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Abstract

Text-to-image (T2I) generative models have recently
emerged as a powerful tool, enabling the creation of photo-
realistic images and giving rise to a multitude of appli-
cations. However, the effective integration of T2I mod-
els into fundamental image classification tasks remains an
open question. A prevalent strategy to bolster image clas-
sification performance is through augmenting the training
set with synthetic images generated by T2I models. In this
study, we scrutinize the shortcomings of both current gener-
ative and conventional data augmentation techniques. Our
analysis reveals that these methods struggle to produce im-
ages that are both faithful (in terms of foreground objects)
and diverse (in terms of background contexts) for domain-
specific concepts. To tackle this challenge, we introduce an
innovative inter-class data augmentation method known as
Diff-Mix 1, which enriches the dataset by performing image
translations between classes. Our empirical results demon-
strate that Diff-Mix achieves a better balance between faith-
fulness and diversity, leading to a marked improvement in
performance across diverse image classification scenarios,
including few-shot, conventional, and long-tail classifica-
tions for domain-specific datasets.

1. Introduction
In comparison to GAN-based models [7, 17, 25], contem-
porary state-of-the-art text-to-image (T2I) diffusion models
exhibit enhanced capabilities in producing high-fidelity im-
ages [12, 37, 44, 49]. With the remarkable cross-modality
alignment capabilities of T2I models, there is significant po-
tential for generative techniques to enhance image classifi-
cation [2, 4]. For instance, a straightforward approach en-
tails augmenting the existing training dataset with synthetic
images generated by feeding categorical textual prompts to
a T2I diffusion model. However, upon reviewing prior ap-
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Figure 1. Strategies to expand domain-specific datasets for im-
proved classification are varied. Row 1 illustrates vanilla distilla-
tion from a pretrained text-to-image (T2I) model, which carries the
risk of generating outputs with reduced faithfulness. Intra-class
augmentation, depicted in Row 2, tends to yield samples with lim-
ited diversity to maintain high fidelity to the original class. Our
proposed method, showcased in Rows 3 and 4, adopts an inter-
class augmentation strategy. This involves introducing edits to a
reference image using images from other classes within the train-
ing set, which significantly enriches the dataset with a greater di-
versity of samples.

proaches employing T2I diffusion models for image classi-
fication, it becomes evident that the challenge in generative
data augmentation for domain-specific datasets is produc-
ing samples with both a faithful foreground and a diverse
background. Depending on whether a reference image is
used in the generative process, we divide these methods into
two groups:
• Text-guided knowledge distillation [52, 57] involves gen-

erating new images from scratch using category-related
prompts to expand the dataset. For the off-the-shelf T2I
models, such vanilla distillation presume these models
have comprehensive knowledge of target domain, which
can be problematic for domain-specific datasets. Insuf-
ficient domain knowledge easily makes the distillation
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process less effective. For example, vanilla T2I models
struggle to generate images that accurately represent spe-
cific bird species based solely on their names (see Row 1
of Fig. 1).

• Generative data augmentation [1, 69] employs genera-
tive models to enhance existing images. Da-fusion [58],
for instance, translates the source image into multiple
edited versions within the same class. This strategy,
termed intra-class augmentation, primarily introduces
intra-class variations. While intra-class augmentation re-
tains much of the original image’s layout and visual de-
tails, it results in limited background diversity (see Row
2 of Fig. 1). However, synthetic images with constrained
diversity may not sufficiently enhance the model’s ability
to discern foreground concepts.

Based on these observations, a fundamental question
emerges: ‘Is it feasible to develop a method that optimizes
both the diversity and faithfulness of synthesized data si-
multaneously?’

In this work, we introduce Diff-Mix, a simple yet ef-
fective data augmentation method that harnesses diffusion
models to perform inter-class image interpolation, tailored
for enhancing domain-specific datasets. The method en-
compasses two pivotal operations: personalized fine-tuning
and inter-class image translation. Personalized fine-tuning
[15, 46] is originally designed for customizing T2I mod-
els and enabling them to generate user-specific contents or
styles. In our case, we implement the technique to tailor
the model, enabling it to generate images with faithful fore-
ground concepts. Inter-class image translation in Diff-Mix
entails transforming a reference image into an edited ver-
sion that incorporates prompts from different classes. This
translation strategy is designed to retain the original back-
ground context while editing the foreground to align with
the target concept. For instance, as depicted in the bottom
rows of Fig. 1, Diff-Mix can generate images of land birds
in diverse settings, such as maritime environments, enrich-
ing the dataset with a variety of counterfactual samples.

