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EmbodiedScan: 5k scans, 1M ego-centricimages, 1M language prompts, 160k instances, 760+ categories
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Figure 1. EmbodiedScan provides a multi-modal, ego-centric 3D perception dataset with massive real-scanned data and rich annotations
for indoor scenes. It benchmarks language-grounded holistic 3D scene understanding capabilities for real-world embodied agents.

Abstract

In the realm of computer vision and robotics, embodied
agents are expected to explore their environment and carry
out human instructions. This necessitates the ability to fully
understand 3D scenes given their first-person observations
and contextualize them into language for interaction. How-
ever, traditional research focuses more on scene-level input
and output setups from a global view. To address the gap,
we introduce EmbodiedScan, a multi-modal, ego-centric 3D
perception dataset and benchmark for holistic 3D scene un-
derstanding. It encompasses over 5k scans encapsulating
IM ego-centric RGB-D views, IM language prompts, 160k
3D-oriented boxes spanning over 760 categories, some of
which partially align with LVIS, and dense semantic oc-
cupancy with 80 common categories. Building upon this
database, we introduce a baseline framework named Em-
bodied Perceptron. It is capable of processing an arbitrary
number of multi-modal inputs and demonstrates remark-
able 3D perception capabilities, both within the two series
of benchmarks we set up, i.e., fundamental 3D perception
tasks and language-grounded tasks, and in the wild.

1. Introduction

Consider an embodied agent operating in an indoor environ-
ment. It commences its journey devoid of any prior knowl-
edge about the scene, guided only by an initial instruction.
As it begins to explore, it recognizes objects in context and
acts with goals along with language interaction. In this pro-
cess, a commonly needed, fundamental perception capabil-
ity is to establish a holistic 3D scene understanding given
ego-centric observations. This understanding operates at
the scene level, covers both object semantics and scene ge-
ometry, and can be grounded in language descriptions.
Nonetheless, subtle but significant discrepancies exist
between this expectation and research problems examined
within the computer vision community. Most previous
studies have primarily revolved around scene-level input
and output problems from a global view [13, 34, 40], i.e.,
taking reconstructed 3D point clouds or meshes as inputs
and predicting 3D object bounding boxes or segmenting
point clouds. Regarding data, earlier datasets targeting ego-
centric RGB-D inputs are either too small [12, 45] or lack
comprehensive annotations [6, 51] to support the aforemen-
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Dataset Composition

Dataset ‘ #Scans #Imgs #0Objs #Cats #Prompts Ego Capture 3D Annotations 3RScan
Scans: 1381
Replica [46] 35 - - - - X Images: 339267
NYUv2[12] 464 14k 3%k 14 - X Matterport3D Copecoren a1
SUN RGB-D [45] - 10k - 37 - Mono. Box Ima;z:";gé%giﬁ
ScanNet [13, 39] 1513 264k 36k 18 52k [8] Seg., Lang. Objects: 44987
Matterport3D [6] 2056 194k 51k 40 - Multi-View Seg. Categories: 246
3RScan [51] 1482 363k - - - Seg. ScanNet
ArkitScenes [2] 5047 450k 51k 17 - Box Scans: 1613
HyperSim [38] 461 77k - 40+ - Mono. & Syn. Box '8”;3&2‘: 264345
EmbodiedScan 5185 890k 160k 762 970k Box, Occ., Lang. Categories: 222

Table 1. Comparison with other 3D indoor scene datasets. “Cats” refers to the categories
with box annotations for the 3D detection benchmark. EmbodiedScan features more than
10x categories, prompts, and the most diverse annotations. The numbers are still scaling
up with further annotations. Mono./Syn./Lang. means Monocular/Synthetic/Language.

tioned research. It is also not feasible to generate such real-
istic views by rendering from the existing imperfect meshes.
On the other hand, since we cannot trivially obtain the re-
construction of a new environment, models trained with
scene-level input are not directly applicable in practice.

To bridge this divide, we introduce a multi-modal, ego-
centric 3D perception dataset and benchmark for holistic 3D
scene understanding, termed EmbodiedScan, aimed at facil-
itating real-world embodied Al applications (Fig. 1). This
dataset exploits existing large-scale 3D scene datasets [0,
13, 51] but re-purposes them for continuous scene-level per-
ception from the first-view RGB-D streams. Unlike pre-
vious works that offer only point segmentation labels with
limited semantics, we employ a SAM-assisted [22] pipeline
to annotate objects with oriented 3D bounding boxes and
generate language prompts on top. Consequently, Embod-
iedScan provides more than 5k scans, nearly 1M ego-centric
RGB-D images, and multi-modality annotations, covering
3D oriented boxes with more than 160k instances span-
ning over 760 categories, dense semantic occupancy with
80 common categories, and 1M language descriptions fo-
cusing on spatial relationships among objects.

