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Figure 1. Human performance videos generated by DiffPerformer given the reference appearance and driving poses. The generated
videos contain realistic dynamic details and coherent appearances across the long-range sequence especially under challenging poses.

Abstract

Existing diffusion models for pose-guided human video
generation mostly suffer from temporal inconsistency in the
generated appearance and poses due to the inherent ran-
domization nature of the generation process. In this paper,
we propose a novel framework, DiffPerformer, to synthe-
size high-fidelity and temporally consistent human video.
Without complex architecture modification or costly train-
ing, DiffPerformer finetunes a pre-trained diffusion model
on a single video of the target character and introduces
an implicit video representation as a proxy to learn tem-
porally consistent guidance for the diffusion model. The
guidance is encoded into VAE latent space and an iterative
optimization loop is constructed between the implicit video
representation and the diffusion model, allowing to har-

† Work done during an internship at Tsinghua University.
∗ Corresponding author.

ness the smooth property of the implicit video representa-
tion and the generative capabilities of the diffusion model in
a mutually beneficial way. Moreover, we propose 3D-aware
human flow as a temporal constraint during the optimiza-
tion to explicitly model the correspondence between driv-
ing poses and human appearance. This alleviates the mis-
alignment between driving poses and target performer and
therefore maintains the appearance coherence under vari-
ous motions. Extensive experiments demonstrate that our
method outperforms the state-of-the-art methods. The code
is available at https://github.com/aipixel/
DiffPerformer.

1. Introduction
Pose-guided human video generation aims to produce a
video of a specific character performing the given poses,
which has a wide range of applications such as human-
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computer interaction, motion analysis and VR. Although
significant efforts have been devoted to developing effective
human video generation, it is still a challenging task due to
the variety of body poses and intricate human details.

In early stage, researchers adopt GANs to tackle the
task [8, 23, 50, 51]. Unfortunately, GANs suffer from mode
collapse and unstable training, failing to generate pleasant
results for diverse visual contents in the real world such as
human performance. Recently, diffusion models [13, 44]
show promising results in generating photo-realistic and di-
verse images. More importantly, diffusion models are capa-
ble of generating images under conditions [18, 37, 47, 61],
allowing users to control the generated content over various
attributes. Motivated by this progress, several methods pro-
pose to apply diffusion models for controllable generation
of human images or videos [19, 26, 52, 56], and demon-
strate great potential in generating high-quality human ap-
pearances for the given poses.

Unfortunately, challenges remain when it comes to gen-
erating temporally consistent videos of human performance
using diffusion models. Some existing works use only text
prompts to control the human identity [26, 56], making
them unable to produce authentic and consistent appear-
ance. Others like DisCo [52] and DreamPose [19] condition
diffusion models on a reference image to control the hu-
man identity and train the networks on large-scale real hu-
man motion datasets. However, temporal jittering and flick-
ering are still ubiquitous in their results even after adopt-
ing spatio-temporal attention [19] or finetuning on person-
specific videos [52]. We speculate that the temporal incon-
sistency is primarily caused by the inherent randomization
nature in the generation process of diffusion models, and
consequently it cannot be easily resolved through model
tuning or architecture modification.

Therefore, in this paper, we address the issue of tempo-
ral consistency from a different perspective. Unlike existing
methods that apply complex modification to diffusion mod-
els and large-scale training on human motion datasets, we
simply finetune a video diffusion model on a single video
and introduce a temporal proxy to iteratively learn a con-
sistent latent guidance, which enables the diffusion model
to achieve coherent human performance representation and
synthesis. The core idea is inspired by the recent success
in text-to-3D generation, where 2D image diffusion mod-
els are adapted to generate view-consistent images through
the optimization of 3D proxy representation [28]. We ex-
tend this observation to the temporal domain and intro-
duce an implicit video representation as the temporal proxy.
It maps pixel positions into color values with coordinate-
based MLPs [20, 24] and factorizes the human performance
video into a canonical space and a temporal deformation
field [32]. Such a representation enforces a prior on video
smoothness and appearance coherence. With this implicit
video representation, we present DiffPerformer, a novel hu-

man performance synthesis framework where the implicit
video representation and diffusion models are mutually ben-
eficial, allowing high-fidelity human video synthesis with-
out temporal inconsistency as shown in Fig. 1.