Unlike previous non-generative augmentation methods,
such as Mixup [68] and CutMix [66], Diff-Mix works in
a foreground-perceivable inter-class interpolation manner
and shares a different mechanism with the non-generative
approaches. Our experiment under the conventional clas-
sification setting indicates that incorporating both CutMix
and Diff-Mix could further enhance performance. Addi-
tionally, when compared with other generative approaches,
we conduct experiments under few-shot and long-tail sce-
narios and observe consistent performance improvements.
Our contributions can be summarized as follows:

• We pinpoint the critical factors that affect the efficacy of
generative data augmentation in domain-specific image
classification: namely, faithfulness and diversity.

• We introduce Diff-Mix, a simple yet effective generative

data augmentation strategy that leverages fine-tuned dif-
fusion models for inter-class image interpolation.

• We conduct a comparative analysis of Diff-Mix with
other distillation-based and intra-class augmentation
methods, as well as non-generative approaches, highlight-
ing its unique features and benefits.

2. Related Works

Text-to-image diffusion models. Following pretraining
on web-scale data, the T2I diffusion model has demon-
strated robust capabilities in generating text-controlled im-
ages [37, 49, 53, 56]. Its versatility has led to diverse
applications, including novel view synthesis [6, 63], con-
cept learning [28, 46], and text-to-video generation [22, 55],
among others. Recent advancements [29] also highlight the
cross-modality features of such generative models, show-
casing their ability to serve as zero-shot classifiers.

Synthetic data for image classification. There are two per-
spectives on the utilization of synthetic data for image clas-
sification: knowledge distillation [2] and data augmentation
[5, 51, 54, 62]. From the knowledge distillation perspective,
SyntheticData [19] reports significant performance gains in
both zero-shot and few-shot settings by leveraging off-the-
shelf T2I models to obtain synthetic data. The work of [2]
has indicated that fine-tuning the T2I model on ImageNet
[47] yields improved classification accuracy by narrowing
the domain gap. Some works also find that learning from
the synthetic data presents strong transferability [19, 57]
and robustness [4, 30, 67]. From the data augmentation
standpoint, Da-fusion [58] achieves stable performance im-
provements on few-shot datasets by augmenting from ref-
erence images. In a related study [3], the use of StyleGAN
[25] for generating interpolated images between two differ-
ent domains has been shown to enhance classifier robust-
ness for out-of-distribution data. Our work shares similar-
ities with AMR [5], which generates realistic novel exam-
ples by interpolating between two images using GAN [16].
The distinction lies in our discussion of interpolation using
the T2I diffusion model, where its noise-adding and denois-
ing characteristics enable a smoother implementation of in-
terpolation.

Non-generative data augmentation. Mixup [68] and Cut-
Mix [66] stand out as two prominent non-generative data
augmentation methods, serving as effective regularization
techniques during training. While Mixup achieves aug-
mented samples through a convex combination of two im-
ages, CutMix achieves augmentation by cutting and pasting
parts of images. However, both methods are constrained in
their ability to produce realistic images. In addressing this
limitation, the utilization of generative models emerges as a
potential solution to alleviate this issue.
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3. Method
3.1. Preliminary
Text-to-Image diffusion model. Diffusion models gener-
ate images by gradually removing noise from a Gaussian
noise source [21]. In a diffusion process with a total of T
steps, its forward process, which gradually adds noise, is
represented as a Markov chain with a Gaussian transition
kernel, where q(xt|xt�1) = N

�
xt;

p
↵txt�1, (1� ↵t)I

�
,

where xt represents the noisy image at step t. The train-
ing objective at step t is to predict the noise to reconstruct
xt�1. When training a text-conditioned diffusion model,
the simplified training objective can be summarized as fol-
lows:

E✏,x,c,t

h
k✏� ✏✓ (xt, c, t)k22

i
, (1)

where ✏✓ represents the predicted noise, and c is the en-
coded text caption associated with the image x.

T2I personalization. T2I personalization aims to personal-
ize a diffusion model for generating specific concepts using
a limited number of concept-oriented images [28, 40, 42].
These concepts are typically represented using identifiers
(e.g., “[V]”). As a result, we formalize the constructed
image-caption set as x, “photo of a [V]”. Various
personalization methods differ in their fine-tuning strate-
gies. For instance, Textual Inversion (TI) [15] makes the
identifier learnable, but other modules are not fine-tuned,
potentially sacrificing some faithfulness in image genera-
tion. On the other hand, Dreambooth (DB) [46] fine-tunes
the U-Net [45] for more refined personalized generation but
faces the challenge of increased computational cost.