Built upon this dataset, we devise a baseline framework
for ego-centric 3D perception, Embodied Perceptron. 1t
accepts RGB-D sequences and texts as inputs and mani-
fests scalability to any number of views input with encoders
shared across different tasks. With the encoded 2D and 3D
features, we employ dense fusion and isomorphic multi-
level fusion across them guided by the perspective projec-
tion to produce 3D scene and object representations, which
are further processed to decode occupancy and 3D box pre-
dictions. The derived 3D representations can be further in-
tegrated with text embeddings for 3D visual grounding, thus
supporting language-grounded applications.

We establish two series of benchmarks on Embodied-
Scan: 1) fundamental 3D perception benchmarks focusing
on traditional tasks, including 3D detection and semantic
occupancy prediction under different input settings, and 2)
a language-grounded scene understanding benchmark with
3D visual grounding as a preliminary exploration. Exper-
imental results validate the effectiveness of our baseline

Figure 2. Dataset composition. Embodied-
Scan is composed of three data sources and
has similar scans, images, objects, and cate-
gories in each of them.

model on EmbodiedScan and demonstrate its generalization
ability in the wild. Detailed analysis further underscores
the value of EmbodiedScan and highlights the primary chal-
lenges posed by this new setup.

2. Related Work

3D Scene Datasets. The development of 3D scene un-
derstanding has benefited from large-scale, high-quality
datasets like KITTI [16] and SUN RGB-D [45]. These
foundational datasets have paved the way for subsequent
larger and more diverse collections targeting indoor [6, 13,
38, 51] and driving scenes [4, 7, 32, 47]. However, com-
pared to autonomous driving datasets, those meant for in-
door scenes still lack variety in terms of scenes and object
diversity (Tab. 1). In contrast, EmbodiedScan provides a
large amount of multi-modal data with much richer anno-
tations. Furthermore, it differs by placing an emphasis on
the ego-centric perspective within its setup, a feature often
overlooked in previous works [2, 13].

Except for these conventional dataset works,
Omni3D [3] integrates urban and indoor datasets for
monocular 3D detection. Our focus, however, lies in indoor
scenes due to their unique challenges but has a larger
amount of data and annotations, e.g., more than 3 X images
and categories with more than 10 instances. In addition,
we offer a comprehensive exploration of more general
problems for ego-centric 3D perception, such as continuous
perception and visual grounding. Other embodied Al
datasets like HM3D [36, 56] and HSSD [21] provide
ample interaction opportunities but can suffer from poor
transferability to real-world scenarios due to their imperfect
meshes or synthetic data. Conversely, EmbodiedScan is
based on real-scanned RGB-D images, offering a more
realistic playground for model training.
3D Object Detection & Occupancy Prediction. 3D detec-
tion and occupancy prediction, as fundamental tasks in 3D
perception, focus on different aspects of 3D scene under-
standing. The former focuses on recognizing foreground
objects through a sparse and efficient representation - a
set of 3D cuboids corresponding to instances of interest -
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Figure 3. EmbodiedScan annotation and statistics. (a) UI for 3D box annotation. We select keyframes and generate their SAM masks
with corresponding axis-aligned boxes. With simple clicks, annotators can create 3D boxes for target objects and further adjust them with
reference in three orthogonal views and images. (b) Small boxes (< 1m®) increase more & prompt statistics. objs/avg./des. refer to
objects/average/descriptions. (c) We show the number of instances per category (300 classes). For categories that exist in ScanNet, we plot
the absolute increase and observe a significant improvement. (d) We plot the occupancy distribution for each category and see a different
word cloud distribution. These two clouds show different aspects, occupied space vs. number of instances, of this dataset.

while the latter offers a dense, structured pattern that ben-
efits downstream planning. The research community has
developed solutions ranging from single-modality, such as
LiDAR-based [23, 29, 34, 40, 42, 57, 59] or camera-only
approaches [28, 41, 44, 52-54], to multi-modality tech-
niques [26, 30, 35, 50, 58]. Recently, occupancy as a rep-
resentation, due to its potential in handling unknown se-
mantics and irregular object shapes, has gained more atten-
tion [5, 19, 25, 43, 49, 55]. Given their distinctive focuses,
we selected these two tasks to form the fundamental 3D per-
ception track on EmbodiedScan.