Our framework starts by finetuning a personalized pose-
guided diffusion model on a single video to yield frames
corresponding to given pose sequence. These frames are
then distilled into the video representation to leverage inher-
ent smoothness of the representation for effectively elimi-
nating temporal inconsistencies, yet it may result in a loss of
appearance details. Hence we encode the smoothed frames
into latent space and employ the diffusion model to enhance
the details from the consistent latent guidance in return, ide-
ally closing a feedback loop. Furthermore, we utilize the
implicit video representation as the denoising initialization
for the diffusion model, eventually leading to an iterative
joint optimization algorithm. In this way, we can fully har-
ness the smooth property of our video representation and
the generative capabilities of the diffusion model. Besides,
we propose 3D-aware human flow as a temporal constraint
during the iterative joint optimization to improve the align-
ment between poses and appearance. It explicitly models
the correspondence between pose and human appearance
by mapping the driven signals into the shape of a specific
character, which alleviates the shape misalignment between
guided poses and target characters and maintains the ap-
pearance coherence under various motion.

The contributions are summarized as follows:
• We propose a human performance synthesis framework,

DiffPerformer, that for the first time introduces an im-
plicit video representation as consistent latent guidance to
enforced the temporal consistency of the diffusion model,
enabling high-fidelity, coherent and pose-aligned human
video synthesis.

• We present an iterative joint optimization algorithm to in-
tegrate the diffusion model and the implicit video repre-
sentation in a mutually beneficial way, which fully har-
nesses the smooth property of the video representation
and the generative capabilities of diffusion models.

• We present 3D-aware human flow as a temporal con-
straint to explicitly build the correlation between motion
and specific character, leading to content consistency un-
der various motion.

• Extensive evaluations and applications demonstrate that
our method outperforms the state-of-the-art methods on
pose-guided human video generation.

2. Related Work
Text-to-video Diffusion Model. Despite the remarkable
progress in text-to-image (T2I) diffusion models [13, 36,
37, 44, 54, 59], expanding this progress to the video do-
main is still challenging as these models fail to maintain
temporal consistency across frames. To address these is-
sues, there have been significant efforts in video diffu-
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Figure 2. Overview of DiffPerformer comprised of (a) Pose-guided Video Generation, (b) Implicit Video Representation and (c) Latent
Guidance. These components close a feedback loop that embeds implicit video representation as a temporal proxy to enforce the pose-
guided diffusion model to generate a pose-aligned and coherent human video without temporal inconsistency.

sion models [25, 27, 58], aiming to learn the temporal
distribution from a large-scale video dataset to generate
videos. However, these methods require large-scale video
datasets to train, which makes them computationally ex-
pensive. Recently, many researches explore to make use
of the learned image prior from T2I models for video gen-
eration [1, 3, 21, 65]. For instance, Make-A-Video [41]
adds spatio-temporal convolution and attention layers to
pretrained T2I models for generating consistent video from
given texts. Also based on the T2I model, Latent-Shift [1]
designs a feature offset strategy to splice multi-frame fea-
tures for temporal alignment, while Catanzaro et al. [9] sep-
arate the noise into shared and independent parts to generate
consistent results. Unfortunately, these methods can only
generate short video clips randomly or based on a given text
and do not allow for finer control.
Controllable Diffusion Model. Adding controls over var-
ious attributes into image and video synthesis is important
for real-world content creation. ControlNet [61] provides a
flexible and effective way to add condition for image gen-
eration without modifying the structure of pre-trained dif-
fusion models. Composer [15] decomposes an image into
multiple factors to train a diffusion model with all these
factors, which allows various levels of conditions to con-
trol the generation. Motivated by controlled image gen-
eration methods, VideoComposer [53] proposes a spatial-
temporal condition encoder to inject various control signals
for customized video generation. Tune-a-video [56] extends
spatial-temporal attention in T2I models from one image
to multiple images to produce consistent videos. Besides,
many methods [5, 10, 16, 29, 31, 35, 57] attempt to achieve

