieve a higher level of pre-
cision in image generation, this study introduces a custom-
designed loss function, utilizing the rich information from
perception learning. Central to this formulation is the use of
a segmentation head, which processes these features to pro-
duce instance masks, represented as M = [myq, .., m]. In
optimizing the model’s high-dimensional feature space, the
loss function incorporates two key components: the mask
loss L,,, and a dice loss L, following [42]. The integration
of these losses, specifically tailored for perceptive enhance-
ment, serves to finely tune the U-Net’s capabilities. This
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approach allows for more granular control over the gener-
ated images, leveraging the perceptive information embed-
ded within the features for more accurate image synthesis.
Considering that noise has been added to the visual fea-
tures JF, we assign different scales to the loss term, eas-
ing the burden of model training. Specifically, we adopt &
from Denoising Diffusion Probabilistic Models (DDPM),
as delineated in Ho et al. [14], to mitigate this effect. This
scheme is designed to counterbalance the noise component
in the features, ensuring the integrity and utility of 7. Given
the DDPM scheduler adds Gaussian noise to the data ac-
cording to a variance schedule f1, ..., 3;, and then using

the notation o; := 1 — 3; and a; = Hizl os. The
perception-aware loss (P.A. loss) can be expressed as:
Ep =V (‘CHL + Ed)7 (4)

where the /&, is designed to reduce the impact of feature
maps with higher noise levels, thereby emphasizing feature
maps with lower noise (i.e., smaller time steps).

Objective Function. Ultimately, our objective function
combines the perception-aware loss with the foundational
loss function of the Latent Diffusion Model (LDM). This
integration is mathematically represented as follows:

For the purposes of this model A is set to 0.01, ensuring
a balanced incorporation of the perception-aware compo-
nents while maintaining the primary structure and goals of
the LDM loss function. This calibrated approach allows for
a nuanced optimization that leverages the strengths of both
losses, thereby enhancing the model’s performance in gen-
erating high-quality, perception-aligned images.

4. Experiments
4.1. Experiment Settings

Dataset. We employ the widely recognized COCO-
Thing-Stuff benchmark [3, 23, 25] for the L2I task, which
includes 118,287 training images and 5,000 validation im-
ages. Each image is annotated with bounding boxes and
pixel-level segmentation masks for 80 categories of ob-
jects and 91 categories of stuff. In line with previous
works [4, 6, 46], we ignore objects belonging to crowds or
occupying less than 2% of the image area.

Implementation Details. We fine-tune DetDiffusion from
the Stable Diffusion v1.5 [32] checkpoint. We introduce
location tokens into the text encoder and initialize the em-
bedding matrix of the location tokens with 2D sine-cosine
embedding. With the VQ-VAE [40] fixed, we fine-tune all
parameters of the text encoder and use AdamW [28] opti-
mizer with a cosine learning rate schedule of le=*. And
the linear warm-up is adopted in the first 3000 steps. The

Method Epoch | FID] | mAPt AP5o1 AP751
LostGAN 200 [42.55] 9.1 153 938
LAMA 200 [31.12| 134 197 149
TwFA 300 |22.15| - 282 20.1
Frido 200 [37.14| 172 - -
L.Diffuse’ 60 |2220] 114 23.1 10.1

L.Diffusion’ 180 [22.65| 149 275 149
ReCol 100 [29.69| 18.8 335 19.7
GLIGEN 86 [21.04| 224 365 24.1
ControlNet! 60 |20.37| 248 36.6 27.7
GeoDiffusion 60 |20.16| 29.1 389 33.6

DetDiffusion origin, 60 [19.28| 29.8 38.6 34.1
DetDiffusion p,qrq 60 [19.72] 253 337 29.1
DetDiffusion s, 60 |19.66| 31.2 40.2 35.6

Table 1. Evaluation of image quality and correspondence to layout
on COCO val-set. The best results are in bold and the second best
results are underlined italic. ¥ Implemented by ourselves.