Previous works on indoor scenes mainly centered around
3D detection with limitations in object orientations, seman-
tic categories, and input format [29, 34, 40]. In practice, a
model is expected to perceive the environment during ego-
centric exploration, ultimately providing a holistic under-
standing inclusive of rich semantics, scene geometry, and
object poses. To this end, EmbodiedScan and our proposed
framework, Embodied Perceptron, provide this necessary
data foundation and baseline methodology.
Language-Grounded 3D Scene Understanding. Lan-
guage plays a crucial role in human-computer interaction,
heightened by recent advances in Large Language Mod-
els (LLMs). Its integration with 3D scene understanding
is vital for future embodied agents. Past research first ex-
plored 3D visual grounding [1, 8, 18, 20] and established
new benchmarks including 3D dense captioning [9, 10],
open-vocabulary 3D segmentation [15, 33, 48] and detec-
tion [31, 61]. This paper focuses on 3D visual grounding

first, with plans to expand language annotations and bench-
marks in the future. Our visual grounding benchmark aligns
with the multi-view setting of the basic 3D perception track,
taking multiple ego-centric RGB-D images as input, and in-
cludes tenfold more complex prompts.

3. Dataset

This section presents the dataset construction, including
data processing and annotation, and shows the statistics.

3.1. Data Collection & Processing

Ego-Centric Sensor Data Collection. Considering there
have been readily available 3D indoor scene scans from
existing datasets, we start with integrating those provid-
ing ego-centric RGB-D captures with the corresponding
camera poses. Given the compatibility of ScanNet [13],
3RScan [51], and Matterport3D [6], we select the high-
quality part with complete regions and necessary annota-
tions to form the initial version of EmbodiedScan (Fig. 2).
ARKitScenes [2], possessing different data organization,
sensors, and annotations, is considered for future inclusion.
Frame Selection & Scene Division. Although these
datasets all have RGB-D data, the data format, sampling
frequency, and relationships among viewpoints are differ-
ent. See more details in the appendix. We first unified the
format into a general multi-view case to fit Matterport3D
by adding randomness when loading images but maintain-
ing sequential continuity for ScanNet and 3RScan during
inference. Our model can thus handle both temporal and
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randomly captured multi-view images. Additionally, we di-
vided building-scale scenes of Matterport3D into regions
based on official annotation, selecting corresponding im-
ages with depth points falling into the region. As for dif-
ferent sampling rates of images in ScanNet and 3RScan
videos, we sample one keyframe per 10 frames for ScanNet
and keep all the images for 3RScan. The uniform sampling
is generally in line with the actual situation.

Global Coordinate System. A global coordinate system is
necessary to aggregate multi-view observations and serve
as a reference for outputs. We follow the convention of
ScanNet, deriving a system with the origin around the cen-
ter of the scene, the horizontal plane lying on the floor and
axes aligning with walls [34]. This post-processing harmo-
nizes the data distribution, slightly improving performance
on benchmarks. Practical applications may not have such a
prior global system or vary according to observations, pos-
ing another interesting problem for future exploration.

3.2. Annotation

We provide three types of annotations - 3D bounding boxes,
semantic occupancy, and language descriptions - each serv-
ing to enrich different aspects of scene understanding.

3D Bounding Boxes. Following standard definitions [2, 3],
a cuboid is defined by its 3D center, size, and ZXY Euler
angle orientation. We used the Segment Anything Model
(SAM) [22] and a customized annotation tool based on [24]
(Fig. 3a) to address limitations in existing 3D box annota-
tions, i.e., lack of orientation and small object annotations.
It supports the conventional functionality of annotating 3D
boxes with orientation in three orthographic views. Fur-
thermore, we sample several keyframes with clear imaging
according to the camera pose changes and ensure they cover
non-overlap regions and most objects to generate SAM
masks and axis-aligned boxes for further adjustment. We
work with an annotation team and check the quality of all
the labels in the end. Each scene takes around 10-30 min-
utes to annotate, varying with the scene complexity.
Semantic Occupancy. Semantic occupancy necessitates
accurate boundaries across semantic regions without con-
sidering object pose or recalling all the objects, so the orig-
inal point cloud segmentation annotations were more suit-
able to be used for deriving occupancy ground truth. For
each voxel, we assigned the category with the most points as
the semantic label for that cell. A compromise between per-
ception granularity and computational efficiency resulted
in 40 x 40 x 16 occupancy maps in the perception range
[-3.2m ~ 3.2m,—-3.2m ~ 3.2m,—0.78m ~ 1.78m]
along the X-Y (horizontal) plane and Z (vertical) axis.
Language Descriptions. Given updated 3D bounding
boxes annotated with orientations, we derive the language
prompts that describe the spatial relationships among ob-
jects following SR3D [1]. They serve as the prompt input

to the language-grounded perception models for performing
3D visual grounding. Due to increased object density after
annotation, identifying unique objects became more chal-
lenging. To overcome this, we combined multiple spatial-
relationship prompts to exclusively ground objects. See
more samples in the appendix.