zero-shot controllable video editing through fine-tuning T2I
models on a single test video. Based on these approaches,
recent research has been conducted for generating videos
with consistent character and realistic movements. Ma et
al. [26] design inter-frame attention and finetune the pre-
trained ControlNet [61] with many background videos to
generate pose-guided video. Unfortunately, this method is
limited to producing the character with a given text (e.g.,
Iron Man) and cannot be adapted to a specific real-world
person. DreamPose [19] designs an adapter to fuse the en-
coding results of the given reference image to ensure the
authenticity and consistency of a specific person, but it fails
to process challenging motions. DisCo [52] presents an ar-
chitecture with disentangled control to improve the faith-
fulness of human video synthesis. However, it still suffers
from inconsistency due to the lack of temporal information.
Implicit Video Neural Representations. Implicit neural
representations are powerful to represent images [6, 42] and
3D scenes [28, 34, 48] in many applications, such as im-
age process [7, 20] and free-view rendering [22, 33, 39, 40,
63, 64]. The capability of implicit representation also bene-
fits the performance of video processing. OmniMotion [49]
proposes a globally consistent motion representation to es-
timate the motion of every pixel in a video. LNA [20] and
Lu et al. [24] leverage a layer-based implicit video neural
representation to enable video edit. CoDef [32] design a
temporal deformation field as a new type of video repre-
sentation to achieve in video editing. Motivated by these
methods, we also employ an implicit video representation
to enforce the synthesized video to be temporally consistent
in terms of both semantics and appearance.
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Figure 3. Illustration of the pose-guided diffusion model. Given
the reference image and pose sequence, the model generates a
high-fidelity and pose-aligned human video.

3. Overview
3.1. Preliminary: Latent Diffusion Models
Diffusion models (DMs) [13, 44] are generative models de-
signed to learn a data distribution p(x) from the reverse
prediction of a Markovian diffusion process. The latent dif-
fusion model (LDM) [37] is a variant that operates in the
latent space to improve the computational efficiency when
generating high-fidelity images. It leverages an autoencoder
to achieve the transformation between images and latent
spaces and applies a denoising U-Net [38] for noise es-
timation. During training, LDM uses an encoder Eenc to
compress an image I into lower-dimensional latent space
z = Eenc(I). Then, a forward deterministic Gaussian pro-
cess in T time steps is applied to the image latent z to pro-
duce the noisy latent zT ∼ N (0, 1). A denoising U-Net
is trained to predict the noise at each step t ∈ {1, . . . , T}
in order to perform the reverse process. The optimization
objective is formulated as

LLDM = ∥ϵ− ϵθ (zt, c, t)∥2 , (1)

where ϵθ is the denoising U-Net , ϵ is additive Gaussian
noise and c represents the condition embedding. After train-
ing, LDM applies a sampling process to generate z , which
is decoded into a high-resolution image by a decoder Edec.

3.2. Our Framework
A key challenge in generating realistic human videos under
given poses (e.g., keypoints [4], DensePose [11]) is to en-
sure the alignment between the character’s movements and
the driving signals while maintaining temporally consistent
appearance. As shown in Fig. 2, our proposed DiffPer-
former achieves this via constructing an iterative optimiza-
tion loop between implicit video representation and a pose-
guided diffusion model. Its core idea is to regard the tempo-
rally consistent representation as a proxy to enforce a prior
on video smoothness and appearance coherence. Specif-
ically, DiffPerformer first constructs a pose-guided diffu-
sion model and finetunes it on a single video to embed the

character appearance, which alleviates the requirement of
training on large-scale datasets (Sec. 4.1). Next, a hashing-
based implicit video representation is introduced to provide
a consistent latent guidance for diffusion models to ensure
the temporal consistency of the generated video (Sec. 4.2).
We design an iterative optimization loop to connect the la-
tent guidance with the diffusion network, which fully har-
nesses the smooth property of the video representation and
the generative capabilities of the diffusion model (Sec. 4.3).