text prompt is replaced with a null text for unconditional
generation with a probability of 10%. The model is trained
on 8x32GB GPUs with a batch size of 32, requiring about
20 hours for 60 epochs. We sample images using DPM-
Solver [29] scheduler for 50 steps with CFG at 3.5.
Strategy for Attribute Application. Upon completion of
the training process, it is flexible to apply perception-aware
attribute (P.A. Attr) during the generation. For the pur-
pose of simple yet effective validation, we adopt three at-
tribute strategies in Fig 3: 1) DetDiffusion or;gin: the orig-
inal perception-aware attribute (P.A. Attr). We obtain the
attributes of each object in the image using a detector and
use them directly for generation. 2) DetDiffusion pqrq: all
objects are assigned the [hard] attribute. All objects are
treated as difficult samples for perception. 3) DetDiffusion
casy: all objects are assigned the easy attribute. All objects
are treated as easy samples for perception.

4.2. Main Results

The L2I generation requires the generated objects to be
as consistent as possible with the original image while en-
suring high-quality image generation. Therefore, we will
first comprehensively analyze the fidelity experiment in
Section 4.2.1. Additionally, an important purpose of gener-
ating target detection data is its applicability to downstream
target detection. We present the trainability experiment in
Section 4.2.2.

4.2.1 Fidelity

Set up. To evaluate fidelity, we utilize two primary met-
rics on the COCO-Thing-Stuff validation set. The Fréchet
Inception Distance (FID) [13] assesses the overall visual
quality of the generated image. It measures the distinc-
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=
with the provided semantic layouts.

tion in feature distribution between the real images and the
generated images using an ImageNet-pretrained Inception-
V3 [39] network. The YOLO Score [23] in LAMA [23]
uses the mean average precision (mAP) of 80 object cate-
gories’ bounding boxes on generated images. It is achieved
using a pre-trained YOLOvV4 [1] model, demonstrating the
precision of object detection in a generated model. Our
model is trained on the image size of 256x256. Follow-
ing previous work, we utilize images containing between 3
to 8 objects, resulting in 3,097 images during validation.

Results. we evaluated our models with three attribute
strategies on the COCO-Thing-Stuff validation set and com-
pared them with state-of-the-art models for L2I task such
as LostGAN [38], LAMA [23], TwFA [45], Frido [7],
LayoutDlIffuse [6], LayoutDiffusion [49], Reco [46], GLI-
GEN [22], GeoDiffusion [4], and ControlNet [47]. As
shown in Table 1, our DetDiffusion ,r;g4in, and DetDiffusion
casy Strategies outperformed all competitors across all met-
rics. The DetDiffusion ;4 strategy achieved the best FID
(19.28) and outperformed other models in YOLO Score.
This indicates that using perception-aware loss (P.A. loss)
and treating the perception-aware attribute (P.A. Attr) as
an additional condition obtained from perception can gen-
erate more realistic images. The DetDiffusion cqs, strat-
egy achieved a YOLO Score exceeding the best model by
2.1mAP, and showed significant improvement compared to
the DetDiffusion oriqin strategy that demonstrates generated

Figure 4. Qualitative comparison on the Microsoft COCO dataset. Our DetDiffusion can generate highly realistic images consistent

examples are easy for the detector to perceive. The DetD-
iffusion pq,q strategy is designed to generate examples that
are more challenging for the detector, and the results are
in line with our expectations. The YOLO Score decreased
compared to the DetDiffusion oriq:n Strategy, indicating that
generated examples are more difficult. The significance of
the DetDiffusion pq.q strategy lies in its impact on trainabil-
ity, which is demonstrated in Section 4.2.2.

The enhanced FID and YOLO Score achieved with the
DetDiffusion origin approach illustrates the effectiveness
of incorporating P.A. Attr and P.A. loss in regulating the
performance of the images. Furthermore, the DetDiffu-
$ion ¢qsy and DetDiffusion pq,q strategies demonstrate our
model’s ability to comprehend and manipulate the attributes
of [easy] and [hard] from the perceptual models, thus en-
abling control over the difficulty level.

4.2.2 Trainability

Set up. This section explores the potential advantages of
using generated images from DetDiffusion for training ob-
ject detectors. The evaluation of trainability includes using
a pre-trained L2I model to create a new synthetic training
set from the original annotations. Both the original and syn-
thetic training sets are then employed to train a detector.

