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Abstract

Epistemic uncertainty quantification (UQ) identifies
where models lack knowledge. Traditional UQ methods,
often based on Bayesian neural networks, are not suit-
able for pre-trained non-Bayesian models. Our study
addresses quantifying epistemic uncertainty for any pre-
trained model, which does not need the original training
data or model modifications and can ensure broad ap-
plicability regardless of network architectures or training
techniques. Specifically, we propose a gradient-based ap-
proach to assess epistemic uncertainty, analyzing the gra-
dients of outputs relative to model parameters, and thereby
indicating necessary model adjustments to accurately rep-
resent the inputs. We first explore theoretical guarantees
of gradient-based methods for epistemic UQ, questioning
the view that this uncertainty is only calculable through
differences between multiple models. We further improve
gradient-driven UQ by using class-specific weights for in-
tegrating gradients and emphasizing distinct contributions
from neural network layers. Additionally, we enhance UQ
accuracy by combining gradient and perturbation methods
to refine the gradients. We evaluate our approach on out-of-
distribution detection, uncertainty calibration, and active
learning, demonstrating its superiority over current state-
of-the-art UQ methods for pre-trained models.

1. Introduction
Uncertainty quantification (UQ) is essential in machine
learning, especially as models tackle safety-critical tasks
like healthcare diagnostics or autonomous navigation. UQ
assesses predictive confidence, bolstering model trustwor-
thiness and ensuring safer real-world applications.

There are two types of uncertainty: epistemic and
aleatoric. Epistemic uncertainty stems from a lack of
knowledge, often due to limited data or model inadequa-
cies, and is potentially reducible given more training data.
Aleatoric uncertainty arises from inherent randomness in
the data and remains irreducible regardless of data availabil-
ity. For classification tasks, aleatoric uncertainty in neural

networks is often captured by the entropy of the softmax
probability distribution. In contrast, Bayesian neural net-
works (BNNs) provide a systematic framework to estimate
epistemic uncertainty by constructing the posterior distri-
bution of model parameters. While the direct calculation
of the posterior is often intractable, common methods in-
clude Markov Chain Monte Carlo [3, 9, 30, 34, 35, 38] and
variational inference [4, 6, 14, 21, 23] techniques. BNNs
then use samples from the posterior distribution to quantify
epistemic uncertainty through prediction disagreements.

Our study highlights the importance of measuring epis-
temic uncertainty with any pre-trained model, avoiding the
heavy computational efforts required by BNNs, and focus-
ing on these advantageous conditions:
• No Extra Knowledge Needed. Our method works with-

out requiring training or validation datasets, suitable for
scenarios with limited data access.

• No Model Refinement Required. We avoid the need
for parameter refinement, whether through retraining for
new parameters or creating a parameter distribution from
the trained model. This minimizes the computational de-
mands and risks associated with model adjustments.

• Universal Applicability. UQ is universally applicable for
any pre-trained model, free from constraints related to ar-
chitecture design or specific training techniques.
Some existing methods such as gradient-based and

perturbation-based UQ can meet the previously stated con-
ditions. Gradient-based UQ is based on the idea that the
sensitivity of a model’s output to its parameters can indicate
prediction uncertainties. Essentially, gradients show the ad-
justments needed for accurately representing the input, sug-
gesting the model’s insufficient knowledge about the input.
Perturbation-based UQ, on the other hand, involves apply-
ing minor modifications to input data or model parameters
to see how these changes impact predictions. If the model is
unfamiliar with an input, even small perturbations can sig-
nificantly change the output. In contrast, if the model knows
the input well, it should also handle slight variations. Cur-
rent gradient-based and perturbation-based methods have
several limitations. Firstly, there’s a lack of theoretical
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analysis of their ability to accurately capture epistemic un-
certainty. Additionally, their effectiveness often falls short
compared to BNNs or even measures like softmax proba-
bility entropy [11]. Lastly, evaluations of these methods are
primarily based on out-of-distribution detection, indicating
a need for more comprehensive assessments.

Our study first challenges the idea that epistemic uncer-
tainty is primarily detected through model discrepancies.
Specifically, this paper offers theoretical support for general
perturbation/gradient-based methods by connecting them
to BNNs. We claim that gradient-based and perturbation-
based methods are effective for this epistemic UQ with the-
oretical analysis, suggesting that a single model can recog-
nize their limitations and areas of unfamiliarity. While con-
ditions for ideal uncertainty estimation may not hold, we
introduce three components to enhance gradient-based UQ
based on the theoretical insights:
• Class-specific Gradient Weighting. In classification

tasks, it’s possible to calculate gradients for each class.
We aim to develop a more effective uncertainty score by
combining these gradients using class-specific weights.

• Selective Gradient Computation. We introduce layer-
selective gradients, focusing on gradients from deeper
layers of the neural network, as they are more representa-
tive of epistemic uncertainty.

• Smoothing Noisy Gradients. We combine gradients
with perturbation techniques, applying slight input per-
turbations and aggregating gradients for each perturbed
input to smooth the raw gradients.