4. Method
4.1. Pose-guided Diffusion Model
Pretrained image diffusion models [15, 52, 61] have demon-
strated their capability to produce diverse and high-quality
images but are incapable of generating consistent multi-
frame content. To overcome this limitation, we adopt
VideoComposer [53], a pretrained video diffusion model to
construct a pose-guided diffusion model, achieving control-
lable realistic human video generation. The main body of
the pose-guided diffusion model extends the 2D UNet to a
3D UNet by introducing temporal layers to handle the time
dimension. Meanwhile, we extract the features of poses and
concatenate them with the input as shown in Fig. 3. To fur-
ther maintain the character identity, we inject the CLIP em-
beddings of the reference image Iref into the diffusion model
to jointly guide the denoising process.

To better leverage the generative motion priors, we ini-
tialize the U-Net of our pose-guided diffusion model us-
ing the pertained weights provided by VideoComposer [53].
Nonetheless, the absence of pose-aligned data hampers it
from keeping consistent human identities in the synthesized
videos. Therefore, we first use Eq. (1) to finetune the pose-
guided diffusion model on the video of the specific char-
acter in order to further embed the pose-aligned authentic
content into the network weights. Additionally, we also
finetune the decoder of VAE Edec on the given video using

Lenc =

N∑
n=1

∥In − Edec (Eenc (In))∥2 , (2)

where n ∈ {1, . . . , N} represents the video frame index.
After finetuning the diffusion model and the VAE decoder,
we acquire a person-specific pose-guided diffusion model,
from which we synthesize the initial results Vp for the tar-
get character given the pose sequence P . Note that this syn-
thesis process can start from either random noises or other
specific initialization.

4.2. Implicit Video Representation
Although we redesign the diffusion model to adapt to pose-
guided video generation, the stochasticity of the sampling
process leads to undesirable flickering artifacts in the gener-
ated video Vp. Therefore, we improve its temporal smooth-
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ness by introducing an implicit video representation as a
proxy to “distill” the generated video, as discussed below.

4.2.1 Constructing Implicit Video Representation

Following CoDef [32], the implicit video representation
first constructs a canonical space to models the texture and
details of human appearance. It is achieved by leveraging
coordinate-based MLPs C to map the pixel positions into
color values

(r, g, b) = C (x, y) , (3)

where (x, y) represents the pixel coordinates and (r, g, b) is
the corresponding color values. Then we define a temporal
deformation field D with MLPs to predict the observation-
to-canonical deformation of each frame. Therefore, given a
pixel position in frame n, its color values are obtained from
the implicit video representation via

(r, g, b) = C (D (x, y, n)) . (4)

However, dynamic human performance videos exhibit
complex textures and dynamic details, posing challenges
for the networks to represent high-frequency dynamic ap-
pearance details. To overcome this obstacle, we adopt a
3D multi-resolution hashing encoding [30] to encode the
pixel position of each frame (x, y, n) into high-dimensional
features, which allows the representation to capture high-
frequency details. Following InstantNGP [30], the multi-
resolution hash encoding divides the 3D grid in L lev-
els. Each level operates independently and stores feature
vectors at the vertices of a grid. The feature of (x, y, n)
in each level is looked up via tri-linear interpolated from
its 8-neighboring vertices. After applying the 3D multi-
resolution hash encoding, the Eq. (4) can be updated as

(r, g, b) = C (D (H (x, y, n))) , (5)

where H denotes the hash encoding. In this way, the im-
plicit video representation predicts the color values of each
frame from the pixel position efficiently and effectively.

4.2.2 Training Implicit Video Representation

To train our implicit video representation, we penalize the
pixel-wise difference between the video from the diffusion
model and the output of the implicit video representation

Lrec =

N∑
n=1

∥In − C (D (H (x, y, n)))∥1 , (6)

where In is the frame n of Vp.
3D-aware Human Flow. With the aforementioned design,
our video representation can enhance the stability of gener-
ated video in the temporal domain. However, it fails to cor-
rect mistakes like misalignment between poses and appear-
ance due to the lack of pose guidance in the optimization

Figure 4. Visualization of latent features from 200 frames using
T-SNE. Compared with the latent features of noisy images (blue),
the noisy latent (grey) exhibits a greater conformity to the latent
of the smoothed video (orange), which allows the refined video to
preserve the temporal consistency and style of the smoothed video.

process. We mitigate it by proposing a 3D-aware human
flow and regarding it as a temporal constraint to improve
the coherence between appearance and poses. The proposed
flow is calculated from the body mesh estimated from driv-
ing videos, which explicitly builds the correspondence be-
tween given poses and the reference appearance. Due to the
constant mesh topology, it is easy to obtain more accurate
motion directions of the human body compared to learning-
based flow estimation methods, such as RAFT [45].

