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Abstract

The portrait matting task aims to extract an alpha matte
with complete semantics and finely detailed contours. In
comparison to CNN-based approaches, transformers with
self-attention module have a better capacity to capture
long-range dependencies and low-frequency semantic in-
formation of a portrait. However, recent research shows
that the self-attention mechanism struggles with modeling
high-frequency contour information and capturing fine con-
tour details, which can lead to bias while predicting the
portrait’s contours. To deal with this issue, we propose
EFormer to enhance the model’s attention towards both
the low-frequency semantic and high-frequency contour
features. For the high-frequency contours, our research
demonstrates that cross-attention module between differ-
ent resolutions can guide our model to allocate attention
appropriately to these contour regions. Supported by this,
we can successfully extract the high-frequency detail infor-
mation around the portrait’s contours, which were previ-
ously ignored by self-attention. Based on the cross-attention
module, we further build a semantic and contour detector
(SCD) to accurately capture both the low-frequency seman-
tic and high-frequency contour features. And we design
a contour-edge extraction branch and semantic extraction
branch to extract refined high-frequency contour features
and complete low-frequency semantic information, respec-
tively. Finally, we fuse the two kinds of features and lever-
age the segmentation head to generate a predicted portrait
matte. Experiments on VideoMatte240K (JPEG SD Format)
and Adobe Image Matting (AIM) datasets demonstrate that
EFormer outperforms previous portrait matte methods.

1. Introduction
Portrait matting aims to extract a precise alpha matte of per-
sons from natural images. It has gathered great momentum
in vision applications, including but not limited to photo
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Figure 1. (I) Visualization with Grad-CAM of output from each
layer within different transformer blocks. (a) The features cap-
tured from Self-attention and MLP layers in the original trans-
former block. (b) In comparison, the features captured from each
layer in the proposed transformer block. (II) Comparisons of dif-
ferent transformer blocks. (c) The original transformer block in
ViT. (d) The proposed transformer block for portrait matte.

editing and background replacement.
Existing methods[20, 30, 33, 35] attempt to estimate a

portrait matte with Convolutional Neural Networks (CNNs)
under the guidance of a pre-determined trimap, which is a
three-class map that indicates the foreground, background,
and unknown region. However, it is time-consuming and
labor-intensive to obtain abundant trimaps by manually an-
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notating images. Some methods eliminate the trimap, such
as background matting series[21, 28] uses a separate back-
ground image instead of the trimap as an auxiliary refer-
ence for model prediction. However, in practical cases, it
is necessary to provide two aligned images for the model,
which include one with only the background and the other
one including people. An alternative solution[17, 22, 23] is
to rely solely on RGB images as input for predicting portrait
mattes. Although the previous models have made strides in
portrait matte, there is a constraint on the receptive field in
CNN-based approaches.

In contrast, Vision Transformer (ViT)[7] and Swin
Transformer (Swin) [24] for semantic segmentation employ
a self-attention mechanism, which conducts interactions
among all pixels in an image to obtain a global receptive
field. Previous research [25] shows that ViT and its variants
can capture the low-frequency components in images effec-
tively, such as global shapes and structures of a scene or
object. However, they usually neglect high-frequency ones
in images, such as edges and textures. They work similarly
to low-pass filters.

As shown in Fig. 1(a), we can observe the transformer
block with self-attention clearly pays little attention to the
portrait’s high-frequency contour regions. We believe that
this phenomenon is attributed to the excessive propagation
of global information because global attention is performed
in each transformer block during the calculation of multiple
blocks. So, the global information is propagated through-
out the model in this iterative calculation, ultimately lead-
ing it to only focus on low-frequency semantic features
with stronger clustering in portraits. Over time, the model
gradually ignores the discrete high-frequency detail features
around the contours. Therefore, it is desired to capture low-
and high-frequency components simultaneously to improve
the segmentation performance.

To achieve this goal, Inception Transformer
(IFormer)[29] splits all channels into a convolutional
path and self-attention path, respectively, to capture high
and low frequencies. However, it is required for a channel
ratio of each block at different levels in the IFormer.
These channel ratios typically require manual adjustment,
resulting in significant uncertainty when aiming for optimal
model performance. To enhance the model’s stability
and adaptive capability, we propose a novel architec-
ture EFormer without manually adjusted parameters. In
EFormer, we use the cross-attention layer between different
resolution features, as shown in Fig. 1(d), which is replaced
by convolution to handle high-frequency detail features.