3.3. Statistics

Vocabulary Construction. During labeling, we ask anno-
tators to write semantic categories in an open-vocabulary
manner. This was efficient and suited the complex, large-
vocabulary dataset and can provide natural annotations for
future open-world research. To sort out these labels, we
used Sentence-BERT [37] to cluster similar categories with
text embeddings, match them to WordNet nodes, and finally
revise and merge them manually. The vocabulary shares
common categories with COCO (50/69 indoor classes) and
LVIS (550/1203).

Instance Statistics. We first show the instances of different
categories in Fig. 3c. Our dataset contains over 760 cat-
egories, covering common objects in our daily life. More
than 288 categories have over 10 instances, and around 400
categories have more than 5 instances. These numbers are
20x higher than most previous works with 3D box anno-
tations and 3x higher than ScanNet instance segmentation
annotations with more than 5 instances. There is also a no-
table increase in object numbers of small boxes and differ-
ent categories (Fig. 3b and 3c). We remove four categories,
{wall, ceiling, floor, object} in our 3D detection benchmark
and divide the remaining 284 categories into three splits,
{head, common, tail} with {90, 94, 100} classes.
Occupancy Statistics.  Semantic occupancy statistics
(Fig. 3d) reveal the space occupied by different categories,
relevant for navigation and motion planning. We chose the
first 80 categories for our occupancy prediction benchmark
based on distribution and significance in downstream tasks.
Language Prompts Statistics. Generated language
prompts following SR3D fall into five types of spatial
object-to-object relations: Horizontal Proximity, Vertical
Proximity, Support, Allocentric, and Between. If a scene
has between 2 and 6 instances of a certain category, these
categories are considered valid target categories. If a
scene has a single instance of a category, it is selected as
the anchor category. The training/validation set contains
801711/168322 language prompts, nearly 10 times larger
than the original SR3D datasets (Fig. 3b and Tab. 1).

4. Embodied Perceptron

Given this dataset, we can take multi-modality input, in-
cluding RGB images, point clouds derived from depth maps
as well as language prompts, to extract multi-modal repre-
sentations and perform different downstream tasks. This
section provides a baseline, namely Embodied Perceptron,
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Figure 4. Embodied Perceptron accepts RGB-D sequence with any number of views along with texts as multi-modal input. It uses classical
encoders to extract features for each modality and adopts dense and isomorphic sparse fusion with corresponding decoders for different
predictions. The 3D features integrated with the text feature can be further used for language-grounded understanding.

with a unified framework and customized design for holistic
3D scene understanding from ego-centric views.
Framework Overview. The framework includes a multi-
modal 3D encoder to extract object & scene representa-
tions and sparse & dense decoders for various downstream
tasks. In addition, we customize the output’s parameteriza-
tion and training objectives to fit the formulation of oriented
3D bounding boxes in the sparse decoder.

4.1. Multi-Modal 3D Encoder

As shown in Fig. 4, the multi-modal 3D encoder first has
separate encoders for different modalities - ResNet50 [17]
and FPN [27] (optional) for 2D images, Minkowski
ResNet34 [11] for point clouds, and BERT [14] for texts.
After extracting these features, we further fuse and process
them into sparse or dense features for different downstream
tasks. Next, we first present how we aggregate multi-view
inputs and then introduce different fusion approaches for
dense and sparse feature extraction.

Scalability for Input Views. Contrasting with prior works,
our framework can accept any number of RGB-D views,
making it adaptable and generalizable to varying input or-
ders and quantities. We conveniently aggregate different
depth map views by transforming the point clouds into a
global coordinate system, downsampling as needed. For
multiple images, we query corresponding 2D features us-
ing perspective projection from 3D points, averaging them
to maintain permutation invariance. This technique allows
consistent feature updates during ego-centric exploration.
Theoretically, voxel features could be updated by merging
the volume feature at frame ¢ with the incremental feature
from RGB-D input at frame ¢+-1. In practice, we accommo-
date any number of views as batch-wise samples for acceler-
ating training and evaluation. Our model demonstrates no-

table scalability, where fewer views (e.g., 20) may be used
for memory efficiency during training, while more views
(e.g., 50) can enhance performance during inference.

Dense Fusion. Previous works typically integrate the color
and coordinates of points at the input stage, like “paint-
ing” [50], or form multi-modality dense BEV features for
concatenated fusion [26, 30]. The latter way suits our occu-
pancy prediction baseline and thus we adopt the straightfor-
ward dense fusion on the pre-defined grid, which shares the
same resolution with the ground truth. We construct feature
volume by projecting grid points onto a single 2D feature
map post-FPN, then consolidate it with 3D features densi-
fied from sparse voxel features. For object detection, we
argue that concurrent multi-modality fusion across multiple
feature levels is more effective.