Specifically, we first utilize an off-the-shelf human mo-
tion capture method [60] to estimate the 3D human mesh
Θn = {θn,βn,πn} of frame n in driving videos, where
θ, β and π represent the pose, shape, and camera param-
eters, respectively. However, directly employing the Θn to
compute temporal constraint is inaccessible due to the shape
difference between the reference person and driven sig-
nals. Therefore, DiffPerformer also extracts the mesh Θr =
{θr,βr,πr} of the reference image and transforms the
shape of the driving pose to the reference character while
maintaining the pose parameters. The transformed mesh of
frame n in driving video is revised as Θt = {θn,βr,πn}.
Then, we render the 2D depth D = {d1, . . . , dN} for all
frames from {Θ1, . . . ,ΘN} and combine the depths and
meshes to determine the 3D visible points in the estimated
meshes. By adopting the nearest neighbor algorithm to
attach each pixel in depth map an index from the visible
points, our strategy takes into account as dense points as
possible for flow calculation. The illustration is shown in
Supp.Mat.. Then, the 3D-aware human flow Fn→n+1 is ob-
tained by calculating the position offset of each point, and
the flow loss is formalized as

Lflow =
N−1∑
n=1

∥∥D (H (x, y, n))−D
(
H

(
(x, y) + Fx,y

n→n+1

)
, n+ 1

)
−Fx,y

n→n+1

∥∥
1
.

(7)
The flow loss efficiently regularizes the consistency of

the appearance and poses. The total loss for the implicit
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Figure 5. Qualitative comparisons on daily videos. Note that target poses are not available during training. Zoom in for the best view.

video representation is finally defined as

Livr = Lrec + λLflow, (8)

where λ is a hyper-parameter. After optimization, the im-
plicit video representation reconstructs a smoothed video
Vs, which alleviates the inconsistency of Vp while main-
taining the intricate performer appearance.

4.3. Iterative Joint Optimization
After obtaining the generated pose-aligned video Vp from
the pose-guided diffusion model (Sec. 4.1), DiffPerformer
leverages Eq. (8) to reconstruct a smoothed result Vs using
implicit video representation (Sec. 4.2). As mentioned be-
fore, the generated pose-aligned video Vp suffers from an
incoherent appearance because of the randomization nature
of the denoising diffusion process. Improved by our implicit
video representation, the smoothed results Vs become co-
herent in the temporal domain but scarifies the fine-grained
details. To combine the best of both worlds, we propose
an iterative joint optimization strategy to borrow the consis-
tency of the smoothed video while refining its details using
the pose-guided diffusion model, as shown in Fig. 2.

Specifically, we adopt the outputs of implicit video rep-
resentation as the latent guidance of diffusion model, and
regard the outputs of denoising diffusion process as the op-
timization goal of implicit video representation. This loop
optimization strategy harnesses the smooth property of our

implicit video representation and the generative capabilities
of the pose-guided diffusion model, leading high-fidelity
human video synthesis while maintaining the appearance
coherence according to the given poses.
Latent Guidance. To refine the smoothed video using
the diffusion model, an intuitive idea is directly adding ran-
dom noise to the smoothed video and re-denoise it. How-
ever, since the denoising process is operated on the latent
space from VAE, adding noise on the image level destroys
the original consistency of the video and perturbs the direc-
tion of generation. Considering this shortcoming, we adopt
to add noise to the smoothed video in latent space and take
the noisy latent features as the denoising initialization for
the diffusion model. Compared with noisy frames, noised
latent features closely resemble the original video distribu-
tion to maintain temporal consistency, which is illustrated
in Fig. 4. This enables the sampling of the diffusion model
along a consistent direction from video guidance. Mean-
while, the added noise allows the diffusion model to refine
the details of the smoothed video. Then, Vp is updated with
the generated video guided by the consistent latent features.
Loop Optimization. To stabilize and accelerate the opti-
mization process, we design a loop optimization strategy.
Specifically, we let Vp be obtained through refining Vs using
the diffusion model, and in return take Vp as the optimiza-
tion goal for Vs as in Eq. (6). As the optimization proceeds,
Vp is regularly updated every 2000 optimization steps of Vs.
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Figure 6. Qualitative comparisons on the Tiktok dataset. Zoom in
for the best view.

