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Abstract

The performance of deep learning models is intrinsically
tied to the quality, volume, and relevance of their training
data. Gathering ample data for production scenarios of-
ten demands significant time and resources. Among various
strategies, data augmentation circumvents exhaustive data
collection by generating new data points from existing ones.
However, traditional augmentation techniques can be less
effective amidst a shift in training and testing distributions.

This paper explores the potential of synthetic data by
leveraging large pre-trained models for data augmenta-
tion, especially when confronted with distribution shifts. Al-
though recent advancements in generative models have en-
abled several prior works in cross-distribution data gener-
ation, they require model fine-tuning and a complex setup.
To bypass these shortcomings, we introduce Domain Gap
Embeddings (DoGE), a plug-and-play semantic data aug-
mentation framework in a cross-distribution few-shot set-
ting. Our method extracts disparities between source and
desired data distributions in a latent form, and subsequently
steers a generative process to supplement the training set
with endless diverse synthetic samples. Our evaluations,
conducted on a subpopulation shift and three domain adap-
tation scenarios under a few-shot paradigm, reveal that our
versatile method improves performance across tasks with-
out needing hands-on intervention or intricate fine-tuning.
DoGE paves the way to effortlessly generate realistic, con-
trollable synthetic datasets following the test distributions,
bolstering real-world efficacy for downstream task models.

1. Introduction

The swift progression of computer vision in the past decade
can be attributed to improved deep learning algorithms
for large-scale training, increased computing power, and
the availability of vast datasets such as ImageNet [15]
and LAION-5B [66]. While such internet-scale real-world
datasets allow to train general vision models, they are not
tailored to application scenarios with specific data distribu-

*Equal contribution.
TSource code available at https://domain-gap-embeddings.github.io/.
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Figure 1. Overview. In real-world applications, computer vision
models often suffer from discrepancies between training and test-
ing data distributions. To alleviate this problem, we propose a
novel dataset augmentation method to complement the training
dataset with synthetic images. Given (a) a source dataset (e.g.,
real photos), and (b) a few samples from a target distribution (e.g.,
paintings), we extract the distribution differences into (c) Domain
Gap Embeddings, which enables generating (d) augmented syn-
thetic data to enhance the model performance.

tions, i.e., the cross-distribution adaptation, which can lead
to serious concerns in reliability [41, 63]. This issue often
requires costly data collection where models operate.

Among various solutions to this issue, data augmenta-
tion has been explored to alleviate such extensive data col-
lection. However, images generated with traditional data
augmentation through flipping, gamma adjustments, noise,
or more sophisticated methods [14, 81] often fail to align
the augmented data with shifted test distributions. Although
there are cross-domain augmentation techniques [43, 44],
these strategies are task-specific and not easily transferable
to other problems. Besides these data-centric efforts, unsu-
pervised domain adaptation (UDA) is an active field of re-
search for such problems from the model aspect (e.g., [32]).
Our approach distinguishes itself from the above by its abil-
ity to produce endless data with much more variability and
the need for much fewer samples (i.e., few-shot).

To mitigate the distribution discrepancy issues, synthetic
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datasets have also been studied as a more controllable,
diverse, high-quality supplement to the training dataset.
Traditionally, simulators and graphics engines are the pri-
mary sources of synthetic datasets [56, 70, 76]. How-
ever, they typically suffer from unrealism (i.e., domain gap)
and bounded diversity [25]. With the advancement of vi-
sual generative models, they are leveraged for in-domain
dataset synthesis in recent works [1, 34, 83]. Nonetheless,
very few dataset generation methods [3] focus on the cross-
distribution setting guided by just a few input target sam-
ples (e.g., 20 images), which is realistic in many scenarios
of interest. Moreover, to the best of our knowledge, none
achieves target dataset synthesis in such a setting without
fine-tuning. The question that we try to address in this pa-
per is: Can we use off-the-shelf large pre-trained models
(LPMs) as synthetic data generators for effective few-shot
dataset augmentation towards specific data distributions?