Isomorphic Multi-Level Multi-Modality Fusion. For-
mally, the input aggregated points P € RN»*3 (first vox-
elized) and N; images as I € RN XW are processed
via a Minkowski ResNet and a shared 2D ResNet re-
spectively. This extracts multi-level sparse voxel features
Vi, € RE*Nvi on K levels and image features F, €
REXH:xWa o G levels. In practice, these two ResNets
produce 4 levels of features, for both point clouds and im-
ages, denoted as isomorphic multi-modality encoders.

In dense fusion, we filter Fs with an upsampling FPN
to derive a feature map F,,, with stride = 4 and use it to
construct the feature volume for fusing with V. For the
sparse case, we use multi-level features as seeds instead of
a single dense feature map to predict 3D objects. The ini-
tial attempt of still query features from F7,;, or raw images
I for these seeds is unstable due to inconsistent features for
fusion and confusing gradients back-propagation. Thus, we
leverage the isomorphic architecture for level-based projec-
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Table 2. Continuous and multi-view 3D object detection benchmark on EmbodiedScan (split by the double line).

Methods Tnput Large-Vocabulary Head Common Tail

AP35 AR5 APs59 AR50 AP35 AR5 AP35 AR25 AP35 AR25

Camera-Only RGB 12.80 34.61 4.25 13.07 17.40 44.79 7.64 24.22 0.03 3.09
Depth-Only Depth 17.16 51.40 10.52 25.75 21.39 61.14 13.27 41.58 2.74 20.91
Multi-Modality RGB-D 19.07 51.56 11.57 28.15 23.54 60.23 15.80 44.99 1.24 17.74
ImVoxelNet [41] RGB 6.15 20.39 241 6.31 10.96 34.29 4.12 15.40 2.63 9.21
VoteNet [34] Depth 3.20 6.11 0.38 1.22 6.31 12.26 1.81 3.34 1.00 1.83
FCAF3D [40] Depth 9.07 4423 4.11 20.22 16.54 61.38 6.73 42.77 2.67 24.83
+our decoder Depth 14.80 51.18 8.77 27.46 25.98 67.12 10.85 50.08 5.72 32.85
+painting RGB-D 15.10 51.32 8.64 26.66 26.23 67.53 11.39 50.64 5.80 32.13
Ours RGB-D 16.85 51.07 9.77 28.21 28.65 67.51 12.83 50.46 7.09 31.52

tion and feature fusion, i.e., Vi queries the corresponding
image features of F}, which empirically shows a better and
more stable performance. This method enables multi-level
multi-modality feature fusion compared to the “painting”
approach and ensures the consistency of features and gradi-
ents across different network levels and modalities.

Vision-Language (VL) Fusion. Given the multi-level
sparse visual features F}’ and text features from the text en-
coder, we use a multi-modal fusion transformer model [20,
61] for vision-language information interactions. Each
transformer layer uses a self-attention block to refine sparse
visual features and exploit spatial relationships. Then visual
and text features interact in cross-modal attention blocks.
This interaction guides updated sparse grounding features
F¢ to be context-aware for subsequent prediction.

4.2. Sparse & Dense Decoder

Given multi-modal features from typical encoders, we em-
ploy separate fusion streams for sparse and dense tasks.
This results in four levels of sparse voxel features F¥ from
isomorphic sparse fusion and a single dense feature F'” for
decoding and predictions. These are then processed to ob-
tain 3D box and occupancy predictions.

Sparse Decoder for 3D Boxes Prediction. Using the
multi-level fused features F7, we upsample them as in
FCAF3D, appending classification, regression, and center-
ness prediction heads for 3D object detection. In particular,
to fit the oriented 3D box output, we add a 6D rotation rep-
resentation [60] into original regression targets, ultimately
decoded as 3D centers ¢, 3D sizes 1, and Euler angles ©.
Training objectives include the original classification loss,
centerness loss, and a disentangled Chamfer Distance (CD)
loss for eight corners [3, 44]. Specifically, we use one of
three groups of decoded predictions, {3D centers, 3D sizes,
and Euler angles}, while setting the other two with ground
truths to compute three corner losses. For example, given
3D sizes and Euler angles ground truth, we can derive the
corner loss between the predicted B and the ground truth
box B yielded by 3D center prediction errors:

Lc = Lep(B(c,1,0), B) (1)
Together with the corner loss derived by the overall pre-

dicted bounding boxes L,,..q4, We balance these losses with
preset weights and use them to replace the original box loss:

Lloc = At:Lc + AlLl + )\@L@ + Ap’rede'red (2)

We set A\c = A\ = A@ = 0.2 and \,;.cq = 0.4 to highlight
the importance of the overall prediction, which performs
well empirically. The target assignment strategy and post-
processing during inference also follow FCAF3D [40].
Dense Decoder for Occupancy Prediction. With the dense
feature F'P, we use a 3D FPN [41] to aggregate multi-
level features and produce multi-scale occupancy predic-
tions. Since the task requires more powerful low-level fea-
tures for fine detail understanding, predictions at each scale
are thus supervised with decayed half weights from high to
low resolution [5]. We use cross-entropy loss and scene-
class affinity loss [55] for training. During inference, we
only use the high-resolution output for prediction.