To warm up the optimization loop, we initialize the implicit
video representation using the reference image Iref at the
beginning of optimization to facilitate faster convergence.
The detailed procedure is shown in Supp.Mat.. In addition,
as the details of the Vs gradually converge, the intensity
of the noise added to the latent decreases in accordance,
which reduces the impact of the generated randomness on
the video content. With such iterative joint optimization,
DiffPerformer can synthesize realistic human videos with a
temporally consistent, pose-aligned human appearance.

5. Experiments
5.1. Experimental Setup

Training Details. We implement DiffPerformer in the Py-
torch framework and all experiments are conducted on a
single NVidia RTX 3090 GPU with resolution 512 × 512.
For the pose-guided diffusion model, we finetune it on each
instance for 10 epochs with a learning rate of 5 × 10−6.
The VAE decoder is finetuned for 2000 steps with a learn-
ing rate of 5 × 10−5. We use a DDIM sampler [43] for
50 steps when performing the denoising diffusion process,
and the implicit video representation is optimized in 10000
steps with a learning rate of 1× 10−3.
Evaluation Metrics. We evaluate our method and the base-
lines with the metrics of both the per-frame quality and

Table 1. Quantitative evaluation on test poses.
Method Fast-Vid2Vid [66] DreamPose [19] DisCo [52] Ours

PSNR ↑ 30.4 28.00 29.73 30.72
SSIM ↑ 0.64 0.42 0.42 0.69
LPIPS ↓ 0.29 0.41 0.49 0.22
FID ↓ 38.42 69.84 55.96 36.00
L1 ↓ 5.96E-5 1.01E-4 6.29E-5 4.33E-5

FID-VID ↓ 27.06 32.98 23.67 22.32
FVD ↓ 298.79 529.13 326.12 254.39

w/o Opt. Image Opt. IVR Opt. (Ours)Pose

pn

pn+1

Figure 7. Ablation study of the implicit video representation.

the temporal quality. To evaluate the image frame qual-
ity, we use three widely-adopted metrics, i.e., PSNR [14],
SSIM [55], LPIPS [62], FID [12] and L1. For video quality
evaluation, we report FID-VID [2] and FVD [46].

5.2. Comparison

To prove the superiority of our method, we compare with
two state-of-the-art methods for diffusion-based human
video generation, namely Disco [52] and DreamPose [19].
For a fair comparison, we use the provided checkpoint of
these methods and finetune them on the target video. In
addition, we also compare with Fast-Vid2Vid [66], a rep-
resentative GAN-based method for human video synthesis.
The experiments are conducted on causally captured videos
and the TikTok dataset [17]. Details in Supp.Mat..
Qualitative Comparison. We evaluate the qualitative per-
formance of the proposed DiffPerformer as shown in Figs. 5
and 6. Fig. 5 shows the generation from two kinds of pose
signals (keypoints and densepose) on daily videos. Fast-
vid2vid and DisCo suffer from artifacts and are unrealis-
tic, especially in the area of the face. On the contrary, our
method generates facial results very close to the reference
frame and exhibits more detail. Besides, DreamPose fails to
restore the accurate color and obtains pose misaligned and
inconsistent frames. In Fig. 6, we further compare these
methods on the TikTok dataset to validate the performance
in various poses (e.g., dancing). It can be seen that the
face identity is lost in the compared methods. Meanwhile,
the details like limbs blur, if not disappear, in their results.
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Driven Pose w/o 3DHF with 3DHF 
Figure 8. Ablation study of the 3D-aware human flow. The flow
helps improve the accuracy of pose alignment.