To address this question, we propose DoGE, a few-shot
cross-distribution dataset generation framework that is task-
agnostic and inference-only, as shown in Figure 1. The
framework takes (a) a source distribution (i.e., the origi-
nal training dataset), and (b) a few samples from a target
distribution in the application context. We propose to ex-
tract the distribution discrepancies (e.g., semantic changes,
style transfer) into (c) representations in the CLIP latent
space [58], named the Domain Gap Embeddings. We then
utilize the extracted gap representations to augment source
data to generate (d) synthetic datasets that follow the same
distribution as the provided few target images.

Our method successfully generates synthetic supplemen-
tary datasets as long as (1) the latent representation space,
CLIP, has the capacity to express the distribution differ-
ences, and (2) the generative diffusion models, Stable Un-
CLIP [61], is capable of generating in the target distribu-
tion. Under these loose constraints, we show that our syn-
thetic datasets from DoGE significantly improve model per-
formance in various computer vision tasks, including sub-
population shifts and domain adaptation. Moreover, DoGE
is compatible with and complementary to parallel methods
such as UDA and fine-tuning. In summary, DoGE provides
the following contributions:

e Accessibility: Our framework offers a plug-and-play
dataset augmentation experience. With a source dataset
to augment, users only need to provide a few unlabeled
images from the target distribution to obtain an effective
synthetic dataset in the desired domain.

* Efficiency: Our cross-distribution dataset augmentation
framework generates data in the target domain without the
need for fine-tuning. We directly take advantage of public
LPMs, and each step can be inference-only.

» Effectiveness: The synthetic datasets from our genera-
tion pipeline can successfully improve the task model per-
formance by a significant margin.

2. Related Works

While real-world images are cornerstones of computer vi-
sion, as modern vision datasets increase in size, it has be-
come gradually more challenging to scrutinize and clean
the collected data. The difficulty of curating large datasets
poses potential issues such as noisy labels and dataset im-
balance [5, 8, 52]. Hence synthetic data became a popular
alternative with high controllability and accessiblility.

Generative Models for Image Data: Recent advances in
generative models have provided powerful tools for syn-
thetic data generation. Generative Adversarial Network
(GAN) pioneered a new direction for high-quality image
synthesis [6, 21, 37, 38]. In parallel, diffusion mod-
els [28, 29, 51, 69] demonstrate their promising potential,
leading to many astonishing works including GLIDE [50],
DALLSE 2 [59], Imagen [64], and Stable Diffusion [61].
Besides generative backbones, fine-grained controllabil-
ity of the generative models is also essential for data syn-
thesis. In the direction of GANs, CycleGAN [86], Cy-
CADA [30], and CLIP-enabled methods [54, 87] achieved
effective image-to-image transfer and targeted editing to-
ward desired distributions. For diffusion models, various
conditioning techniques regulate the generations. Some
methods [7, 26] leverage the cross-attention maps to apply
accurate prompt-based augmentations. Other works [18,
22, 75, 80] learn special tokens and embeddings to pre-
serve identities during data generation. Similarly, methods
in [23, 33, 39, 40, 62] fine-tune the diffusion models for de-
sired generation, while image-to-image synthesis [49, 77] is
also critical to data augmentation. Finally, ControlNet [82]
uses condition maps to control the generation accurately.

Synthetic Data Generation: With such extensive gen-
eration capability and fine-grained controllability, gener-
ative models have been leveraged to populate synthetic
datasets [9, 34]. GANs have been used for effective syn-
thetic dataset generation through latent space manipulation
[4, 42, 47, 83]. Enabled by the abundant generation con-
trols in diffusion-based networks, more recent works lever-
age diffusion models to improve data diversity by expand-
ing existing datasets [2, 57, 68, 71, 74, 84].

