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Figure 1. Multiview visual forecasting and planning by world model. At time step T , the world model imagines the multiple futures at
T +K, and finds it is safe to keep going straight at T . Then the model realizes that the ego car will be too close to the front car according
to the imagination of time step T + 2K, so it decides to change to the left lane for a safe overtaking.

Abstract

In autonomous driving, predicting future events in advance
and evaluating the foreseeable risks empowers autonomous
vehicles to better plan their actions, enhancing safety and
efficiency on the road. To this end, we propose Drive-WM,
the first driving world model compatible with existing
end-to-end planning models. Through a joint spatial-
temporal modeling facilitated by view factorization, our
model generates high-fidelity multiview videos in driving

⇤Equal contribution. B Corresponding author.

scenes. Building on its powerful generation ability, we
showcase the potential of applying the world model for
safe driving planning for the first time. Particularly, our
Drive-WM enables driving into multiple futures based on
distinct driving maneuvers, and determines the optimal
trajectory according to the image-based rewards. Evalua-
tion on real-world driving datasets verifies that our method
could generate high-quality, consistent, and controllable
multiview videos, opening up possibilities for real-world
simulations and safe planning.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
The emergence of end-to-end autonomous driving [34, 35,
59] has recently garnered increasing attention. These ap-
proaches take multi-sensor data as input and directly out-
put planning results in a joint model, allowing for joint
optimization of all modules. However, it is questionable
whether an end-to-end planner trained purely on expert
driving trajectories has sufficient generalization capabilities
when faced with out-of-distribution (OOD) cases. As illus-
trated in Figure 2, when the ego vehicle’s position deviates
laterally from the center line, the end-to-end planner strug-
gles to generate a reasonable trajectory. To alleviate this
problem, we propose improving the safety of autonomous
driving by developing a predictive model that can foresee
planner degradation before decision-making. This model,
known as a world model [23, 24, 40], is designed to predict
future states based on current states and ego actions. By vi-
sually envisioning the future in advance and obtaining feed-
back from different futures before actual decision-making,
it can provide more rational planning, enhancing general-
ization and safety in end-to-end autonomous driving.

However, learning high-quality world models compat-
ible with existing end-to-end autonomous driving models
is challenging, despite successful attempts in game simula-
tions [23–25, 51] and laboratory robotics environments [16,
24]. Specifically, there are three main challenges: (1) The
driving world model requires modeling in high-resolution
pixel space. The previous low-resolution image [24] or vec-
torized state space [6] methods cannot effectively represent
the numerous fine-grained or non-vectorizable events in the
real world. Moreover, vector space world models need ex-
tra vector annotations and suffer from state estimation noise
of perception models. (2) Generating multiview consistent
videos is difficult. Previous and concurrent works are lim-
ited to single view video [33, 36, 68] or multiview image
generation [21, 58, 74], leaving multiview video genera-
tion an open problem for comprehensive environment ob-
servation needed in autonomous driving. (3) It is challeng-
ing to flexibly accommodate various heterogeneous con-
ditions like changing weather, lighting, ego actions, and
road/obstacle/vehicle layouts.

To address these challenges, we propose Drive-WM. In-
spired by latent video diffusion models [4, 17, 53, 78], we
introduce multiview and temporal modeling for jointly gen-
erating multiple views and frames. To further enhance mul-
tiview consistency, we propose factorizing the joint model-
ing to predict intermediate views conditioned on adjacent
views, greatly improving consistency between views. We
also introduce a simple yet effective unified condition inter-
face enabling flexible use of heterogeneous conditions like
images, text, 3D layouts, and actions, greatly simplifying
conditional generation. Finally, building on the multiview
world model, we explore end-to-end planning applications

(a) Planning with ego on centerline (b) Planning with ego off centerline

Figure 2. Ego vehicle’s slight deviation from centerline causes
motion planner to struggle generating reasonable trajectories.
We shift the ego location 0.5m to the right to create an out-of-
domain case. (a) shows the reasonable trajectory prediction of the
VAD [35] method under normal data, and (b) shows the irrational
trajectory when encountering out-of-distribution cases.

to enhance autonomous driving safety, as shown in Figure 1.
The main contributions of our work can be summarized as
follows.
• We propose Drive-WM, a multiview world model capa-

ble of generating high-quality, controllable, and consis-
tent multiview videos in autonomous driving scenes.