Image-to-image translation. Image translation enables
image synthesis and editing using a reference image as
guidance [24, 64, 71]. Diffusion-based image translation
methods can generate fine edits, which refer to subtle mod-
ifications, with varying degrees of shift relative to the ref-
erence image [8, 35, 59]. Here, we draw inspiration from
SDEdit [35] to perform edits on the reference image, where
the target image xtar is translated from a reference image
xref. During translation, the reverse process does not tra-
verse the full process but starts from a certain step bsT c,
where s 2 [0, 1] controls the insertion position of the refer-
ence image with noise, as follows,

xbsTc =
q
↵̃bsTcx

ref
0 +

q
1� ↵̃bsTc✏. (2)

By adjusting the strength parameter s, one can strike a bal-
ance between the diversity of the generated images and their
faithfulness to the reference image.

3.2. General Framework
The Diff-Mix pipeline consists of two key steps. Firstly, to
produce more faithful images for domain-specific datasets,

(a) Real images

(b) Synthetic images (vanilla SD)

(c) Synthetic images (SD fine-tuned via DB)

(d) Synthetic images (SD fine-tuned via TI+DB)

Figure 2. Examples of “American Three toed
Woodpecker”. (a) Real images from the training set. (b-
d) synthetic images generated using different fine-tuned models
with the same number of fine-tuning steps. TI+DB indicates both
text embedding and U-Net are fine-tuned. TI+DB achieves a more
faithful output compared to DB alone (check the head and wing
patterns of the birds).

we propose treating it as a T2I personalization problem and
fine-tuning the Stable Diffusion (SD). Subsequently, to en-
hance the diversity of synthetic data beyond the well-fitted
training distribution, we employ inter-class image transla-
tion. This process produces interpolated images with in-
creased background diversity for each class.

3.3. Fine-tune Diffusion Model
Vanilla distillation tends to be less effective, especially as
the number of training shots increases (refer to Sec. 4.1).
In order to mitigate the distribution gap, we propose fine-
tuning Stable Diffusion in conjunction with current widely-
used T2I personalization strategies.

Dreambooth meets Textual Inversion. Many fine-grained
datasets provide terminological names for their cate-
gories, like “American Three toed Woodpecker”
and “Pileated Woodpecker”. We could construct
image-text pairs using category-related prompts and fine-
tune the denoising network of SD using Eq. 1, which is
analogous to Dreambooth. However, we observe that di-
rectly incorporating these specialized terms into the text
during fine-tuning can impede convergence and hinder the
generation of faithful images. We attribute this challenge to
the semantic proximity of terminology within a fine-grained
domain, where fine-tuning the vision module alone tends to
be less effective at distinguishing two similar classes within
the same family, like “Woodpecker”. Inspired by Textual
Inversion [15], we opt to replace the terminological name in
the dataset with “[Vi] [metaclass]” where “[Vi]” is
a learnable identifier, and i varies from 1 to N , represent-

17225



American GoldfinchAmerican Crow Acadian Flycatcher

[V1] bird [V3] bird[V2] bird

a

...

bird

[V2]

[V1]

...

“photo of a [V1] bird” CLIP-T

LoRA

UNet

Frozen Tunable

Figure 3. Fine-tuning framework of Diff-Mix operates as follows:
Initially, we replace the class name with a structured identifier for-
matted as “[Vi] [metaclass]”, thereby sidestepping the need
for specific terminological expressions. Next, we engage in joint
fine-tuning of these identifiers and the low-rank residues (LoRA)
of U-Net to capture the domain-specific distribution.

ing the category index. The illustration of our fine-tuning
strategy is presented in Fig. 3. The term “[metaclass]”
is determined by the theme of the current dataset, such as
“bird” for a fine-grained bird dataset. By concurrently
fine-tuning the identifier and the U-Net, we empower the
model to quickly adapting to the fine-grained domain, al-
lowing it to generate faithful images using the identifier (see
comparison between Row 3 and Row 4 in Fig. 2).