While the above methods can generally expand a given
dataset, they suffer from subpopulation and domain shifts
in datasets. Regarding subpopulation shifts, Fill-Up [67] in-
corporates Textual Inversion [18] to fix imbalanced datasets
by uneven generation but requires optimizing a token for
each class. To address domain shifts, some methods [16, 79]
utilize captioning models to describe target distributions
and construct new prompts for generation. However, since
the expressibility of texts is limited, other methods also re-
sort to fine-tuning for adaptation. Assuming access to the
full target dataset, solutions in [1, 55] fine-tuned Imagen and
DDPM [29] for better in-domain generations. Under the
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Figure 2. Framework: (a) The source dataset and (b) a few target data samples are first (c) encoded in the CLIP embedding space.
We then (d) extract the representation, named the Domain Gap Embedding, between the source and target distributions. The Domain
Gap Embedding augments source image embeddings to construct the latent input to (e) the generative model (Stable UnCLIP), which
generates (f) a synthetic dataset following the target distribution. Optionally (dotted lines), we can (g) integrate ControlNet to provide

further structural guidance to preserve the source image structures.

few-shot setup where only a few target samples are avail-
able, DomainStudio [85] introduced similarity loss to con-
quer the over-fitting issue in fine-tuning, and DATUM [3]
proposed to fine-tune the model into the target domain with
crops of the few target samples. Nonetheless, such meth-
ods require domain-specific fine-tuning and may introduce
training algorithm modification, while our method, with
better performance in our experiment setups, can be directly
applied off the shelf for the given target images.

3. Method

Recognizing the lack of practical and readily available
cross-distribution dataset synthesis methods, we introduce
a novel, model-agnostic few-shot dataset augmentation
framework. Our framework possesses the ability to cre-
ate synthetic samples that conform to the target distribution
based on a minimal set of input images. It is characterized
by its simplicity and effectiveness, and, in its fundamental
configuration, does not necessitate any training.

Our framework consists of two main components: mod-
eling the domain gap and generating across the domain gap,
shown in Fig. 2. To generate from one dataset distribution
to another, we first capture the differences between them
as Domain Gap Embeddings, shown in Sec. 3.1. With the
representation for the distribution gap, Sec. 3.2 illustrates
our method for generating datasets from the source to tar-
get distribution, with an optional trick to preserve image
quality. To further improve the usefulness of the gener-
ated dataset, we also conduct confidence-based generation
cleaning methods on downstream tasks, shown in Sec. 3.3.

3.1. Domain Gap Extraction

When capturing differences in data distributions, fine-
tuning generative models across domains can be costly, and
prompts may not articulate the discrepancies. Hence, we
focus on modeling the distribution differences in the latent

space. The recent research in visual representation learning
introduces powerful semantic latent spaces such as CLIP.
CLIP is assumed to have sufficient knowledge generaliza-
tion for common settings, and its linear vector composi-
tionality enables semantically meaningful operations [72].
In our framework, we choose to leverage the CLIP latent
space to capture the gap between data distributions and di-
rectly apply it in data augmentation. Such captured distribu-
tion discrepancies are named the Domain Gap Embeddings.

Fig. 2 (left) shows the domain gap extraction process.
The input consists of a source dataset Ds (Fig. 2a), with
|Ds| = N, and a few data samples D7 = {y; }, (Fig. 2b)
from a different target distribution with m < N. We
first encode images from a randomly sampled subset Dg =
{z;}?_; € Ds and D into the CLIP space via a CLIP im-
age encoder &7 (Fig. 2¢). Denoting the image embeddings
as zp, = &z(x;) and 2z, = Ez(y;), we study two options as
the Domain Gap Extractor (Fig. 2d) to capture the gap rep-
resentation Az. A straightforward way is computing the ex-
pected differences of all pairs between the source and target
dataset, which is equivalent to the difference of the means
of the images assuming D is independent of D, i.e.,

Az = EmiEDs [EijDT [gf(yj) - gI(xZ)]] (D
_ E;n:l Zyj o Z?:l Zwi . (2)
m n

Another way to extract the gap is through Principal Compo-
nent Analysis (PCA) [17]. Since the first principal direction
from PCA denotes the direction where a distribution varies
the most, we leverage this property and apply PCA on a
joint set {2, }7y + {2y, }J=, with n = m. The first prin-
cipal direction from PCA is then considered as the domain
gap representation Az. From empirical results shown in
Appendix A, we observe that the first option of computing
the domain gap (Eq. (2)) yields better generation quality.
The impact of the values of n and m is also addressed in
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Appendix A. For the rest of this paper, we adopt this mech-
anism as our Domain Gap Extractor, yet users can easily
design and swap in their own extractor in our framework.