• Extensive experiments on the nuScenes dataset showcase
the leading video quality and controllability. Drive-WM
also achieves superior multiview consistency, evaluated
by a novel keypoint matching based metric.

• We are the first to explore the potential application of the
world model in end-to-end planning for autonomous driv-
ing. We experimentally show that our method could en-
hance the overall soundness of planning and robustness in
out-of-distribution situations.

2. Related Works
2.1. Video Generation and Prediction
Video generation aims to generate realistic video sam-
ples. Various generation methods have been proposed
in the past, including VAE-based (Variational Autoen-
coder) [20, 38, 63, 66], GAN-based (Generative Adversar-
ial Networks) [5, 19, 36, 54, 61, 75], flow-based [14, 39]
and auto-regressive models [22, 69, 73]. Notably, the re-
cent success of diffusion-based models in the realm of im-
age generation [45, 49, 50] has ignited growing interest in
applying diffusion models to the realm of video genera-
tion [27, 31]. Diffusion-based methods have yielded signif-
icant enhancements in realism, controllability, and tempo-
ral consistency. Text-conditional video generation has gar-
nered more attention due to its controllable generation, and
a plethora of methods have emerged [3, 4, 30, 53, 71, 78].

Video prediction can be regarded as a special form of
generation, leveraging past observations to anticipate future
frames [2, 11, 26, 31, 46, 64, 65, 70]. Especially in au-
tonomous driving, DriveGAN [36] learns to simulate a driv-
ing scenario with vehicle control signals as its input. GAIA-
1 [33] and DriveDreamer [68] further extend to action-
conditional diffusion models, enhancing the controllability

14750



and realism of generated videos. However, these previous
works are limited to monocular videos and fail to compre-
hend the overall 3D surroundings. We have pioneered the
generation of multiview videos, allowing for better integra-
tion with current BEV perception and planning models.

2.2. World Model for Planning
The world model [40] learns a general representation of
the world and predicts future world states resulting from
a sequence of actions. Learning world models in either
game [23–25, 48, 52] or lab environments [16, 18, 72]
has been widely studied. Dreamer [24] learns a latent dy-
namics model from past experience to predict state values
and actions in a latent space. It is capable of handling
challenging visual control tasks in the DeepMind Control
Suite [60]. DreamerV2 [25] improves upon Dreamer to
achieve human-level performance on Atari games. Dream-
erV3 [26] uses larger networks and learns to obtain di-
amonds in Minecraft from scratch given sparse rewards,
which is considered a long-standing challenge. Day-
Dreamer [72] applies Dreamer [24] to training 4 robots on-
line in the real world and solves locomotion and manipu-
lation tasks without changing hyperparameters. Recently,
learning world models in driving scenes has gained atten-
tion. MILE [32] employs a model-based imitation learn-
ing method to jointly learn a dynamics model and driv-
ing behaviour in CARLA [15]. There also a series of
works [1, 12, 13, 28] investigating offline reinforcement
learning for model-based planning. The aforementioned
works are limited to either simulators or well-controlled lab
environments. In contrast, our world model, through fu-
ture envisioning, can be integrated with existing end-to-end
driving planners to enhance planning performance in real-
world scenarios.

3. Multi-view Video Generation
In this section, we first present how to jointly model the
multiple views and frames, which is presented in Sec 3.1.
Then we enhance multiview consistency by factorizing the
joint modeling in Sec 3.2. Finally, Sec. 3.3 elaborates on
how we build a unified condition interface to integrate the
multiple heterogeneous conditions.

3.1. Joint Modeling of Multiview Video
To jointly model multiview temporal data, we start with
the well-studied image diffusion model and adapt it into
multiview-temporal scenarios by introducing additional
temporal layers and multiview layers. In this subsection,
we first present the overall formulation of joint modeling
and elaborate on the temporal and multiview layers.