Parameter efficient fine-tuning. In this context, we em-
brace the parameter-efficient fine-tuning strategy known as
LoRA [23]. LoRA distinguishes itself by fine-tuning the
residue of low-rank matrices instead of directly fine-tuning
the pre-trained weight matrices. To elaborate, consider a
weight matrix W 2 Rm⇥n. The tunable residual matrix
�W comprises two low-rank matrices: A 2 Rm⇥d and
B 2 Rn⇥d, defined as �W = AB>. As a default config-
uration, we set the rank d to 10.

3.4. Data Synthesis Using Diffusion Model
In generating pseudo data, three strategies can be used
with our fine-tuned diffusion model 2: (1) distillation-based
method Diff-Gen, (2) intra-class augmentation Diff-Aug,
and (3) inter-class augmentation Diff-Mix.

Diff-Gen and Diff-Aug. For a target class yi and its textual
condition, “photo of a [Vi] [metaclass]”, both

2We use the prefix “Diff-” denotes the T2I model is fine-tuned and
“Real-” denotes the vanilla T2I model.
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Figure 4. Examples of images translated using Diff-Mix and Diff-
Aug across various strengths. Diff-Aug employs the same target
and reference image classes, typically resulting in subtle modifica-
tions. Diff-Mix progressively adjusts the foreground to align with
the target class as the translation strength increases, while preserv-
ing the background layout from the reference image.

methods generate synthetic samples annotated with class
i. Specifically, Diff-Gen generates samples from scratch
by initializing with random Gaussian noise and proceed-
ing through the full reverse diffusion process with T steps.
Diff-Gen can produce images aligned with its fine-tuned
distribution. In contrast, Diff-Aug sacrifices a portion of
diversity and generate images by editing on a reference im-
age. Specifically, it randomly sample a image from the
intra-class training set and enhances the image through im-
age translation using Eq. 2. The term “intra-class” means
that the conditioning prompts are constructed based on the
ground truth categories of images, and such a denoising pro-
cess tends to introduce less variation, particularly for the
foreground concepts (see top rows of Fig. 1).

Diff-Mix. Diff-Mix employs the same translation process
as Diff-Aug, but the reference image is sampled from the
full training set rather than intra-class set to enable inter-
class interpolation. The key difference is that Diff-Mix
can generate numerous counterfactual examples, such as a
blackbird in the sea (see fourth row of Fig. 1). This ne-
cessitates that downstream models make a more refined dif-
ferentiation of category attributes, thereby reducing the im-
pact of spurious correlations introduced by variations in the
background. Denoting the label of the reference image as
yj , by inserting the reference image into the reverse process
with the prompt “photo of a [Vi] [metaclass]”,
we can obtain interpolated images between the ith and jth
categories. By controlling the intensity s, we can precisely
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Figure 5. A schematic explanation of Diff-Mix’s effectiveness us-
ing structural casual model [41]. xfg is the foreground that deter-
mines the real class label, xbg denotes the background. xfg !
z ! y is the causal path that we are focusing and xfg  I !
xbg ! z ! y is the backdoor path that introduces spurious rela-
tions between xfg and y.

manage the interpolation process. When annotating the syn-
thetic image, unlike Mixup and Cutmix, we take into ac-
count the non-linear nature of diffusion translation. Thus
the annotation function is given by

ỹ = (1� s�)yi + s�yj , (3)

where � is a hyperparameter introducing non-linearity. Our
empirical findings indicate that a � smaller than 1 is fa-
vored. Additionally, in low-shot cases, the samples with
higher confidence in the target class are preferred (see de-
tails in Sec. 4.5).

Construct synthetic dataset. To construct the synthetic
dataset using Diff-Mix, similar to Da-fusion [58], we adopt
a randomized sampling strategy (s 2 {0.5, 0.7, 0.9}) for the
selection of translation strength. While applying the inter-
class editing, we observe that Diff-Mix tends to produce
more undesirable samples compared to Diff-Aug. These un-
desirable samples have incomplete foreground such as frag-
mented bird bodies. This is caused by the intrinsic shape
and pose differences among classes. To mitigate this, we in-
troduce a simple data-cleaning approach to reduce the pro-
portion of such problematic images. We utilize the large
vision language model CLIP [43] to assess the confidence
in the content, serving as the filtering criterion. Further de-
tails can be found in the supplementary materials (SMs).

Analysis. We depict the core insight of Diff-Mix in Fig.
5. To eliminate the spurious correlation introduced by xbg ,
learning on the synthetic set with randomized xbg (back-
ground) can cut off spurious correlation, forcing the classi-
fication model to infer only from the foreground. The study
in Fig. 7 (b) shows that the more diverse the background
(larger the referable class number), the better the perfor-
mance on the CUB test set.