3.2. Target Dataset Generation

With the domain gap extracted into the latent form Az, we
augment source images to generate the synthetic dataset, as
shown in the right half of Fig. 2. Capturing the gap Az
between distributions in the CLIP space opens up methods
to generate data across domains. While various diffusion-
based generative models accept texts or images as input or
conditions, our method contrasts with these in that we di-
rectly interact with CLIP latent embeddings. Such is made
possible by the UnCLIP approach introduced in DALL<E 2,
specifically the Stable UnCLIP model [61] (Fig. 2e). It is
a fine-tuned Stable Diffusion model that accepts CLIP im-
age embeddings directly as input. Hence, in this paper, we
choose the Stable UnCLIP model, denoted as GG as our gen-
eration backbone in the framework.

Given the distribution gap Az and source image embed-
dings {z, } both in the CLIP space, we augment the source
image representations by simply adding the gap Az to them.
To further increase diversity, we also introduce small Gaus-
sian random perturbations € ~ N'(0,10731) in the augmen-
tation. Similarly, we introduce a distributional edit strength
scalar C' ~ N(c,0.05). The impact of values of ¢ is dis-
cussed in Sec. 4.4.2. Hence, the generated k images, de-
noted as {g; le (Fig. 2f) are obtained as:

i = G(zg; + C - Az +¢). 3)

The above two steps form our base framework and
can already achieve effective target dataset generation
(details in Sec. 4). Nonetheless, in specific cases, additional
techniques can be adopted for higher generation quality.

Finer Generation Control: In some cases, it is ben-
eficial to preserve the visual structure of the original source
data to be augmented. For example, maintaining the object
structure can further ensure less deformation or corruption
in the generation. Because the expressiveness of one vector
in the CLIP space is limited, a fine-grained structural
control can introduce more detailed visual guidance on top
of our domain gap embeddings.

Therefore, we integrate ControlNet into our generative
module for accurate image structure control during the gen-
eration. As shown in Fig. 2g, we can feed the input source
data through a control image extractor. Given a source im-
age, this module outputs a series of domain-invariant con-
trol maps for generation, including Canny edge maps [10]
and HED edge maps [78], and processing depth and seg-
mentation maps from ground truth labels of source data, if
available. During the generation phase, we feed these con-
trol maps into our revised Stable UnCLIP model for more

refined generations. This guidance enriches our augmenta-
tion with the compositional information, which empirically
brings further improvements as shown in Sec. 4.3.

3.3. Confidence-Based Generation Cleaning

While the ControlNet integration preserves the structure
and quality of our generated datasets, it is not safe to assume
that every synthetic image is valid and helpful data. Inspired
by [53], we propose a confidence-based filtering mechanism
to remove such poor generations. Given a downstream task
model trained on the source data, e.g., a classifier, we fine-
tune this model with our data augmentation to improve test
performance. At each iteration during fine-tuning, before
training we first perform inference with the current model
to filter out augmented data with highly confident but in-
correct predictions. The confidence is determined as the
highest predicted softmax score s among all classes. With a
threshold parameter ¢, we discard synthetic samples where
the model prediction is wrong but its confidence is greater
than the threshold, i.e., s > t. We only temporarily discard
samples in each training step but never eliminate any data
from the dataset. Please see Appendix B for details.

4. Experiments

This section illustrates the versatility and efficacy of DoGE,
demonstrating its ability to produce synthetic datasets bene-
fiting various computer vision challenges. Sec. 4.1 presents
the standard experimental setups employed in our studies.
Subsequently, Sec. 4.2 addresses issues related to imbal-
anced class distributions and showcases effectiveness un-
der the presence of spurious correlations. In Sec. 4.3, we
delve into the effectiveness of our dataset generation ap-
proach under common domain adaptation problems. In ad-
dition to task-based evaluations, we conduct ablation stud-
ies concerning our generative pipeline in Sec. 4.4. These
studies serve to provide both qualitative and quantitative as-
sessments of the synthetic datasets created through DoGE.