Our research further demonstrates that the cross-
attention module between different resolutions can for-
mulate a more reasonable attention allocation mechanism,
which can accurately capture contour features, as shown in
Fig. 1(b). Particularly, EFormer with a cross-attention layer

not only can not lose the semantic information within the
portrait but also can successfully capture the high-frequency
details around the portrait’s contours, which were previ-
ously ignored by self-attention. It is worth noting that
high-frequency components only around the boundary be-
tween foreground and background are critical to the im-
provement of segmentation performance. Therefore, we
follow a coarse-to-fine manner. Initially, EFormer needs
to locate all high-frequency regions in the image. Then,
it filters and extracts the high-frequency regions around the
foreground contours.

Based on the cross-attention module, we design a se-
mantic and contour detector (SCD) in EFormer, which cas-
cades the cross-attention layer and self-attention layer to se-
quentially locate the contour and semantic features. Firstly,
the model adjusts its attention to contour features with
the guidance of a cross-attention module. Secondly, the
self-attention module captures semantic information within
a portrait’s contours and reverses filtering and correcting
the contour information output by the cross-attention layer.
This allows the model to gradually capture and match the
high-frequency contour information and the low-frequency
semantic information. Then, we use multi-layer perceptron
(MLP) to build the contour-edge extraction branch (CEEB)
and the semantic extraction branch (SEB), respectively.
With this support, we independently purify the contour flow
and the semantic flow to obtain finer contour information
and more comprehensive portrait semantic information, as
shown in Fig. 1(b). Finally, we fuse the contour features and
semantic features and send them to the segmentation head
to estimate the portrait matte. We perform extensive exper-
iments on VideoMatte240K (JPEG SD Format)[21], Adobe
Image Matting (AIM)[35], and BG10K. Comparisons with
other state-of-the-art models and ablation studies verify that
our model performs better than previous works.

To summarize, our contributions are as follows:
• We propose EFormer: an approach that can enhance the

transformer’s attention towards both semantic and con-
tour features of the foreground.

• We further build a semantic and contour detector (SCD)
to accurately capture the semantic and contour features
and design two separate extraction branches to purify the
contour flow and the semantic flow.

• We leverage the cross-attention module between different
resolution features in transformer block to autonomously
capture and extract high-frequency detail features, which
are sparsely distributed along the foreground contour.

2. Related Works

2.1. Image Matting

Image matting is an essential task in the field of computer
vision that aims to accurately estimate the foreground in an
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image. Mathematically speaking, an image I is a combina-
tion of an unknown foreground image F and a background
image B with a probability coefficient alpha matte maps α.

I = αF + (1− α)B (1)

Previous image matting solutions have predominantly
focused on low-level features, such as color cues[9, 10, 14,
15] or propagation[1, 2, 19], to distinguish the transition ar-
eas between foregrounds and backgrounds. However, such
traditional matting algorithms commonly struggle to per-
form properly in complex scenes.

With the significant advancements making in deep learn-
ing, numerous methods based on convolutional neural net-
works (CNNs) are proposed, leading to notable successes.
Some approaches[36, 37, 39] incorporate auxiliary trimap
supervisions to enhance matting performance, while other
methods[22, 23] leverage trimap-free solutions to estimate
alpha mattes from image feature maps using an end-to-
end segmentation network. In the background matting
series[21, 28], an auxiliary input of the background image
is used to compute alpha matte. Furthermore, MODNet[17]
proposes an end-to-end manner without any auxiliary input.
Although prior works based on CNN kernels have improved
the accuracy of image matting, the prediction of models is
in the limited receptive field.

2.2. Vision Transformer

Different from CNNs, vision transformers with self-
attention mechanisms can capture long-term dependen-
cies. Therefore, in the realm of computer vision, vi-
sion transformers have gained significant attention in re-
cent times. For pixel-level prediction tasks, such as seg-
mentation, SETR[38], SegFormer[34] and DPT[27] apply
transformer as an encoder to attain feature maps of im-
ages. Their performances demonstrate the transformer with
self-attention is capable of building complete contextual
information through global interactions. However, recent
studies[25, 29] indicate that transformer “yet is incompetent
in capturing high frequencies that predominantly convey lo-
cal information”.