4. Experiments
In this section, we investigate the effectiveness of Diff-Mix
in domain-specific datasets. The key questions we aim to
address are as follows:

Q1: Can generative inter-class augmentation lead to
more significant performance gains in downstream tasks
compared to those intra-class augmentation methods and
distillation-based methods?
Q2: Is improved background diversity the secret weapon
of Diff-Mix for enhancing the performance?
Q3: How to choose the fine-tuning strategy and annota-
tion strategy to boost the performance gains for the inter-
class augmentation?

To address Q1, we separately discuss these questions in
few-shot settings in Sec. 4.1, conventional classification in
Sec. 4.2, as well as long-tail classification in Sec. 4.3. Ad-
ditionally, to answer Q2, we conduct a test for background
robustness in Sec. 4.4 and perform an ablation study fo-
cusing on the size and diversity of synthetic data in Sec.
4.5. For Q3, we conduct an ablation study to empirically
discover effective strategies for deployment in Sec. 4.5.

4.1. Few-shot Classification
Experimental Setting. To investigate the impact of dif-
ferent data expansion methods, we conduct few-shot exper-
iments on a domain-specific dataset Caltech-UCSD Birds
(CUB) [61], with shot numbers of 1, 5, 10, and all. For
augmentation-based methods, the synthetic dataset is con-
structed using various translation strengths (s), specifically,
s 2 {0.1, 0.3, ..., 1.0}. We expand the original training set
with a multiplier of 5 and cache the synthesized dataset
locally for joint training. Real data are replaced by syn-
thetic data proportionally during training, and the replace-
ment probability p is set as 0.1, 0.2, 0.3, and 0.5 for all-
shot, 10-shot, 5-shot, and 1-shot classification, respectively.
All experiments use ResNet50 with an input resolution of
224⇥ 224. Additional details can be found in the SMs.

Comparison methods. To unveil the trade-off between
faithfulness and diversity resulting from different expan-
sion strategies, we compared Diff-Mix with Diff-Gen and
Diff-Aug. Furthermore, we conduct experiments on expan-
sion strategies using vanilla SD: Real-Mix, Real-Gen, and
Real-Aug, where ‘Real’ signifies that SD is not fine-tuned.

Main results. To answer Q1 under the few-shot classifica-
tion setting, we augment CUB using X-Mix, X-Aug, and
X-Gen, where ‘X’ denotes ‘Diff/Real’ for simplicity. The
results are shown in Fig. 6, and we can observe that:
1. Diff-Mix generally outperforms the intra-class competi-

tor X-Aug and distillation competitor X-Gen in various
few-shot scenarios. It tends to achieve higher gains when
the strength s is relatively large, i.e., {0.5, 0.7, 0.9},
where the foreground has been edited to match the tar-
get class and the background retains similarities to the
reference image.

2. Among the Real-X methods, distillation tends to be more
effective than the augmentation method when the shot
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(a) 1-shot (b) 5-shot (c) 10-shot (d) All-shot

Figure 6. Few-shot classification results on CUB.

number is low, but the trend reverses as the shot num-
ber increases (compare Real-Gen with Real-Aug). Real-
Gen’s samples even show less effective than Real-Aug
(s = 1.0) under the all-shot case 3. This indicates that
the importance of faithfulness in the trade-off between
faithfulness and diversity increases with the shot num-
ber. Additionally, Real-Mix exhibits consistent and sta-
ble improvement over the other two methods.

3. Diff-Gen consistently outperforms Real-Gen under four
scenarios. Notably, Real-Gen’s performance declines
below that of the baseline as the shot numbers reach
10, showcasing the importance of the fine-tuning process
which increases the faithfulness of synthetic samples.

4.2. Conventional Classification

Experimental setting. To test whether Diff-Mix can fur-
ther boost performance in a more challenging setting, i.e.,
under the all-shot scenario with high input resolution, we
conduct conventional classification on five domain-specific
datasets: CUB [61], Stanford Cars [27], Oxford Flowers
[38], Stanford Dogs [26], and FGVC Aircraft [34]. Two
backbones are employed: pretrained (ImageNet1K [49])
ResNet50 [18] with input resolution 448 ⇥ 448, and pre-
trained (ImageNet21K) ViT-B/16 [13] with input resolu-
tion 384 ⇥ 384. Label smoothing [36] is applied across all
datasets with a confidence level of 0.9. For all expansion
strategies, the expansion multiplier is 5 and the replacement
probability p is 0.1. Besides, we use a randomized sampling
strategy (s 2 {0.5, 0.7, 0.9}) and a fixed � (0.5, and this is
specific to Diff-Mix) for all datasets.