Sparse Decoder for 3D Visual Grounding. Grounding
features F'C updated after each transformer layer are fed
into the prediction heads sharing the same architecture as
those used for 3D detection. All prediction head outputs
in each layer are supervised during training for stability
and improved performance. An additional contrastive loss
aligns the visual feature with target text prompts, ensuring
the features of a target text token are closer to corresponding
visual features and further from other visual or text tokens.

5. Benchmark

Our benchmark has three categories based on data sam-
ples: scene-based, view-based, and prompt-based. Scene-
based benchmarks mean the samples are based on differ-
ent scenes, covering continuous and multi-view perception.
View-based benchmarks use ego-centric views for tasks like
monocular 3D detection. Lastly, samples of 3D visual
grounding are based on constructed language prompts. De-
tailed splits will be discussed in each benchmark.

For metrics, we use the 3D IoU-based average preci-
sion (AP) with thresholds of 0.25 and 0.5 for 3D detec-
tion and visual grounding. We also provide average recall
(AR) for reference. For occupancy prediction, we employ
the mean Intersection of Union (mloU) as a performance
measure. Due to the space limitation, please refer to the
appendix for implementation details of different baselines,
and more quantitative and qualitative results including an
”in-the-wild” evaluation demo.
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Table 3. Continuous and multi-view occupancy prediction benchmark (split by the double line). “refri.” means “refrigerator”.

Methods Input | mIOU | empty floor wall chair cabinet door table couch shelf window bed curtain refri. plant stairs toilet
Camera-Only RGB | 1043 | 39.09 34.10 3024 26.46 9.49 2553 41.60 35.19 1622 2045 2446 1980 26.01 1726 1.83 29.78
Depth-Only Depth | 1444 | 7391 6622 56.13 4996 1570 2437 56.84 5535 30.55 26.66 4281 30.81 33.01 21.71 6.21 4535
Multi-Modality | RGB-D | 20.79 | 73.50 63.64 6230 54.60 19.96 4899 61.10 69.76 39.86 34.62 54.83 5445 4890 4122 797 63.52
OccNet [43] RGB 8.07 | 37.15 46.90 25.63 20.94 13.17 1840 2681 2286 13.59 1349 2675 2292 17.15 17.07 477 33.60

SurroundOcc [55] | RGB 9.10 | 38.54 46.17 2355 23.04 13.60 19.15 27.79 2288 13.11 13.72 2432 18.89 13.58 14.77 7.83 34.71
Camera-Only RGB | 1048 | 40.45 4125 27.19 26.16 1550 20.30 30.82 2670 15.01 14.33 29.17 2330 1699 1598 6.17 4257
Depth-Only Depth | 1556 | 69.92 60.52 51.74 49.44 23.08 2433 4577 4352 29.74 23.02 39.04 4122 1742 19.58 2579 60.45
Multi-Modality | RGB-D | 19.97 | 71.21 64.92 55.00 52.04 27.35 3397 4793 4626 31.87 2798 46.58 46.56 24.05 39.01 2440 67.79

Table 4. Monocular 3D object detection benchmark on EmbodiedScan.
Methods Input APo: Z(LCR(;I;Imon gi}asszes ARzg chair cabinet table bin couch bed bathtub toilet

FCOS3D [52] RGB 8.93 27.96 0.91 5.00 27.15 1.14 6.21 10.23 9.47 18.38 6.31 40.51

ImVoxelNet [41] RGB 18.95 52.74 1.81 7.10 46.70 4.63 18.10 17.82 20.39 41.51 10.14 65.70

VoteNet [34] Depth 14.30 31.44 1.68 5.14 54.00 2.41 19.53 14.72 21.80 45.58 13.49 68.16
ImVoteNet [35] RGB-D 19.63 34.32 3.88 8.82 56.72 2.88 29.00 21.96 27.77 56.94 37.56 74.08
FCAF3D [40] Depth 25.70 78.53 5.73 20.26 65.91 6.47 26.64 34.93 22.50 53.68 26.38 71.90
+our decoder Depth 28.16 84.50 4.92 20.69 63.85 6.62 32.34 38.96 31.61 60.33 38.17 75.57
+painting RGB-D 30.19 83.93 5.74 21.90 66.39 7.41 33.66 42.86 32.24 60.04 41.31 77.59
Ours RGB-D 34.28 85.03 12.61 32.25 69.47 10.01 37.29 45.17 31.67 63.27 50.63 80.39