Compared to self-attention, cross-attention has more po-
tential to induce customized features. Max-Deeplab[31],
MaskFormer[5, 6] and SeMask[13] use query-based
methods through cross-attention, which are inspired by
DETR[3]. They view segmentation as a set prediction prob-
lem. U-Transformer[26] and EUT[8] modify the cross-
attention in the original transformer to leverage the infor-
mation from the encoder, allowing a fine spatial recovery
in the decoder. The cross-resolution attention employed by
RTFormer[32] enables the gathering of comprehensive con-
textual information for high-resolution features.

In this work, we propose a strategy that using of cross-
attention between different resolutions guides the model to

autonomously locate and capture high-frequency features,
particularly those near the portrait’s contours. Contrary to
IFormer[29], this method eliminates the need for predefined
parameters to enhance the model’s adaptive capabilities. At
the same time, this approach can significantly improve the
model’s performance in capturing contour details.

2.3. Refinement for Segmentation

In the field of portrait segmentation, refining the high-
frequency details near the contours is crucial. Many prior
studies on segmentation refinement depend on convolu-
tional networks or MLPs that are designed specifically for
this purpose.

PointRend[18], based on the coarse predictions of Mask
R-CNN[12], calculates confidence scores as the point-wise
uncertainty measure. And it focuses on the points with the
higher uncertainty according to set hyperparameters. Fi-
nally, PointRend uses a shared MLP to refine the labels
of the selected points. Although PointRend has imple-
mented segmentation refinement to some extent, the model
still requires manual adjustment of certain hyperparame-
ters to assist in filtering uncertain points. Transfiner[16]
processes detected error-prone and incoherent regions with
transformer, which include high-frequency regions strewn
along object boundaries. However, during this procedure,
excessive focus is placed on the local details and incoherent
regions, without effectively associating the local features of
the object with the overall semantic information.

We believe that locating effective detail distribution ar-
eas requires information interaction between local details
and global semantics. To achieve this, we design a se-
mantic and contour detector that adopts a cascade structure
of cross-attention and self-attention. This approach uses
global semantic information garnered from self-attention to
autonomously select out local details situated at the borders
of the contours. On this base, we further utilize the MLP-
based extraction branch to purify contour details, thereby
significantly enhancing the effect of refinement.

3. Model
In this section, we introduce the process of establishing
the complete model architecture of EFormer, which com-
prises the backbone for encoder, the transformer block for
decoder, and the prediction stage, as shown in Fig. 2.

3.1. Backbone for Encoder

The CNN backbone takes RGB images I ∈ RB×3×H×W as
input, where B is the number of images, to obtain a pyra-
mid of feature maps F =

{
Fenc 1

4
, Fenc 1

8
, Fenc 1

16

}
with

dimension Fenc 1
i
∈ RB×Ci×H

i ×W
i . As we all know, in the

pyramid of feature maps, shallow features have high reso-
lution and rich details, while deep features have low reso-
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Figure 2. The Architecture of the EFormer. It contains a backbone for encoder, a transformer block for decoder, and the prediction stage,
where the transformer block includes a semantic and contour detector, a semantic extraction branch, and a contour-edge extraction branch.

lution but more concentrated semantic information. Based
on this, our research makes the cross-attention mechanism
to filter the high-frequency contour features from high-
resolution features, using low-frequency semantic informa-
tion in low-resolution features. However, since the large
resolution of feature maps would bring large computation
cost, we use the Fenc 1

8
as FHR (high-resolution features)

and use the Fenc 1
16

as FLR (low-resolution features) in our
base model. The impact of other choices of FHR and FLR

on model performance is demonstrated in ablation experi-
ments Sec. 4.4. As shown in Fig. 2, the FHR serves as the
source of contour flow, providing high-frequency contour
detail features for the following processes. Correspond-
ingly, the FLR serves as the source of semantic flow, pro-
viding low-frequency semantic information. Then, the FHR

and FLR are projected to same dimension C and respec-
tively flattened into high-resolution feature embedding as
F em
HR and low-resolution feature embedding as F em

LR , where
F em
HR ∈ RN×B×C , F em

LR ∈ RN×B×C , and N = H
8 × W

8 .
Both of them are utilized as inputs for the transformer block.