Comparison methods. We compare Diff-Mix with (1)
Real-Filtering (RF) [19], a variation of Real-Gen that in-
corporates clip filtering, (2) Real-Guidance (RG) [19],
which augments the dataset using intra-class image trans-
lation at low strength (s = 0.1), (3) Da-Fusion [58], a
method that solely fine-tunes the identifier to personal-
ize each class and employs randomized sampling strategy

3Real-Aug (s = 1.0) remains analogous to the reference image
(slightly higher faithfulness compared to Real-Gen) because the discrete
forward process cannot approximate the ideal normal distribution within a
limited number of steps (T = 25).

(s 2 {0.25, 0.5, 0.75, 1.0}), and non-generative augmenta-
tion methods (4) CutMix [66] and (5) Mixup [68].

Main results. We show the classification accuracy for dif-
ferent data expansion strategies in Table 1, our observa-
tions can be summarized: (1) Diff-Mix consistently demon-
strates stable improvements across the majority of settings.
Its average performance gain across the five datasets ex-
ceeds that of baselines employing intra-class augmentation
methods (RG and Da-fusion), distillation method (RF), and
non-generative data augmentation techniques (CutMix and
Mixup). (2) Real-filtering, analogous to the discussion
of Real-Gen, exhibits performance degradation on most
datasets due to the distribution gap. (3) The combined use
of Diff-Mix and CutMix often yields better performance
gains. This is attributed to the distinct enhancement mech-
anisms of the two methods, i.e., vicinal risk minimization
[11, 68] and foreground-background disentanglement. (4)
Diff-Mix does not exhibit significant performance improve-
ment in the dog dataset. We attribute this lack of improve-
ment to the complexity of the dog dataset, which often con-
tains multiple subjects in a single image, impeding effective
foreground editing (refer to the SMs for visual examples).

4.3. Long-Tail Classification

Experiment setting. Following the settings of previ-
ous long-tail dataset constructions [9, 32, 39], we create
two domain-specific long-tail datasets, CUB-LT [50] and
Flower-LT. The imbalance factor controls the exponential
distribution of the imbalanced data, where a larger value in-
dicates a more imbalanced distribution. To leverage gen-
erative models for long-tail classification, we adopt the
approach of SYNAuG [65], which uniformize the imbal-
anced real data distribution using synthetic data. Transla-
tion strength s (0.7) and � (0.5) are fixed for both Diff-Mix
and Real-Mix.

Comparison methods. We compare Diff-Mix with Real-
Mix, Real-Gen, the non-generative CutMix-based oversam-
pling approach CMO [39], and its enhanced variant with
two-stage deferred re-weighting [9] (CMO+DRW).

Main results. We present the long-tail classification re-
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Backbone Aug. Method FT Strategy Dataset
CUB Aircraft Flower Car Dog Avg

ResNet50@448

- - 86.64 89.09 99.27 94.54 87.48 91.40
Cutmix[66] - 87.23 89.44 99.25 94.73 87.59 91.65+0.25

Mixup[68] - 86.68 89.41 99.40 94.49 87.42 91.48+0.08

Real-filtering [19]† % 85.60 88.54 99.09 94.59 87.30 91.22�0.18

Real-guidance [19]† % 86.71 89.07 99.25 94.55 87.40 91.59+0.19

Da-fusion [58]† TI 86.30 87.64 99.37 94.69 87.33 91.07�0.58

Diff-Mix TI + DB 87.16 90.25 99.54 95.12 87.74 91.96+0.56

Diff-Mix + Cutmix TI + DB 87.56 90.01 99.47 95.21 87.89 92.03+0.63

ViT-B/16@384

- - 89.37 83.50 99.56 94.21 92.06 91.74
Cutmix[66] - 90.52 83.50 99.64 94.83 92.13 92.12+0.38

Mixup[68] - 90.32 84.31 99.73 94.98 92.02 92.27+0.53

Real-filtering [19]† % 89.49 83.07 99.36 94.66 91.91 91.69�0.05

Real-guidance [19]† % 89.54 83.17 99.59 94.65 92.05 91.80+0.06

Da-fusion [58]† TI 89.40 81.88 99.61 94.53 92.07 91.50�0.24

Diff-Mix TI + DB 90.05 84.33 99.64 95.09 91.99 92.22+0.48

Diff-Mix + Cutmix TI + DB 90.35 85.12 99.68 95.26 91.89 92.46+0.72

Table 1. Conventional classification in six fine-grained datasets. ‘†’ indicates our reproduced results using SD.