4.1. Experimental Setup

Baselines: For classification tasks in Sec. 4.2 and Sec. 4.3,
base refers to the models trained on the source data in the
cross-domain setting only. Subsequently, we fine-tuned the
base models on the augmented datasets to assess the effi-
cacy of data generation methods. We compared against one
traditional augmentation, RandAugment [14], and two gen-
erative methods, DA-Fusion [71] and DATUM [3]. For fair
comparisons, we kept the number of generated images the
same within each task across all generative methods.

Implementation: For base classification models we fine-
tuned ImageNet pre-trained ResNet50 [24] models for 20
epochs with AdamW optimizer [46] at a constant learning
rate of 1073 and a batch size of 128. For each generative
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Figure 3. Examples of synthetic CelebA data generated from (a) Source into (b) Target distribution. Under subpopulation shift, we
generated data from the majority subpopulation (a) into the under-represented distribution (b). (c) shows the synthetic data generated from
our pipeline. The results demonstrate our capability to apply semantic augmentation in accordance with gaps between two distributions.

Method Test Accuracy (%)
Base 38.00
Oversampling 53.80
RandAugment [14] 62.40
DA-Fusion [71] 59.72
DoGE (Ours) 67.16

Table 1. Test Accuracy on our constructed CelebA imbalanced
classification problem. We evaluated our method against four
baselines. This table shows that synthetic data from DoGE has a
significant advantage over other methods.

baseline and our method, the base model is further fine-
tuned on respective augmented dataset for 20 epochs, with
AdamW optimizer and a batch size of 256. For CelebA, we
used a constant learning rate of 10~3. For DomainNet and
FMoW, the classification head was trained with a learning
rate of 1074, and its preceding layers with 10~°. For all
datasets, confidence-based generation cleaning was applied
at training time with a threshold ¢ = 0.9. After fine-tuning,
the final models were saved for evaluation. We also ex-
tended to segmentation problems where we directly adopted
the synthetic data evaluation pipeline generously published
in DATUM, the current state-of-the-art method in one-shot
UDA for self-driving segmentation problems.

4.2. Subpopulation Shift

In our initial experiment, we sought to assess the effec-
tiveness of our solution in addressing the subpopulation
shift problem. Specifically, we aimed to evaluate how well
DoGE could mitigate imbalanced training data distributions
that result in spurious correlations.

We curated subsets of facial data from the CelebA
dataset, intentionally introducing imbalances in certain at-
tributes. Given an attribute (e.g., perceived gender), we se-
lected a secondary attribute (e.g., eyeglasses), as the bias
factor. Then, we sampled 1000 males wearing eyeglasses
and 1000 females without eyeglasses, denoted as the source
(majority distribution) in Fig. 3a. We also sampled 20 im-
ages per class with the opposite secondary attribute (i.e.,

TN

Method Test Accuracy (%)
Base 38.00
LoRA [33] 56.05
LoRA + DoGE (Ours) 74.28

Table 2. Test Accuracy on CelebA imbalanced classification
problem with fine-tuned generative models. We applied our
method on top of a personalized generator via LoRA and show
that DoGE is complementary to adaptation via personalization.

bias), denoted as the target (minority distribution) in Fig. 3b.
Training a perceived gender classification model on this im-
balanced subset naturally introduced bias toward eyeglasses
over gender.

To supplement this imbalanced training set, we first ex-
tracted the distribution gap for each class from randomly
sampled only 10 source and 10 target images. Then, DoGE
generated 1000 synthetic samples per class in the target (mi-
nority) distributions with ¢ = 1.0. Fig. 3c shows the gen-
erated images following the target distribution where eye-
glasses are successfully added or removed respectively to
follow the under-represented subpopulation.

After the data generation, our new training set consists of
1000 sampled source data (Fig. 3a) and 1000 generated tar-
get data (Fig. 3c). For the test set, we sampled 1000 images
per class from the target (minority) distribution (Fig. 3b) in
CelebA. For comparison, we first oversampled target data
by duplication, then applied Rand Augment to this oversam-
pled training set. DA-Fusion was also used to expand each
class in the target data. All baselines generated the same
amount of data in the evaluation as ours. Tab. 1 shows the
test accuracy after training on our synthetic data along with
the baseline performances to compare with. DoGE achieved
the best test accuracy among the baselines.