3.2. Transformer Block for Decoder

We propose a novel transformer block in the model de-
coding stage to enhance the ability to capture and extract
visual features. It not only does not reduce the focus on
low-frequency semantic features but also significantly in-
creases the attention to high-frequency contour features.
Its detailed architecture is depicted in Fig. 3. The novel
transformer block first uses a Semantic and Contour De-

tector (SCD) to locate and capture high-frequency contour
features and low-frequency semantic features. To achieve
this, we cascade a cross-attention layer (CA) and a self-
attention layer (SA) in the SCD. Then, as shown in Fig. 3,
a Contour-Edge Extraction Branch (CEEB) and a Semantic
Extraction Branch (SEB) are further built to handle high-
frequency contour feature flow and low-frequency seman-
tic feature flow respectively. These branches can separately
purify more refined high-frequency contour features and ex-
tract more complete low-frequency semantic features. This
ensures an outcome that is optimal for both types of fea-
tures.
Semantic and Contour Detector (SCD). There is a fact
that low-frequency semantic features far outperform high-
frequency contour detail features in terms of quantity and
distribution density. So, in the global information propaga-
tion process, the low-frequency semantic information easily
dominates the feature representations of the original trans-
former block with self-attention module.

To prevent the loss of high-frequency contour detail in-
formation, we first use a cross-attention layer with different
resolution features rather than a self-attention layer. The
cross-attention layer can capture high-frequency detail fea-
tures with high semantic correlation in high-resolution fea-
tures, based on the low-frequency semantic information in
low-resolution features. Technically, after getting F em

HR and
F em
LR , we use Layer Norm (LN) processing them to maintain

consistency. Due to the sensitivity of the attention mecha-
nism towards positional information, we use absolute and
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Figure 3. Our transformer block. It includes a Semantic and Con-
tour Detector (SCD), a Semantic Extraction Branch (SEB), and a
Contour-Edge Extraction Branch (CEEB). The detailed composi-
tion of the module is shown in the figure.

learnable position encoding (PE) in the SCD. The input K,
Q, V of the cross-attention layer (CA) is calculated as

K = LN (F em
HR) + PE (2)

Q = LN (F em
LR ) + PE (3)

V = LN (F em
LR + F em

HR) (4)

By performing cross-attention calculations using features
of different resolutions, it is possible to automatically lo-
cate and capture the discrete contours along the portrait
and allocate more attention to corresponding positions. The
contour-edge features can be derived from the output of the
CA.

Fcontour−edge = CA (K, Q, V ) (5)

Although CA pays extra attention to contour-edge features,
it still captures the overall semantics. By the residual con-
nection between CA and V , both the semantic and contour-
edge features of the portrait are enhanced, especially the

contour-edge features.

Fenhance = CA (K, Q, V ) + V (6)

Since semantic information is still present, we use the self-
attention layer (SA) after CA. SA can locate the semantic
feature within the portrait and contours, thereby emphasiz-
ing the semantic attributes at their respective positions. Af-
ter using LN to normalize Fenhance, the input K ′, Q′, V ′ of
the SA is calculated as

K ′ = Q′ = LN (Fenhance) + PE (7)

V ′ = LN (Fenhance) (8)

Fcontour−semantic = SA (K ′, Q′, V ′) + V ′ (9)

Through SA filtering the semantic and contour features, the
residual connection between V ′ and the output of SA, we
can produce Fcontour−semantic as the output of the seman-
tic and contour detector.
Feature Extraction Branches. After SCD, we use multi-
layer perceptron (MLP) to build a Contour-Edge Extraction
Branch (CEEB) and a Semantic Extraction Branch (SEB).
To prevent the loss of high-frequency contour detail infor-
mation, we aggregate Fcontour−semantic getting from SCD
and F em

HR in the contour flow. After getting the merged fea-
ture normalized by LN, we employ CEEB to purify it, in
order to further extract and refine high-frequency contour
details individually. Similarly, to obtain more comprehen-
sive and consistent portrait semantic features separately, we
merge Fcontour−semantic and F em

LR in the semantic flow.
Then, we normalize the aggregated feature by applying LN
and use SEB to filter it.