COCO Trainability. To establish a reliable baseline, we
utilize the COCO2017 dataset, selectively choosing images
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“hard”

“easj”

Figure 5. Qualitative comparison on the perception-aware at-
tribute. Although provided with the exact same semantic layouts,
simply changing the perception-aware attribute (P.A. Attr) among
[easy] (left) and [hard] (right) can effectively alter the low-level
image pattern of generated images. The former achieves better
detector recognizability, while the latter performs as better aug-
mentation samples, as demonstrated in Table 1 and 2 respectively.

containing 3 to 8 objects to enhance synthetic image qual-
ity and maintain fidelity. This process yielded a training set
comprising 47,429 images with 210,893 objects. The goal
is to showcase the improvements DetDiffusion can con-
tribute to downstream tasks, maintaining fixed annotations
for various model comparisons. For training efficiency and
focused evaluation of data quality’s impact on training, we
adopt a modified 1x schedule, reducing the training period
to 6 epochs. DetDiffusion is trained on images resized to
800x456, its maximum supported resolution, to reconcile
resolution differences with COCO.

Results. As shown in Table 2, ReCO [46], GeoDiffu-
sion [4], and all our three strategies can be beneficial for
the training of downstream detectors, with the synthetic im-
ages generated by the strategies showing a more signifi-
cant gain for the detector (exceeding 35.0 mAP). Further-
more, compared to the “origin” strategy, the “hard” strat-
egy exhibits the most improvement across all detector met-
rics. This is attributed to the generation of more challeng-
ing instances through the “hard” strategy, which often rep-
resents the long-tail data in real datasets or serves as a form
of stronger data augmentation. Overall, our model’s gener-
ated data significantly enhances the training of downstream

Method |mAP | AP5 AP75 | AP™ AP

Real only | 345|555 37.1|37.9 443
L.Diffusion 340|545 36.5(37.2 43.6
GLIGEN 343|548 367|374 443
ControlNet 344|545 369|378 45.0
ReCo 33.6 532 362|367 440
GeoDiffusion 348|553 374|382 454

DetDiffusion origin | 35.3 | 55.7 38.2 | 384 46.5
DetDiffusion r..q | 35.4 | 55.8 38.3 | 38.5 46.6
DetDiffusion ¢qsy | 35.2 | 55.5 37.9|38.3 463

Table 2. Comparison of trainability on COCO. DetDiffusion leads
to better improvements by emphasizing hard objects in augmenta-
tion. The best results are in bold and the second best results are
underlined italic.

GeoDiffusion
GLIGEN
ReCo
—— ControlNet
LayoutDiffusion
—— DetDiffusion

1.5

TSN

0.5

Epoch Epoch
(b) Validation mAP curve.
Figure 6. Training loss and validation mAP curves.

(a) Training loss curve.

detectors, surpassing all other L2I models, and reveals that
information obtained through perception can further benefit
downstream training.

To verify the training effectiveness with equal training
costs, we plot the training loss curve and val mAP curve in
Figure 6a and 6b respectively. Our DetDiffusion achieves
the best performance throughout the training procedure.

We present more results on trainability in Table 3, focus-
ing on less frequent categories in the COCO dataset such
as parking meter, scissor and microwave, each accounting
for less than 0.2% of the dataset. It can be observed that our
hard strategy yields gains across all categories, with partic-
ularly significant improvements for long-tail categories.

4.3. Qualitative Results

Fidelity. Figure 4 displays examples that validate our
model’s fidelity and accuracy in image generation. Lay-
outDiffusion’s chaotic results stem from its extra control
modules clashing with the diffusion process. ReCo, depen-
dent on high-quality captions, often suffers quality reduc-
tion and misses details. GLIGEN and ControlNet, despite
high-quality outputs, lack precise object supervision, lead-
ing to insufficient detail and variable object quantities. Our
implementation of P.A. loss and P.A. Attr enhances object
quality, ensuring consistent quantities and controlled gener-
ation, as reflected in the alignment of generated object num-
bers with P.A. Attr.
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Method