Since fine-tuning is studied as a powerful method for tar-
geted generation, we demonstrated our compatibility with
LoRA [33] and generated synthetic data using a fine-tuned
Stable UnCLIP model. The results in Tab. 2 indicate that
our method complements adaptation via fine-tuning.
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Figure 4. Examples of synthetic DomainNet data, generated from source data into four different target domains. Each generation
(bottom) was augmented from the source image (top) using our pipeline with ControlNet. The results demonstrate our capability to

augment data in accordance with gaps between distributions.

Method DomainNet Acc (%) FMoW Acc (%)
Painting  Infograph  Clipart Sketch Asia Americas  Oceania
Base 34.64 14.48 39.06 24.70 66.27 64.65 74.42
RandAugment [14]  37.20 15.90 41.08 26.26 64.35 70.47 74.29
DA-Fusion [71] 39.57 16.54 42.22 28.27 70.97 76.71 77.32
DATUM [3] 38.19 17.80 40.96 29.46 71.63 78.35 75.24
DoGE (Ours) 44.007° 187170 45.6173 34963 72.62% 1 78.94F% 78.14%1

Table 3. Test accuracy in unsupervised domain adaptation classification problems. We evaluated against four baselines on the left
column. For DomainNet, the task is to adopt a model with a Real domain training dataset to Painting, Inforgraph, Clipart, and Sketch
domains. For FMoW, for each region (Asia, Americas, Oceania), we adopted a model with old satellite images (2002-12) to perform well
on new satellite data (2016-17). The table shows that our methods achieved the highest test accuracy in every category.

Method Test Acc (%) A
Base 32.86 —
DoGE 38.64 +5.78
DoGE + ControlNet 40.29 +1.65

DoGE + ControlNet + Cleaning 41.30 +1.01

Table 4. Incremental improvements on DomainNet (Real —
Painting) problem. We gradually added our components to the
base model and evaluated the effectiveness of each part.

4.3. Unsupervised Domain Adaptation

4.3.1 Classification Tasks

DomainNet consists of 0.6 million images of 345 classes
distributed across 6 unique domains including Real (R), Cli-
part (C), Infograph (I), Painting (P), Quickdraw (Q) and
Sketch (S). We evaluated our method on 4 domain adapta-
tion tasks from R to P, S, C and I, using official test sets. In
each task, we randomly sampled 345 images from both the
source (i.e., R) and target (i.e., P, S, C or I) distribution to
calculate the domain gap. Synthetic P and S images were
generated with edit strength mean ¢ = 1.3, I with ¢ = 1.1,
and C with ¢ = 1.5. Sec. 4.4.2 discusses the choice of val-
ues for c. For each class DoGE generated 128 images with
ControlNet (Fig. 4) to supplement the training data for fine-
tuning, increasing the dataset size by approximately 30%.
Tab. 4 shows the incremental improvements of training

Test Acc (%)

UDAMethod 0 'y GE w/DoGE A

BSP[11] 46.76 4734 +0.58
DANN [19] 47.01 49.68  +2.67
CDAN [45] 51.66 5211 +0.45
MCD [65] 50.88 5214 +1.26
MCC [35] 50.08 5295  +2.87
MemSAC [36]  52.27 5416 +1.89

Table 5. Test Accuracy of UDA methods on the DomainNet
(Real — Painting) problem. We evaluated existing UDA meth-
ods with and without DoGE. The table shows that our approach is
compatible with and complementary to UDA methods.

on Real domain and testing on Painting domain. Stand-
alone DoGE improved w.r.t standard approaches and addi-
tional techniques further increased our advantages. Tab. 3
shows full comparisons on all four domains, and DoGE
achieved the best accuracy in all settings.