5.1. Fundamental 3D Perception Benchmarks Table 5. Multi-view 3D visual grounding benchmark. “In-

Continuous 3D Perception. As opposed to driving scenar-
ios, indoor scene understanding is typically in an enclosed
space, making it important to fully leverage multi-view
cues formed by RGB-D sequence and continuously main-
tain an overall scene-level representation. Thus, we design
this new benchmark involving sequential views for perceiv-
ing covered 3D regions. Models are trained and evaluated
scene-wise with 3930/703/552 scans allocated for train-
ing/validation/testing. To accelerate the training and evalu-
ation, we construct /N data samples with 1 ~ N views from
N sampled views per scan. Here, N = 10 during training
with random view sampling, while in evaluation, N = 50
with fixed views. Corresponding instances and occupancy
truths are obtained by combining pre-computed visible in-
stance IDs and occupancy masks of selected views. If a cat-
egory lacks instances, it is removed when calculating mAP
and mloU. Given this new setup, we primarily offer three
baselines with different input modalities (Tab. 2 and 3).

Continuous 3D Object Detection. As anticipated, both RGB
and depth features significantly impact this task, leading to
superior results of our RGB-D approach (Tab. 2). The per-
formance of the depth-only model closely mirrors the multi-
modality approach, indicating depth’s dominance in 3D per-
ception. Our method of constructing multi-modal features
based on sparse voxel features also aligns with this intuition.
Low performance on tail categories suggests dataset size in-
fluences performance, warranting future enhancement.

Continuous Semantic Occupancy Prediction. This bench-
mark offers comprehensive results including mIoU and IoU
for common classes. Unlike the detection benchmark, there
is a notable gap between the depth-only and RGB-D base-
line. This might be due to the former’s limited semantic un-
derstanding capability, especially evident in categories like
door and curtain, which are similar to walls in shape. On
such a task that requires more fine-grained understanding,

dep/Dep” refer to “View-Independent/Dependent”. Easy/Hard and
Indep/Dep have a ratio of 80%/20% and 78%/22%.

Overall Eas; Hard Inde; De;
Methods Input APas AP;; AP3: AP2153 Angs
ScanRefer [8] RGB-D 12.85 13.78 9.12 13.44 10.77
BUTD-DETR [20] RGB-D 22.14 23.12 18.23 22.47 20.98
L3Det [61] RGB-D 23.07 24.01 18.34 23.59 21.22
Ours RGB-D 25.72 27.11 20.12 2637 2342

the depth sensor’s weakness is enlarged. Meanwhile, depth
plays a crucial role in predicting empty space, floor, and
wall, while RGB information substantially improves pre-
diction for most categories.

Multi-View 3D Perception. Unlike continuous settings,
multi-view 3D perception does not predefine the order of
views but provides all views to the model for scene-level
results. This setting was studied previously [41], so we first
reproduce common methods on our benchmark.
Multi-View 3D Object Detection. We implement base-
lines including ImVoxelNet [41] with RGB-only input and
VoteNet [34] and FCAF3D [40] with depth-only input
(Tab. 2). Additional dimensions are added to predict Eu-
ler angles with a simple L1 loss on their cosine values, but
it yields underwhelming results. Substituting this with our
decoder design markedly improves performance. Further
using point cloud input painted for FCAF3D with RGB-D
input slightly underperforms our baseline. Nevertheless, all
models have substantial potential for improvement, demon-
strating the challenges of this new dataset and setup.
Multi-View Semantic Occupancy Prediction. We implement
two popular baselines from autonomous driving bench-
marks, OccNet [43] and SurroundOcc [55] (similar to TPV-
Former [19]). Their performance slightly lags behind our
camera-only baseline. Variants of our baselines exhibit a
performance trend akin to embodied benchmarks.
Monocular 3D Perception. Finally, the basic ego-centric
setting is monocular 3D perception, specifically 3D detec-
tion, where each data sample comprises a single RGB-D
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Table 6. Ablation with conventional settings.

Oriented Multi-View AP25 ARg5 APs50 AR50
X X 70.17 90.46 54.58 75.66
v X 61.87 90.31 47.30 73.93
v v 59.95 87.92 43.33 69.95

Table 7. Real vs. rendered images on ScanNet.