Average Precisiont

mAP \ parking. scissor micro. mouse keyboard hotdog baseball. sandwich train skateboard tv

realonly | 34.5 | 416 178 492 556 438

23.6 31.3 29.8 51.9 41.7 49.8

easy 352 | 425 178 473 545 45.0
orgin 353 | 404 17.7 515 555 44.3
hard 354 | 433 194 532 563 45.5

24.6 320 30.3 53.8 41.9 50.4
254 30.9 30.2 53.8 43.4 50.2
254 32.7 314 54.1 44.1 50.6

Table 3. Rare categories results of trainability on COCO02017. The best results are in bold. The “parking.”, “micro.” and “baseball.”

suggest parking meter, microwave and baseball gloves.

PA. Attr PA.loss | FID| mAP?
20.16 29.1
v 19.92 30.4
v v 19.66 31.2

Table 4. Ablations on essential components of DetDiffusion
for perception-awareness. Best results are achieved when both
components are adopted.

Detector Method | mAP?  APso?  AP7st

Real only 33.7 52.9 35.7

FCOS DetDzjfusto’n origin 349 53.8 37.0
DetDiffusion casy 34.8 53.8 36.7
DetDiffusion nqrq 35.0 54.0 36.9

Real only 36.3 53.9 39.1

ATSS DetDiffusion origin 37.2 54.8 40.2
DetDiffusion casy 37.1 54.6 40.0
DetDiffusion nara 374 55.0 40.5

Table 5. Trainability for more detectors on COCO.

| FID, | mAPt  APsoT  APrst

Faster R-CNN | 19.99 29.5 39.2 33.8
YOLOv4 19.92 30.4 40.8 351

Table 6. Perception aware attribute from different detectors.
Note the results are both evaluated with YOLOv4. Better perfor-
mance is achieved if the perception-aware attribute is provided by
the evaluated detector specifically.

Easy and Hard. In Figure 5, we present perception-
aware attribute (P.A. Attr) selections, comparing ’easy” and
“hard” instances. The “easy” images, exemplified by ele-
phants, horses, monitors, and keyboards, are generated with
an emphasis on intrinsic object features, ensuring clarity
and lack of noise. Conversely, the ”hard” examples, such as
elephants with tusks, saddled horses, dim monitors, and re-
flective mice, incorporate additional elements that introduce
noise through occlusions, lighting, and other complexities.
These attributes make object recognition more challenging.
Notably, there are both clearly distinguishable and subtly
different “easy” and “hard” cases, highlighting the nuanced
impact on the detection process. This indicates the identi-
fication of challenging examples without prior knowledge.
For further illustrations, see Appendix D.

4.4. Ablation Study

Model components. We sequentially integrate two mod-
ules into the baseline model to evaluate our model’s key
elements. For a clear demonstration of P.A. loss effects, all
attributes are set as [easy|. As Table 4 indicates, adding
P.A. Attr notably enhances image fidelity and YOLO Score.
This implies that perceptual information inclusion aids in
producing more realistic and recognizable images. Fur-
thermore, implementing P.A. loss, which oversees potential
features in intermediately generated images, significantly
improves the model’s precision in image generation, espe-
cially in positional accuracy.

Trainability. We further conduct experiments on FCOS
and ATSS. As shown in Table 5, images generated by Det-
Diffusion achieve significant improvement regardless of the
detector models, consistently with results in Table 2.
Detector. We explore two widely recognized detectors [,
34] for acquiring P.A. Attr in experiments that omit the use
of P.A. loss. Table 6 demonstrates the detector choice sig-
nificantly affects P.A. Attr quality, with YOLOv4 outper-
forming in this aspect. Therefore, YOLOv4 serves as a pri-
mary detector for Fidelity, while Faster R-CNN is used for
trainability due to its role as a trained downstream detector.

5. Conclusion

This paper proposes DetDiffusion, a simple yet effective
architecture to utilize the intrinsic synergy between gen-
erative and perceptive models. By incorporating detector-
awareness into geometric-aware diffusion models via P.A.
Attr as conditional inputs and P.A. loss as supervision, Det-
Diffusion can generate detector-customized images for bet-
ter recognizability and trainability.
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