To demonstrate DoGE’s compatibility and improve-
ments to traditional UDA solutions, we evaluated our per-
formance based on six UDA methods. For each method, we
incorporated DoGE by simply adding our synthetic images
to the training dataset. Tab. 5 shows that our method can
help further improve UDA methods in general. Please see
Appendix D for the complete experiment.
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Figure 5. Examples of synthetic self-driving data generated from (a) GTAS source images into (b) Cityscapes target domain. (c)
shows the synthetic data generated from our pipeline without any improvement tricks. We also demonstrated the generation with scene
structure preserved by ControlNet (conditioned on canny edges and source segmentation ground truth) in (d). The synthetic data are then
used in unsupervised domain adaptation methods to adapt models across domains.

(a) Asia

(b) Americas (¢) Oceania
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Aquaculture Factory/Powerplant ~ Dam Port

Figure 6. Examples of synthetic FMoW data, generated from
Source (2002-12) into Target (2016-17) distributions in 3 regions
using our method with ControlNet. The results illustrate our ca-
pacity to generate images across temporal discrepancies.

FMoW-WILDS [41] is a modified version of the Func-
tional Map of the World [12] dataset. It includes 0.5 mil-
lion RGB satellite images labeled with 62 land use cate-
gories, with domains defined by their captured years and
geographic regions spanning Asia, Africa, Americas, Ocea-
nia and Europe. For this paper, we focused on the domain
adaptation performance across different time periods within
three regions: Asia, Americas, and Oceania. Specifically,
within each region, the source and target domain refer to
the satellite images taken between 2002-12 and 2016-17.
We randomly sampled 64 images from each domain to cal-
culate the gap. For each land use category, DoGE generated
64 images using ControlNet (e.g., Fig. 6) with edit strength
mean ¢ = 1.3, accounting for approximately 10% increase
in the dataset size. Tab. 3 shows that DoGE leads to higher
performance than baselines in all experiments.

4.3.2 Segmentation Task

Besides classification problems, our method is also gener-
ally applicable to other computer vision tasks. To illustrate
the versatility and generality of DoGE, we demonstrate our
capability to improve cross-domain segmentation problems.

Method Test Accuracy (%)
DAFormer [31] 48.2
DAFormer + DATUM [3] 56.4
DAFormer + DoGE (Ours) 57.3

Table 6. GTAS — Cityscapes cross-domain segmentation. We
used DAFormer as our UDA baseline. DATUM and DoGE are tar-
get data generators applied on top of DAFormer. Our performance
is at par with DATUM while exempt from any training.

In this experiment, we chose GTAS [60] as our source
domain and Cityscapes [13] as our target domain. Us-
ing the full GTAS dataset and 20 unlabeled images from
the Cityscapes, we generated synthetic data in Fig. 5 with
and without ControlNet. We evaluated our synthetic gen-
eration under the scope of UDA. As baselines, we chose
DAFormer [31], a UDA segmentation method, and DATUM
combined with DAFormer. Similar to DATUM, we evalu-
ated our method on top of DAFormer, i.e., expanding the
unlabeled data available to DAFormer. Tab. 6 shows DoGE
is able to achieve at-par performance with DATUM. More-
over, DATUM requires fine-tuning a Stable Diffusion model
while ours is inference-only in a plug-and-play fashion.

4.4. Ablation Studies
4.4.1 Generation Quality

The usefulness of our synthetic data is directly dependent
on the generation quality. We focus on two aspects to assess
the generated images: the FID score [27] for image quality,
and the t-SNE [73] for distribution alignment.

The exploration was conducted under our DomainNet
Real—Painting experiments. Tab. 7 shows that under FID
metrics with respect to DomainNet Painting images, our
generation achieved the best quality with respect to the
Painting data from DomainNet. To visualize the distribution
alignment of our generation, we plotted the t-SNE graph
of source (Real domain), target (Painting domain), and our
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Data Source FID Score ({)
Source Data 30.98
DA-Fusion [71] 40.20
DATUM [3] 219.00
DoGE (Ours) 24.86
DoGE w/ ControlNet (Ours) 18.25

Table 7. FID scores against the DomainNet painting images.
We evaluated the FID scores against the DomainNet Painting sam-
ples on the DomainNet Real images, the synthetic data from [71]
and [3], and our generations. The table shows that our synthesis
achieved the best FID score among the baselines.