Train Val Overall Head Common Tail
Render Render 22.11 33.01 16.44 6.74
Render Real 18.72 27.02 14.85 6.25

Real Real 21.98 3291 17.18 5.05

frame and corresponding visible 3D boxes. Scan splits
are used to extract frames as data samples, resulting in
689k/115k/86k images for the training/validation/testing.
Monocular 3D Object Detection. This is more challenging
than multi-view due to the absence of stereo geometric cues
and truncated object views in indoor scenes, so the perfor-
mance is significantly reduced in large-vocabulary settings.
Hence, we first create a benchmark for 20 common cate-
gories (Tab. 4), observing a larger AP-AR gap for top meth-
ods because of difficulties predicting accurate 3D boxes
from partial views. Similarly, our method outperforms oth-
ers, providing a solid baseline for future studies.

5.2. Language-Grounded Benchmark

Multi-View 3D Visual Grounding. Our benchmark intro-
duces language into the perception loop to foster interac-
tive 3D scene representation learning. With comprehensive
instance annotations, our benchmark presents more com-
plex prompts and grounding cases than previous works. As
an initial step, this setup takes multi-view RGB-D images
as input without considering differing prompt timestamps.
The goal is to ground the object described by the language
prompt in the scene using information from different ego-
centric views. Ground-truth detection boxes are not pro-
vided as candidates for grounding during evaluation, which
can better validate end-to-end 3D visual grounding ability
than the original SR3D [1]. Data sample splits align with
previous benchmarks’ 3D scan splits.

We reimplement classic methods like ScanRefer [8],
BUTD-DETR [20], and L3Det [61] (Tab. 5). Our base-
line outperforms all due to the strong multi-modal encoder.
However, the performance remains much lower than previ-
ous works, partly due to changes in input format and annota-
tions, which we will analyze next. Further challenges arise
from handling more categories and small objects, making
the grounding task more complex in parsing input prompts
and predictions. Addressing these new challenges in this
classical task would be promising for future research.

5.3. Analysis

Finally, we make further analysis to connect EmbodiedScan
to current progress in computer vision.

Axis-aligned vs. Oriented Boxes. We start with the
18-class detection performance of FCAF3D on ScanNet
(Tab. 6). First, we change the annotations to oriented 3D

Table 8. Benefits from training with EmbodiedScan.

Train Val Overall Head Common Tail
ScanNet ScanNet 20.28 29.81 15.57 6.40
Ours ScanNet 23.02 33.82 18.09 6.57
ScanNet Ours 10.92 21.10 8.06 1.78
Ours Ours 16.85 28.65 12.83 7.09

boxes and adapt with our decoder. We find a significant
drop in performance, indicating that the orientation estima-
tion makes this task more challenging. We need to explore
a better method to represent and predict the object pose.
Reconstructed Point Cloud vs. Multi-View RGB-D. Sub-
sequently, replacing the reconstructed point clouds with the
aggregated ones from multi-view depth maps has minor ef-
fects on A Py but heavily impacts A Psg (Tab. 6), implying
that the accuracy of reconstructed point clouds is superior
to raw depth maps. Therefore, integrating reconstruction
techniques in perception loops shows potential.

Next, we study the gap between the real and rendered
images, and the benefits from training with EmbodiedScan.
We do the comparison with our multi-modality baseline on
the large-vocabulary multi-view 3D detection benchmark.
Real Capture vs. Rendering. As shown in Tab. 7, apart
from the significant visual difference between real and ren-
dered images (Fig. 1), the model’s performance also has a
remarkable decrease when transferring models trained with
rendered images to the real world, particularly when the an-
notations are sufficient (5.99% AP drop on head categories
and 5.89% AP lower than models trained with real images.)
Benefits from EmbodiedScan. Finally, we also quanti-
tatively evaluate the benefits of training models with our
large-scale EmbodiedScan (Tab. 8). As expected, when
training our models with EmbodiedScan, we observed a sig-
nificant improvement in both ScanNet (2.74% AP) and the
overall validation split (5.93% AP), particularly 4.01% AP
and 7.55% AP increase on head categories.

6. Conclusion

This paper introduces EmbodiedScan, a multi-modal per-
ception suite aiming for language-grounded holistic 3D
scene understanding from ego-centric views. We construct
a large-scale dataset with diverse sensor data and multi-
modal annotations, including 3D oriented boxes, seman-
tic occupancy and language descriptions. Based on this
dataset, we propose a baseline framework capable of han-
dling any number of views input, using a unified multi-
modal encoder and task-specific decoders. We establish
benchmarks for basic and language-grounded 3D percep-
tion. Experiment results highlight our work’s value and re-
veal new challenges in this setup. We believe Embodied-
Scan can bring opportunities in embodied 3D perception
and may also have a broader impact in related fields with
the massive data and rich annotations.
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