Formulation. We assume access to a dataset pdata of mul-
tiview videos, such that x 2 RT⇥K⇥3⇥H⇥W , x ⇠ pdata

is a sequence of T images with K views, with height
and width H and W . Given encoded video latent repre-
sentation E(x) = z 2 RT ·K⇥C⇥Ĥ⇥Ŵ , diffused inputs
z⌧ = ↵⌧z + �⌧✏, ✏ ⇠ N (0, I), here ↵⌧ and �⌧ define a
noise schedule parameterized by a diffusion time step ⌧ . A
denoising model f✓,�, (parameterized by spatial parame-
ters ✓, temporal parameters � and multiview parameters  )
receives the diffused z⌧ as input and is optimized by mini-
mizing the denoising score matching objective

Ez⇠pdata,⌧⇠p⌧ ,✏⇠N (0,I)[ky � f✓,�, (z⌧ ; c, ⌧)k22], (1)

where c is the condition, and target y is the random noise ✏.
p⌧ is a uniform distribution over the diffusion time ⌧ .

Temporal encoding layers. We first introduce temporal
layers to lift the pretrained image diffusion model into a
temporal model. The temporal encoding layer is attached
after the 2D spatial layer in each block, following estab-
lished practice in VideoLDM [4]. The spatial layer encodes
the latent z 2 RT ·K⇥C⇥Ĥ⇥Ŵ in a frame-wise and view-
wise manner. Afterward, we rearrange the latent to hold out
the temporal dimension, denoted as (TK)CHW ! KCTHW,
to apply the 3D convolution in spatio-temporal dimensions
THW. Then we arrange the latent to (KHW)TC and apply
standard multi-head self-attention to the temporal dimen-
sion, enhancing the temporal dependency. The notation �
in Eq. 1 stands for the parameters of this part.

Multiview encoding layers. To jointly model the multi-
ple views, there must be information exchange between dif-
ferent views. Thus we lift the single-view temporal model
to a multi-view temporal model by introducing multiview
encoding layers. In particular, we rearrange the latent as
(KHW)TC ! (THW)KC to hold out the view dimension.
Then a self-attention layer parameterized by  in Eq. 1 is
employed across the view dimension. Such multiview at-
tention allows all views to possess similar styles and con-
sistent overall structure.

Multiview temporal tuning. Given the powerful image
diffusion models, we do not train the temporal multiview
network from scratch. Instead, we first train a standard im-
age diffusion model with single-view image data and condi-
tions, which corresponds to the parameter ✓ in Eq. 1. Then
we freeze the parameters ✓ and fine-tune the additional tem-
poral layers (�) and multiview layers ( ) with video data.

3.2. Factorization of Joint Multiview Modeling
Although the joint distributions in Sec. 3.1 could yield sim-
ilar styles between different views, it is hard to ensure strict
consistency in their overlapped regions. In this subsection,
we introduce the distribution factorization to enhance multi-
view consistency. We first present the formulation of factor-
ization and then describe how it cooperates with the afore-
mentioned joint modeling.
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Figure 3. Overview of the proposed framework. (a) illustrates the training and inference pipeline of the proposed method. (b) visualizes
the unified conditions leveraged to control the generation of multi-view video. (c) represents the probabilistic graph of factorized multiview
generation. It takes the 3-view output from (a) as input to generate other views, enhancing the multi-view consistency.

Formulation. Let xi denote the sample of i-th view,
Sec. 3.1 essentially models the joint distribution p(x1,...,K),
which can be transformed into

p(x1,...,K) = p(x1)p(x2|x1) . . . p(xK |x1, . . . ,xK�1).
(2)

Eq. 2 indicates that different views are generated in an au-
toregressive manner, where a new view is conditioned on
existing views. These conditional distributions can ensure
better view consistency because new views are aware of the
content in existing views. However, such an autoregressive
generation is inefficient, making such full factorization in-
feasible in practice.