DomainNet (Real — Painting)

B30 0%, 2 %

Source Centroid
Bl Target Centroid R oo
@ Generation Centroid « ¥+ o4

Figure 7. The t-SNE plots of the source, target, and generated
data. In our DomainNet Real — Painting experiment, we drew a
t-SNE plot to visualize distributions of source, target, and our gen-
eration. Our generation is well-aligned with the target distribution.

synthetic painting images in Fig. 7. It shows that our syn-
thetic data are successfully augmented into the target distri-
bution and away from the source distribution.

4.4.2 Domain Gap Embedding Editing Weights

One of the important hyper-parameters that impacts the gen-
eration is the edit strength scalar C' defined in Sec. 3.2. In
this section, we study the effect of different deterministic
values for C' visually to better understand the domain gap
embeddings. To isolate the effect, we do not apply Control-
Net in this experiment. As shown in Fig. 8, we conduct the
exploration in two settings: face augmentation with eye-
glasses as the distribution gap (top row), and object aug-
mentation from the real domain to the sketch domain (bot-
tom row). Starting with the source image (left-most col-
umn), we gradually increase the edit strength C' and gener-
ate images at each different value for C'. For the face, we
set C'to 0.5, 1.0, 1.5, 2.0 from left to right, and 1.0, 1.5, 2.0,
2.5 respectively for the airplane.

From Fig. 8, we observe that the magnitude of the edit
strength impacts the extent of our augmentation. When
C > 2 as shown in the right-most column, our pipeline
adds two glasses on the face indicating an over augmen-
tation. Meanwhile, for the airplane, the value of C' influ-
ences whether the generation is a realistic sketch or a sim-
ple sketch. Hence the best choice of edit strength mean ¢
should be assessed based on the kind of task in practice.

Edit Strength

(a)

(b)

Real>Sketch +Eyeglasses

Figure 8. Effect of increasing edit strength c. We considered
two source images under two tasks: (a) adding eyeglasses to faces
and (b) converting real to sketch images. In each task, we gener-
ated images with gradually increasing edit strength. At the right
end, we observe that two glasses are added ¢ = 2.0 and the most
sketchy airplane ¢ = 2.5. As expected, the edit strength dictates
the extent of emphasis on the distribution differences.

5. Conclusion and Future Works

This paper introduces DoGE, an innovative diffusion-based
data augmentation technique designed to address cross-
distribution challenges. Our method is distinguished by its
accessibility, efficiency, and remarkable effectiveness. We
utilize Domain Gap Embeddings, which capture distribu-
tion differences, as direct augmentations applied to source
data embeddings. Our generative backbone, Stable Un-
CLIP, is leveraged to facilitate this process. It’s worth not-
ing that our pipeline operates without the necessity for train-
ing, relying exclusively on a minimal set of images from the
target distribution to guide the augmentation process. The
result is the generation of diverse and high-quality synthetic
data, which significantly enhances test performance.

We showcase the versatility and effectiveness of our
method across various problem settings. Notably, our ap-
proach not only excels at transferring styles but also in-
troduces semantic augmentations according to distribution
disparities. In comparison to other general data synthesis
methods, we achieve the highest improvements across all
tasks. We also highlight the adaptability of DoGE by evalu-
ating its performance in a segmentation task, demonstrating
competitive inference-only results compared to the state-of-
the-art method, which requires training. Furthermore, we
illustrate that our approach is compatible with and comple-
mentary to parallel strategies such as UDA and fine-tuning.

While our method boasts significant strengths, it does
have certain limitations that merit further consideration.
First and foremost, the expressiveness of the CLIP model’s
latent space can be constrained when confronted with do-
main gaps that CLIP is unfamiliar with. Additionally, while
Stable UnCLIP proves effective in numerous real-world
scenarios, it may face challenges in out-of-domain situa-
tions, such as medical X-ray imagery. Lastly, there is ample
room for exploration in devising more effective training al-
gorithms to maximize the utility of synthetic data.
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