Fcontour = MLP (LN (F em
HR + Fcontour−semantic))

(10)
Fsemantic = MLP (LN (F em

LR + Fcontour−semantic))
(11)

3.3. Prediction Stage

After getting key characteristics Fsemantic ∈ RN×B×C and
Fcontour ∈ RN×B×C from transformer block, where N =
H
8 ×

W
8 , we transform them into F ′

semantic ∈ RB×C×H
8 ×W

8

and F ′
contour ∈ RB×C×H

8 ×W
8 by converting the vector into

the matrix. To achieve improved outcomes in portrait seg-
mentation, we propose fusing the two kinds of features and
ultimately acquiring the predicted portrait matte from the
segmentation head module.
Fuse. We attain the semantic feature through the residual
connection between F ′

LR and F ′
semantic of semantic flow.

Similarly, we get the contour feature from contour flow and
subsequently merge the F ′

semantic and F ′
contour to generate

the fused features F ′
contour−semantic.

F ′
semantic = Conv (F ′

semantic + F ′
LR) (12)
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F ′
contour = Conv (F ′

contour + F ′
HR) (13)

F ′
contour−semantic = Fuse (F ′

semantic + F ′
contour) (14)

Segmentation Head. Finally, We gather F ′
contour−semantic

and Fenc 1
4

with higher resolution to predict portrait matte
in 1/4 scale of the input image and upscale it to the origi-
nal scale through bi-linear interpolation as the output of our
model.

matte = Head
(
F ′
contour−semantic + Fenc 1

4

)
(15)

4. Experiments
4.1. Dataset and Evaluation

Dataset. We utilize composite training data from
two sources: the foreground image dataset Video-
Matte240K (JPEG SD Format)[21] and Adobe Image Mat-
ting (AIM)[35]. For the background images, we select
BG10K following the approach of BGMv2[21], which is
a collection of photographs depicting various life scenes
without any human portraits. We select foregrounds from
VideoMatte240K-JPEG-SD and AIM, and backgrounds
from BG10K to composite image datasets. We split
VideoMatte240K-JPEG-SD into 234,982/3,007/2720 im-
age sets with image resolutions of 224×224 and 512×288
for training, validating, and testing our model. Similarly,
BG10K is split into 9000/1000 image sets, and AIM is
split into 214/10 image sets for training and testing, where
AIM only includes the portrait images with resolutions
at 512 × 512. Finally, we use the aforementioned test-
ing datasets to compare and evaluate the performance of
EFormer against other models.
Evaluation. We mainly consider portrait matting accu-
racy for evaluation. For portrait matting accuracy, we use
Mean Absolute Difference (MAD), Mean Squared Error
(MSE), Gradient (Grad), and Connectivity (Conn) as eval-
uation metrics. We also scale MAD, MSE, Grad, and Conn
by 103, 103, 10−3, and 10−3 respectively, for convenience
of reference. For all these metrics, the lower number repre-
sents better performance.

4.2. Implementation Details

Training Settings. For training the network, we use a sin-
gle RTX 3090 GPU with batch size at 24. The optimizer
is AdamW and the initial learning rate is set to 10−4. All
models in ablation studies are trained for 25 epochs, with
the learning rate decaying by a factor of 0.8 every 5 epochs.
Additionally, to augment the data, each input image is sub-
jected to random horizontal flipping.
Backbone. The backbone we use for the network is the pre-
trained ResNet50[11], since it is the most frequently used
backbone in prior works. We use the implementation and
weights from torchvision.

Model MAD↓ MSE↓ Grad↓ Conn↓
DeepLabv3[4] 14.4700 9.6700 8.5500 1.6900
MODnet[17] 10.3900 5.6500 2.0200 1.0400
BGMv2[21] 4.1858 1.7934 1.3011 0.5326
RVM[22] 5.9900 1.1700 1.1000 0.3400
EFormer 2.3097 0.6637 0.4580 0.2740

Table 1. Comparisons on the test set of VideoMatte240K-JPEG-
SD. Bold indicates the best performance among these models un-
der the inputs with the same resolution at 512× 288.