Method IF=100 50 10Many Medium Few All
CE 79.11 64.28 13.48 33.65 44.82 58.13
CMO [39] 78.32 58.57 14.78 32.94 44.08 57.62
CMO + DRW [10] 78.97 56.36 14.66 32.57 46.43 59.25
Real-Gen 84.88 65.23 30.68 45.86 53.43 61.42
Real-Mix (s=0.7) 84.63 66.34 34.44 47.75 55.67 62.27
Diff-Mix (s=0.7) 84.07 67.79 36.55 50.35 58.19 64.48

Table 2. Long-tail classification in CUB-LT.

Method IF=100 50 10Many Medium Few All
CE 99.19 94.95 58.18 80.43 90.87 95.07
CMO [39] 99.25 95.19 67.45 83.95 91.43 95.19
CMO+ DRW [10] 99.97 95.06 67.31 84.07 92.06 95.92
Real-Gen 98.64 95.55 66.10 83.56 91.84 95.22
Real-Mix (s=0.7) 99.87 96.26 68.53 85.19 92.96 96.04
Diff-Mix (s=0.7) 99.25 96.98 78.41 89.46 93.86 96.63

Table 3. Long-tail classification in Flower-LT.

sults for CUB-LT in Table 2 and Flower-LT in 3. The ob-
servations are as follows: (1) Generative approaches ex-
hibit superior performance in tackling imbalanced classi-
fication issues compared to CutMix-based methods (CMO
and CMO+DRW). (2) Real-Mix surpasses Real-Gen in per-
formance across various imbalance factors in two datasets.
This indicates that tail classes can benefit from the en-
hanced diversity by leveraging the visual context of major-
ity classes. (3) Diff-Mix generally achieves the best per-
formance among the compared strategies, especially at the
low-shot case, highlighting the importance of fine-tuning.

4.4. Background Robustness

In this section, we aim to evaluate Diff-Mix’s robustness to
background shifts, specifically, whether synthesizing more
diverse samples can improve the classification model’s gen-
eralizability when the background is altered. To achieve

Group Base. CutMix DA-fusion Diff-Aug Diff-Mix
(waterbird, water) 59.50 62.46 60.90 61.83 63.83
(waterbird, land) 56.70 60.12 58.10 60.12 63.24
(landbird, land) 73.48 73.39 72.94 73.04 75.64
(landbird, water) 73.97 74.72 72.77 73.52 74.36

Avg. 70.19 71.23 69.90 70.28 72.47

Table 4. Classification results across four groups in Waterbird
[48]. Waterbird is an out-of-distribution dataset for CUB, crafted
by segmenting CUB’s foregrounds and paste them into the scene
images from Places [70]. The constructed dataset can be divided
into four groups based on the composition of foregrounds (water-
bird and landbird) and backgrounds (water and land) .

this, we utilize an out-of-distribution test set for CUB,
namely Waterbird [48]. We then perform inference on the
whole Waterbird set using classifiers that have been trained
on either the original CUB dataset or its expanded varia-
tions. In Table 4, we present the classification accuracies
across the four groups and compare Diff-Mix with other
intra-class methods (Da-fusion and Diff-Aug) as well as
CutMix. We observe that Diff-Mix generally outperforms
its counterparts and achieves a significant performance im-
provement (+6.5%) in the challenging counterfactual group
(waterbirds with land backgrounds). It is important to high-
light that the background scenes in the Waterbird dataset are
novel to CUB, requiring the classification model to have a
stronger perceptual capability for the images’ foregrounds.

4.5. Discussion
In this section, we address Q2 by examining the impact of
size and diversity on synthetic data. Furthermore, we per-
form an ablation study to assess the effects of fine-tuning
strategies and training hyperparameters of Diff-Mix, which
is aimed at answering Q3. Unless specified otherwise, our
discussions are based on experiments conducted using CUB
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(a) (b)

Figure 7. Comparison of results across various (a) synthetic data
sizes and (b) numbers of referable classes for each target class.

with ResNet50, where inputs are resized to 224⇥ 224.