To simplify the modeling in Eq. 2, we partition all
views into two types: reference views xr and stitched views
xs. For example, in nuScenes dataset, reference views
can be the {F, BL, BR}2, and stitched views can be
{FL, B, FR}. We use the term “stitched” because a
stitched view appears to be “stitched” from its two neigh-
boring reference views. Views belonging to the same type
do not overlap with each other, while different types of
views may overlap. This inspires us to first model the joint

2F: front, B: back, L: left, R: right.

distribution of reference views. Here the joint modeling
is effective for those non-overlapped reference views since
they do not necessitate strict consistency. Then the distri-
bution of xs is modeled as a conditional distribution con-
ditioned on the xr. Figure 4 illustrates the basic concept
of multiview factorization in nuScenes. In this sense, we
simplify Eq. 2 into

p(x) = p(xs,xr) = p(xs|xr)p(xr). (3)

Considering the temporal coherence, we incorporate pre-
vious frames as additional conditions. The Eq. 3 can be
re-written as

p(x) = p(xs,xr|xpre) = p(xs|xr,xpre)p(xr|xpre), (4)

where xpre is context frames (e.g., the last two frames)
from previously generated video clips. The distribution of
reference views p(xr|xpre) is implemented by the pipeline
in Sec. 3.1. As for p(xs|xr,xpre), we adopt the similar
pipeline but incorporate neighboring reference views as an
additional condition as Figure 4 shows. We introduce how
to use conditions in the following subsection.
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Figure 4. Illustration of factorized multi-view generation. We
take the sensor layout in nuScenes as an example.

3.3. Unified Conditional Generation
Due to the great complexity of the real world, the world
model needs to leverage multiple heterogeneous conditions.
In our case, we utilize initial context frames, text descrip-
tions, ego actions, 3D boxes, BEV maps, and reference
views. More conditions can be further included for better
controllability. Developing specialized interface for each
one is time-consuming and inflexible to incorporate more
conditions. To address this issue, we introduce a unified
condition interface, which is simple yet effective in inte-
grating multiple heterogeneous conditions. In the follow-
ing, we first introduce how we encode each condition, and
then describe the unified condition interface.

Image condition. We treat initial context frames (i.e., the
first frame of a clip) and reference views as image con-
ditions. A given image condition I 2 R3⇥H⇥W is en-
coded and flattened to a sequence of d-dimension embed-
dings i = (i1, i2, ..., in) 2 Rn⇥d, using ConvNeXt as en-
coder [44]. Embeddings from different images are concate-
nated in the first dimension of n.
Layout condition. Layout condition refers to 3D boxes,
HD maps, and BEV segmentation. For simplicity, we
project the 3D boxes and HD maps into a 2D perspective
view. In this way, we leverage the same strategy with image
condition encoding to encode the layout condition, resulting
in a sequence of embeddings l = (l1, l2, ..., lk) 2 Rk⇥d. k
is the total number of embeddings from the projected lay-
outs and BEV segmentation.
Text condition. We follow the convention of diffusion
models to adopt a pre-trained CLIP [47] as the text encoder.
Specifically, we combine view information, weather, and
light to derive a text description. The embeddings are de-
noted as e = (e1, e2, ..., em) 2 Rm⇥d.
Action condition. Action conditions are indispensable
for the world model to generate the future. To be compatible
with the existing planning methods [35], we define the ac-
tion in a time step as (�x,�y), which represents the move-
ment of ego location to the next time step. We use an MLP

Imagined
FuturesWorld ModelPlanner

Reward
Functions

Actions

RewardMaking 
Decision

Accepted
action

Object reward

Map reward

Planning Tree

…

Other vehicles

Ego vehicle

Planned path

World Model Based Planning

…

Figure 5. End-to-end planning pipeline with our world model.
We display the components of our planning pipeline at the top and
illustrate the decision-making process in the planning tree using
image-based rewards at the bottom.

to map the action into a d-dimension embedding a 2 R2⇥d.

A unified condition interface. So far, all the conditions
are mapped into d-dimension feature space. We take the
concatenation of required embeddings as input for the de-
noising UNet. Taking action-based joint video generation
as an example, this allows us to utilize the initial context
images, initial layout, text description, and frame-wise ac-
tion sequence. So we have unified condition embeddings in
a certain time t as

ct = [i0, l0, e0,at] 2 R(n+k+m+2)⇥d
, (5)

where subscript t stands for the t-th generated frame and
subscript 0 stands for the current real frame. We emphasize
that such a combination of different conditions offers a uni-
fied interface and can be adjusted by the request. Finally, ct
interacts with the latent zt in 3D UNet by cross attention in
a frame-wise manner (Figure 3 (a)).