Model MAD↓ MSE↓ Grad↓ Conn↓
DeepLabv3[4] 29.64 23.78 20.17 7.71
MODnet[17] 21.66 14.27 5.37 5.23
BGMv2[21] 44.61 39.08 5.54 11.60
RVM[22] 14.84 8.93 4.35 3.83
EFormer 7.47 2.13 2.83 1.90

Table 2. Comparisons on the test set of AIM. Bold indicates the
best performance among these models under the inputs with the
same resolution at 512× 512.

Transformer Block for Decoder. The transformer block
is based on the transformer decoder of DETR. We contin-
uously use four transformer blocks in the decoder of the
network. We set the channel C = 256 and the number of
attention heads M = 8 for each multi-head attention mod-
ule.
Prediction Stage. After obtaining the semantic and contour
feature maps of the portrait from the stacked transformer
blocks, we fuse both of them. Then, the alpha mattes pre-
dicted by the segmentation head are upsampled to the orig-
inal size of the input image with bi-linear interpolation.
Loss function. To compute losses during the training stage,
we use a Binary CrossEntropy Loss function.

Lbce = − (g × log (m) + (1− g)× log (1−m)) (16)

Where, m is the prediction of the network, g is the ground
truth.

4.3. Comparisons to State-of-the-art Methods

To demonstrate the progressiveness of EFormer, we com-
pare it against the latest state-of-the-art trimap-free portrait
matting solutions. These are including DeepLabV3[4] with
ResNet101[11] backbone, BGMv2[21] with ResNet50[11]
backbone, MODNet[17], and RVM[22]. Our assessment is
based on the testing datasets of VideoMatte240K-JPEG-SD
and AIM, respectively. As the training files for MODNet
are not available, we use its official weights. Furthermore,
since BGMv2, DeepLabV3, and RVM have already been
trained on all datasets, our method can be compared with
them in a fair manner.
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Figure 4. Visualization of portrait matte predictions from MODnet, BGMv2, and EFormer under challenging image from the test set of
VideoMatte240K (JPEG SD Format). Our model shows a better ability to distinguish ambiguous foreground contours, as indicated by the
red box. Please zoom in to view the detailed information.

Model MAD↓ MSE↓ Grad↓ Conn↓
DeepLabv3[4] 18.1586 14.7623 6.0015 2.8824
MODnet[17] 13.1400 8.9656 2.6028 2.1543
BGMv2[21] 7.0471 2.3543 1.5621 1.0651
RVM[22] 6.1357 2.2647 0.6523 0.2866
EFormer 4.1357 1.4280 0.3760 0.1753

Table 3. Comparisons on the test set of VideoMatte240K-JPEG-
SD. Bold indicates the best performance among these models un-
der the inputs with the same resolution at 224× 224.

As shown in the Tab. 1, Tab. 2 and Tab. 3 , our model
exhibits superior performance in portrait matte tasks. It has
a stronger capability to distinguish the contour of a portrait.
And it can finely segment edge details (e.g. fingers), as ex-
emplified in Fig. 4.

4.4. Ablation Studies

Training Epochs. In the ablation study with an image res-
olution of 224×224, we conduct 25 training epochs. Every
5 epochs of training, we evaluate the training effect of the
model. At the same time, the learning rate is reduced by
0.8 times. The experimental results indicate that our model
achieves optimal performance in the 20 epoch, as shown in
the Tab. 4.

MAD↓ MSE↓ Grad↓ Conn↓
5-epoch 4.3953 1.4824 0.4089 0.1865
10-epoch 4.3108 1.4766 0.3908 0.1834
15-epoch 4.2867 1.5238 0.4087 0.1833
20-epoch 4.1357 1.4280 0.3760 0.1753
25-epoch 4.1811 1.4797 0.3858 0.1779

Table 4. Ablation Study on the Training Epochs with the test set
of VideoMatte240K-JPEG-SD (resolution at 224 × 224). Bold
indicates the best performance among these models. We use the
result of 20-epoch training as a strong baseline model.

The Functional Role of Each Module. To demonstrate
the effectiveness of the model in capturing and extracting
contour details and portrait semantics, we analyze the out-
puts of CA, SA, CEEB, and SEB, and utilize Class Acti-
vation Map (CAM) to visualize the attention allocation of
each layer’s features, as shown in Fig. 5.