Size and diversity of synthetic Data. The relationship be-
tween performance gain and the size of synthetic data is
depicted in Fig. 7 (a), where a classification model was
trained with synthetic data of varying sizes. We observe a
monotonically increasing trend as the multiplier for the syn-
thetic dataset ranges from 2 to 10. Ideally, the combination
choices of (xi, yj) are in the order of N |Dtrain| (N = 200
for CUB). Furthermore, we limit the number of referable
classes for each target class, which means the number of
referable backgrounds decreases, resulting in a synthetic
dataset of relatively lower diversity. The results are shown
in Fig. 7 (b), and we observe a consistent improvement in
performance as the number of referable classes increases.
These results consistently underscore the critical role of
background diversity introduced by Diff-Mix.

Impact of fine-tuning strategy. Here we compare three
different fine-tuning strategies: TI, DB, and the combined
TI+DB. All strategies share the same fine-tuning hyperpa-
rameters and training steps (35000). To evaluate the distri-
bution gap, we compute the FID score [20] of synthesized
images (Diff-Gen) with the training set. As illustrated in
Table 5, we observe that both TI+DB and TI have lower
FID scores than DB. This can be attributed to the fact that
semantic proximity impedes the convergence process. Ad-
ditionally, while using TI alone results in a relatively low
FID score, the improvements in performance are limited.
This limitation stems from TI’s inability to accurately re-
construct detailed concept (foreground) information, as it is
primarily fine-tuned at the semantic level [28].

Annotation function. In this section, we discuss the im-
pact of the choices of the translation strength s and the
non-linear factor � in Eq. 3. As shown in Table 6, we
observe that as the translation strength decreases, the opti-
mal value for � also decreases, which underscores the non-
linearity of Diff-Mix. The comparison between the 5-shot
and all-shot settings indicates that the model tends to pre-
fer a more diverse synthetic dataset when the number of
training shots is small (s = 0.9 for 5-shot, s = 0.7 for all-
shot). Besides, a larger confidence in the target class is pre-

Baseline TI DB TI + DB

5-shot FID (Diff-Gen) - 18.26 19.55 18.43
Acc. (Diff-Mix) 50.90 57.64 56.11 59.41

All-shot FID (Diff-Gen) - 14.13 14.64 13.99
Acc. (Diff-Mix) 81.60 81.86 81.99 82.85

Table 5. Comparison of distribution gap and classification accu-
racy across three fine-tuning strategies. TI solely fine-tunes the
identifier, and DB solely fine-tunes the U-Net, and TI+DB.

�
5-shot All-shot

s = 0.5 s = 0.7 s = 0.9 s = 0.5 s = 0.7 s = 0.9
1.5 -4.50 -0.31 +10.30 -1.08 +0.92 +0.90
1.0 -2.31 +2.99 +10.79 +0.25 +1.14 +0.90
0.5 +2.35 +8.44 +11.01 +0.92 +1.30 +0.86
0.3 +3.94 +9.41 +11.15 +0.97 +1.24 +0.69
0.1 +6.18 +9.86 +10.84 +0.50 +0.88 +0.84
0.0 +5.25 +9.41 +11.06 +0.38 +0.63 +0.54

Table 6. Comparison of performance gain across various � and
translation strength s. Lower � indicates a higher confidence over
target class, e.g. (� = 0.1, s = 0.7) results in 0.04yi + 0.96yj
and (� = 0.5, s = 0.7) results in 0.16yi + 0.84yj .

ferred when the shot number is small (� = 0.1 for 5-shot,
� = 0.5 for all-shot). A possible explanation is that the all-
shot setting is less tolerant towards unrealistic images, as
discussed in Section 6. Empirically, we recommend choos-
ing a higher translation strength (s 2 0.5, 0.7, 0.9) and a
smaller � (� 2 0.1, 0.3, 0.5) as a conservative option.

5. Conclusion
In this work, we investigate two pivotal aspects, faithfulness
and diversity, that are critical for the current state-of-the-art
text-to-image generative models to enhance image classifi-
cation tasks. To achieve a more effective balance between
these two aspects, we propose an inter-class augmentation
strategy that leverages Stable Diffusion. This method en-
ables generative models to produce a greater diversity of
samples by editing images from other classes and shows
consistent performance improvement across various classi-
fication tasks.
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