4. World Model for End-to-End Planning
Blindly planning actions without anticipating consequences
is dangerous. Leveraging our world model enables com-
prehensive evaluation of possible futures for safer planning.
In this section, we explore end-to-end planning using the
world model for autonomous driving, an uncharted area.

4.1. Tree-based Rollout with Actions
We describe planning with world models in this section. At
each time step, we leverage the world model to generate
predicted future scenarios for trajectory candidates sampled
from the planner, evaluate the futures using an image-based
reward function, and select the optimal trajectory to extend
the planning tree.
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As shown in Figure 5, we define the planning tree as a se-
ries of predicted ego trajectories that evolve over time. For
each time, the real multiview images can be captured by the
camera. The pre-trained planner takes the real multiview
images as input and samples possible trajectory candidates.
To be compatible with the input of mainstream planner, we
define its action at at time t as (xt+1 � xt, yt+1 � yt) for
each trajectory, where xt and yt are the ego locations at time
t. Given the actions, we adopt the condition combination in
Eq. 5 for the video generation. After the generation, we
leverage an image-based reward function to choose the op-
timal trajectory as the decision. Such a generation-decision
process can be repeated to form a tree-based rollout.

4.2. Image-based Reward Function
After generating the future videos for planned trajectories,
reward functions are required to evaluate the soundness of
the multiple futures.

We first get the rewards from perception results. Partic-
ularly, we utilize image-based 3D object detector [42] and
online HDMap predictor [43] to obtain the perception re-
sults on the generated videos. Then we define map reward
and object reward, inspired by traditional planner [8, 35].
The map reward includes two factors, distance away from
the curb, encouraging the ego vehicle to stay in the cor-
rect drivable area, and centerline consistency, preventing
ego from frequently changing lanes and deviating from the
lane in the lateral direction. The object reward means the
distance away from other road users in longitudinal and lat-
eral directions. This reward avoids the collision between the
ego vehicle and other road users. The total reward is defined
as the product of the object reward and the map reward. We
finally select the ego prediction with the maximum reward.
Then the planning tree forwards to the next timestamp and
plans the subsequent trajectory iteratively.

Since the proposed world model operates in pixel space,
it can further get rewards from the non-vectorized repre-
sentation to handle more general cases. For example, the
sprayed water from the sprinkler and damaged road surface
are hard to be vectorized by the supervised perception mod-
els, while the world model trained from massive unlabeled
data could generate such cases in pixel space. Leveraging
the recent powerful foundational models such as GPT-4V,
the planning process can get more comprehensive rewards
from the non-vectorized representation. In the appendix, we
showcase some typical examples.

5. Experiments
5.1. Setup
Dataset. We adopt the nuScenes [7] dataset for experi-
ments, which is one of the most popular datasets for 3D
perception and planning. It comprises a total of 700 train-

ing videos and 150 validation videos. Each video includes
around 20 seconds captured by six surround-view cameras.
Training scheme. We crop and resize the original image
from 1600 ⇥ 900 to 384 ⇥ 192. Our model is initialized
with Stable Diffusion checkpoints [49]. For additional de-
tails, please refer to the appendix B.
Model variants. We support action-based video generation
and layout-based video generation. The former gives the
ego action of each frame as the condition, while the latter
gives the layout (3D box, map information) of each frame.
Metric evaluation. Our evaluation covers three aspects:
generation quality, controllability of generated content, and
planning. Further details are available in the appendix D.
Multiview consistency evaluation. We introduced a novel
metric, the Key Points Matching (KPM) score, to evaluate
multi-view consistency. This metric utilizes a pre-trained
matching model [56] to calculate the average number of
matching key points, thereby quantifying the KPM score.
Please refer to the appendix D for detailed calculation.