From the first line of Fig. 5, it can be evident that after the
cross-attention layer, the model clearly strengthens its atten-
tion to the contours of the portrait. Following the contour
prior, the self-attention layer captures the portrait’s seman-
tics thoroughly. CEEB and SEB models provide sharper
contour and more comprehensive semantic information.

Comparing the second and first lines of Fig. 5, it is ob-
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Figure 5. We use Grad-CAM to visualize the attention distribution
of various features in CA, SA, CEEB, and SEB. The model in the
first row contains four complete modules. For comparison, the SA
layer and CA layer were removed from the models in the second
and third rows, respectively.

CA SA MAD↓ MSE↓ Grad↓ Conn↓
✓ 4.2762 1.5344 0.4092 0.1823

✓ 4.1710 1.4354 0.3773 0.1769
✓ ✓ 4.1357 1.4280 0.3760 0.1753

Table 5. Ablation Study on the Functional Role of CA and
SA with the test set of VideoMatte240K-JPEG-SD (resolution at
224 × 224). Bold indicates the best performance among these
models.

served that removing the self-attention layer considerably
weakens the semantic information extracted by SEB. In the
comparison between the third and first lines of Fig. 5, it can
be indicated that removing the cross-attention layer signifi-
cantly weakens the contour information extracted by CEEB.

After qualitative analysis, the prediction results of all the
above models are evaluated. It is concluded that the model
with CA, SA, CEEB, and SEB is both effective and rational,
as demonstrated in the Tab. 5.

As is well known, when it comes to extracting features
for portrait segmentation tasks, semantic information plays
a significant role, in contrast, contour details account for a
relatively small proportion. Owing to this, as shown in the
Tab. 5 and Fig. 5, the model without SA leads to a signif-
icant increase in all metrics due to the lack of amount of
semantic information, while the model without CA experi-
ences a slight increase in all indicators due to the loss of
contour details. In order to fully harness the potential of
the vision transformer, we integrate both CA and SA to en-
sure semantic completeness and enhance attention towards
contour details, thereby achieving more comprehensive and
fine-grained segmentation results.
The Selection of FHR and FLR. In our base model,

FHR FLR MAD↓ MSE↓ Grad↓ Conn↓
Fenc 1

8
Fenc 1

16
4.1357 1.4280 0.3760 0.1753

Fenc 1
4

Fenc 1
8

3.9970 1.3343 0.3328 0.1679
Fenc 1

4
Fenc 1

16
3.9730 1.2949 0.3215 0.1665

Table 6. Ablation Study on the Selection of FHR and FLR with the
test set of VideoMatte240K-JPEG-SD (resolution at 224 × 224).
Bold indicates the best performance among these models.

considering the large resolution of feature maps would
bring large computation cost, we use the Fenc 1

8
as FHR

(high-resolution features) and use the Fenc 1
16

as FLR (low-
resolution features). Then the FHR serves as the source
of contour flow, providing high-frequency contour detail
features. Correspondingly, the FLR serves as the source
of semantic flow, providing low-frequency semantic infor-
mation. As shown in the Tab. 6, after using Fenc 1

4
with

higher resolution as FHR, our model can capture more high-
frequency contour detail features and its performance is bet-
ter. And after using Fenc 1

16
with lower resolution as FLR,

our model can use more concentrated low-frequency se-
mantic information, which makes all indicators optimal.

5. Conclusion

In this paper, we propose a strategy that use of cross-
attention module between different resolutions guides
the EFormer to autonomously locate and capture high-
frequency contour features. Without manual parameter tun-
ing, the proposed method can adaptability capture high-
frequency details neglected by previous transformer-based
methods. Based on the cross-attention module, we further
construct a semantic and contour detector (SCD), which
can enhance the transformer’s attention to both the high-
frequency contour and low-frequency semantic features.
Additionally, we build a contour-edge extraction branch
(CEEB) and a semantic extraction branch (SEB) to extract
finer high-frequency contour details and more comprehen-
sive portrait’s low-frequency semantic information. Exten-
sive experiments show that our method outperforms pre-
vious portrait matting solutions and exhibits robust perfor-
mance during testing and inference.
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