Besides, DreamPose produces an unreasonable body shape
compared with the reference frame. These results indi-
cate that our method realizes higher-fidelity and temporally
more consistent results, significantly outperforming others
on identity preservation, photo-realism and pose alignment.
More results and analysis are provided in Supp.Mat..
Quantitative Comparison. Table 1 reports the quantita-
tive comparison among all methods. As we can see, Diff-
Performer outperforms state-of-the-art methods in terms
of all metrics, indicating that our results are perceptually
best. Image-level metrics (PSNR, SSIM, LPIPS, FID, L1)
demonstrate that our method can synthesize the most real-
istic and compelling results than current state-of-the-arts.
Moreover, FID-VID and FVD verify that DiffPerformer is
able to generate temporally consistent videos with high-
fidelity content, notably surpassing existing approaches.

5.3. Ablation Study

Implicit Video Representation. Implicit video representa-
tion (denoted as IVR) is the core component that improves
the temporal consistency of the generated videos from the
pose-guided diffusion. To verify its effectiveness, we con-
duct experiments with three different settings: (1) output of
the pose-guided diffusion model (w/o Opt.), (2) regarding
the coarse video from pose-guided diffusion as smoothed
video in Fig. 2 (Image Opt.), (3) the whole framework of
DiffPerformer (IVR Opt.). We take two adjacent frames for
visualisation, and the results are shown in Fig. 7. We can
see that the result of the diffusion process suffers from tem-
poral discontinuities in pose and facial identity. Besides, re-
fining the original output using the diffusion model cannot
improve the temporal consistency and even has the problem
of color corruption. On the contrary, IVR ensures the tem-
poral consistency and enhance the texture details. Thanks
to the flow loss in IVR, the pose misalignment is also cor-
rected in the refined results. More experiment settings and
analysis about IVR are provided in Supp.Mat..
3D-aware Human Flow. 3D-aware human flow (denoted
as 3DHF) is presented to model the correspondence be-
tween appearance and poses during optimization. To eval-
uate its effectiveness, we conduct various experiments, and
present the results in Fig. 8. We can see that when removing
the constraint of 3D-aware human flow in the optimization,

Driven Pose w/o finetuned VAE finetuned VAE GT
Figure 9. Ablation of VAE Finetuning. Finetuning the VAE de-
coder can yield more photorealistic details.

the pose misalignment occurs especially in the body parts
of large-magnitude motion (e.g., limbs). In other words, our
3D-aware human flow is beneficial for keeping the content
consistent with challenging poses.
VAE Decoder Finetuned. To generate more photorealistic
results, we finetune the decoder of VAE in the pose-guided
diffusion model. We conduct the experiments to study the
effects of finetuning. The comparative results are shown
in Fig. 9, which illustrates that the finetuned VAE recovers
more details especially in the facial area. Meanwhile, the
results also get rid of blurry appearance and become more
clear and consistent with character appearance.

6. Conclusion and Discussion
This paper proposes a novel framework, DiffPerfomer,
to generate high-fidelity and temporally consistent human
video according to driving poses. DiffPerformer introduces
an implicit video representation as guidance for the fine-
tuned diffusion model to enforce a prior on video smooth-
ness and appearance coherence, which offers a different per-
spective to address the problem of temporal inconsistency
in the generation process. The proposed iterative joint op-
timization algorithm with 3D-aware human flow makes the
representation and diffusion model mutually beneficial in
latent space, improving temporal consistency and enhanc-
ing the details under various poses. Thanks to the design of
iterative learning of latent guidance, DiffPerformer exhibits
superior effectiveness in generating human video.
Limitations. Due to the lack of background content guid-
ance, our method does not work as well in videos under a
moving camera. Besides, due to the use of diffusion model,
it is more time-consuming compared to methods that do not
rely on diffusion models.
Potential Social Impact. DiffPerformer possesses the po-
tential to revolutionize the content creation industry. How-
ever, since our method can make realistic personalized ap-
pearances, it should be careful about the possibility of mis-
use, like creating deceptive “deepfakes”.
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