5.2. Main Results of Multi-view Video Generation
We first demonstrate our superior generation quality and
controllability. Here the generation is conditioned on
frame-wise 3D layouts. Our model is trained in nuScenes
train split, and evaluated with the conditions in val split.
Generation quality. Since we are the first one to ex-
plore multi-view video generation, we make separate com-
parisons with previous methods in multi-view images and
single-view videos, respectively. For multi-view image gen-
eration, we remove the temporal layers in Sec. 3.1. Ta-
ble 1a showcases the main results. In single-view image
generation, we achieve 12.99 FID, achieving a significant
improvement over previous methods. For video generation,
our method exhibits a significant quality improvement com-
pared to past single-view video generation methods, achiev-
ing 15.8 FID and 122.7 FVD. Additionally, our method
is the first work to generate consistent multi-view videos,
which is quantitatively demonstrated in Sec. 5.3.
Controllability. In Table 1b, we examine the controlla-
bility of our method on the nuScenes val split. For fore-
ground controllability, we evaluate the performance of 3D
object detection on the generated multiview videos, report-
ing mAPobj. Additionally, we segment the foreground on
the BEV layouts, reporting mIoUfg. Regarding background
control, we report the mIoU of road segmentation. Further-
more, we evaluate mAPmap for HDMap performance. This
superior controllability highlights the effectiveness of the
unified condition interface (Sec. 3.3) and demonstrates the
potential of the world model as a neural simulator.

5.3. Ablation Study for Multiview Video Generation
To validate the effectiveness of our design decisions, we
conduct ablation studies on the key features of the model,
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Method Multi-view Video FID# FVD#

BEVGen [58] X 25.54 -
BEVControl [74] X 24.85 -
MagicDrive [21] X 16.20 -
Ours X 12.99 -

DriveGAN [36] X 73.4 502.3
DriveDreamer [68] X 52.6 452.0
Ours X X 15.8 122.7

(a) Generation quality.

Method mAPobj " mAPmap " mIoUfg " mIoUbg "

GT (real image) 37.78 59.30 36.08 72.36

BEVGen [58] - - 5.89 50.20
LayoutDiffusion [76] 3.68 - 15.51 35.31
GLIGEN [41] 15.42 - 22.02 38.12
BEVControl [74] 19.64 - 26.80 60.80
MagicDrive [21] 12.30 - 27.01 61.05
Ours 20.66 37.68 27.19 65.07

(b) Generation controllability.
Table 1. Multi-view video generation performance on nuScenes. For each task, we test the corresponding models trained on the
nuScenes training set. Our Drive-WM surpasses all other methods in both quality and controllability evaluation.

Temp emb. Layout Cond. FID# FVD# KPM(%)"

X 20.3 212.5 31.5
X 18.9 153.8 44.6

X X 15.8 122.7 45.8

(a) Ablations of unified condition.

Temp Layers View Layers FID# FVD# KPM(%)"

23.3 228.5 40.8
X 16.2 127.1 40.9
X X 15.8 122.7 45.8

(b) Ablations of multiview temporal tuning.

Method KPM(%)" FVD# FID#

Joint Modeling 45.8 122.7 15.8
Factorized Generation 94.4 116.6 16.4

(c) Ablations of factorized generation.
Table 2. Ablations of the components in model design. The experiments are conducted under the layout-based video generation (See
model variants in Sec. 5.1) from nuScenes validation set.

as illustrated in Table 2. The experiments are conducted
under layout-based video generation.

Unified condition. In Table 2a, we find that the layout
condition has a significant impact on the model’s ability,
improving both the quality and consistency of the generated
videos. Additionally, temporal embedding can enhance the
quality of the generated videos.

Model design. In Table 2b, we explore the role of the tem-
poral and view layers in multiview temporal tuning. The
experiment shows that simply adopting the multiview layer
without factorization (Sec. 3.2) slightly improve the KPM.

Factorized multiview generation. As indicated in Ta-
ble 2c, factorized generation notably improves the con-
sistency among multiple views, increasing from 45.8% to
94.4%, in contrast to joint modeling. This enhancement
is achieved while ensuring the quality of both images and
videos. Qualitative results are illustrated in Figure 6.

5.4. Exploring Planning with World Model

In this subsection, we explore the application of the world
model in end-to-end planning, which is under-explored in
recent works for autonomous driving. Our attempts lie in
two aspects. (1) We first demonstrate that evaluating the
generated futures is helpful in planning. (2) Then we show-
case that the world model can be leveraged to improve plan-
ning in some out-of-distribution cases.

Tree-based planning. We conduct the experiments to
show the performance of our tree-based planning. Instead
of using the ground truth driving command, we sample

planned trajectories from VAD according to the three com-
mands “Go straight”, “Turn left”, and “Turn right”. Then
the sampled actions are used for our tree-based planning
(Sec. 4). As shown in Table 3, our tree-based planner out-
performs random driving commands, sampled driving com-
mands based on the dataset distribution, and even achieves
performance close to the ground truth command. Besides,
in Table 4, we ablate two adopted rewards and the results
indicate that the combined reward outperforms each sub-
reward, particularly in terms of the object collision metric.

Recovery from OOD ego deviation. The core of han-
dling OOD cases is to utilize powerful foundation models
to generate reliable OOD training data and obtain reliable
rewards. Using our world model, we can simulate the out-
of-distribution ego locations in pixel space. In particular,
we shift the ego location laterally by 0.5 meters, like the
right one in Figure 2. In this situation, the performance
of the existing end-to-end planner VAD [35] undergoes a
significant decrease (see Table 5 row 2). To alleviate the
problem, we fine-tune the planner with generated video su-
pervised by the trajectory that the ego-vehicle drives back to

Method
L2 (m) # Collision (%) #

1s 2s 3s Avg. 1s 2s 3s Avg.

VAD (GT cmd) 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22

VAD (random cmd) 0.51 0.97 1.57 1.02 0.34 0.74 1.72 0.93
VAD (sampled cmd) 0.46 0.83 1.31 0.87 0.23 0.42 0.76 0.47
Ours 0.43 0.77 1.20 0.80 0.10 0.21 0.48 0.26

Table 3. Planning performance on nuScenes. Instead of using
the ground truth driving command, we use our tree-based planning
to select the best out of three commands.
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Figure 6. Qualitative results of factorized multiview generation. For each compared pair, the upper row is generated without factoriza-
tion, and the lower row is generated with factorization.

Figure 7. Counterfactual events generation. Top: turning around at a T-shape intersection on a rainy day. Note that our training set does
not contain any turning-around samples. Bottom: running over a non-drivable area.

Map Object L2 (m) # Collision (%) #
Reward Reward 1s 2s 3s Avg. 1s 2s 3s Avg.

0.51 0.97 1.57 1.02 0.34 0.74 1.72 0.93
X 0.45 0.82 1.29 0.85 0.12 0.33 0.72 0.39

X 0.43 0.77 1.20 0.80 0.12 0.21 0.48 0.27
X X 0.43 0.77 1.20 0.80 0.10 0.21 0.48 0.26

Table 4. Image-based reward function design. We use two sub-
rewards, map reward and object reward.

OOD World Model f.t.
L2 (m) # Collision (%) #

1s 2s 3s Avg. 1s 2s 3s Avg.

0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
X 0.73 0.99 1.33 1.02 1.25 1.62 1.91 1.59
X X 0.50 0.79 1.17 0.82 0.72 0.84 1.16 0.91

Table 5. Out-of-domain planning. We define OOD location with
a lateral deviation of 0.5 meters from the ego vehicle.

the lane. Learning from these OOD data, the performance
of the planner can be better and near normal levels.

5.5. Counterfactual Events
Given an initial observation and the action, our Drive-WM
can generate counterfactual events, such as turning around
and running over non-drivable areas (Figure 7), which are

significantly different from the training data. The ability
to generate such counterfactual data reveals again that our
Drive-WM has the potential to foresee and handle out-of-
distribution cases.

6. Conclusion
We introduce Drive-WM, the first multiview world model
for autonomous driving. Our method exhibits the capabil-
ity to generate high-quality and consistent multiview videos
under diverse conditions, leveraging information from tex-
tual descriptors, layouts, or ego actions to control video
generation. The introduced factorized generation signifi-
cantly enhances spatial consistency across various views.
Besides, extensive experiments on nuScenes dataset show
that our method could enhance the overall soundness of
planning and robustness in out-of-distribution situations.
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