2. Related Work
Gradient-based UQ. Gradient-based techniques leverage
gradient information for uncertainty estimation. The key
difference among gradient-based methods is their strategy
for deriving an uncertainty score by computing and inte-
grating gradients. For example, Lee et al. [19] backprop-
agated the cross entropy loss using the network’s predicted
probabilities with a confounding label. Huang et al [10]
computed the gradients of the KL divergence between the
predicted distribution and uniform distribution, where epis-
temic uncertainty is quantified via the norm of gradients.
Meanwhile, Igoe et al. [11] introduced ExGrad, which
scales the gradients of each class based on its associated
predicted probability. While Lee et al. [19] offered intuitive
reasoning, gradient-based UQ methods lack solid theoreti-
cal foundations, relying primarily on empirical results. As
highlighted by Igoe et al. [11], these gradient-centric UQ
methods often don’t outperform simple measures like mea-
suring the distance of the predicted distribution to a uniform
one, which primarily captures aleatoric uncertainty. This
motivates us to propose an improved approach for epistemic
UQ, utilizing gradient information more effectively.
Perturbation-based UQ. Perturbation-based methods [1,

2, 18, 26] measure epistemic uncertainty by introducing
small modifications to the inputs or parameters and observ-
ing the resulting variations in the outputs. Alarab et al.
[1, 2] employed adversarial attacks to the inputs to esti-
mate uncertainty. Ledda et al. [18] introduced extra dropout
layers into a trained network that initially did not include
dropout, utilizing these layers for epistemic UQ. Despite
their empirical effectiveness, these methods lack theoretical
support, motivating our theoretical analysis.
Other UQ Methods for Pre-trained Models. Contrary to
perturbation-based and gradient-based techniques, the UQ
methods outlined in this section mandate specific prerequi-
sites in pre-trained models for effective epistemic UQ. Sev-
eral methods are proposed to capture uncertainty through a
special design of the network. For example, MC-dropout
[7] assumes the network incorporates dropout layers during
both training and testing for UQ. Similarly, MC-batchnorm
[33] employs a deterministic network trained with batch
normalization, which is also maintained during testing for
UQ. Additionally, some methods require extra information
beyond the model architecture. Laplace Approximation
methods [4, 20, 22, 29] estimate the posterior distribution
by approximating it as a Gaussian distribution and perform-
ing a Taylor expansion around the learned parameters of a
pre-trained model. However, these methods necessitate ac-
cess to the training data to approximate the posterior accu-
rately. Utilizing the training data, Schweighofer et al. [31]
explored the parameter space around a pre-trained model to
identify alternative modes of the posterior distribution.

3. Theoretical Analysis
In this section, we first introduce the epistemic UQ of a
pre-trained model. We then demonstrate how perturbation-
based UQ methods can, under certain conditions, serve
as effective approximations to BNNs for the estimation of
epistemic uncertainty. Finally, we offer a theoretical anal-
ysis of the capacity of gradient-based techniques in quan-
tifying epistemic uncertainty, highlighting the connections
between perturbation-based and gradient-based approaches.

3.1. Epistemic Uncertainty Quantification

General Notations and Assumptions. Consider x as the
input, y as the target variable, and D as the training data.
We focus on classification tasks. Without loss of generality,
we assume the pre-trained model is a single deterministic
NN that provides a probability vector p(y|x, θ∗) ∈ [0, 1]C ,
where θ∗ are the pre-determined model parameters and C
is the class count. We use E(·) for expectation, H(·) for
entropy, and I(·; ·) to represent mutual information.
Epistemic UQ for BNNs. BNNs treat the neural network
parameters, denoted as θ, as random variables governed by
a posterior distribution p(θ|D). A widely used method to
estimate epistemic uncertainty involves calculating the mu-
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tual information between y and θ, expressed as:

I(y; θ|x,D) = Ep(θ|D) [KL(p(y|x, θ)||p(y|x,D))] (1)

where KL represents the Kullback–Leibler divergence.
Desired Epistemic UQ for a Pre-trained Model. While
the ideal Bayesian prediction p(y|x,D) remains intractable,
Schweighofer et al. [31] approximated it in Eq. (1) using
p(y|x, θ∗) for quantifying epistemic uncertainty of a pre-
trained model parameterized by θ∗. They aimed to estimate
the prediction difference between θ∗ and samples from the
posterior distribution, which is formulated as follows:

Ue(x) = Ep(θ|D) [KL(p(y|x, θ)||p(y|x, θ∗))] . (2)

Considering θ = θ∗ +∆θ, we can reformulate Ue(x) from
Eq. (2) by performing perturbations on θ∗:

Ep(∆θ|D) [KL(p(y|x, θ∗ +∆θ)||p(y|x, θ∗))] . (3)

3.2. Perturbation-based UQ

In this section, we aim to explore the connection between
perturbation-based UQ and BNNs for epistemic UQ. Propo-
sition 3.1 provides a theoretical analysis indicating that, in
certain conditions, perturbation-based methods can effec-
tively approximate BNNs.
Proposition 3.1. Assume the model parameters θ∗ are
learned given sufficient in-distribution training data D, i.e.,
|D| → ∞. Under mild regularity conditions (i.e., the likeli-
hood function of θ is continuous, θ∗ is not on the boundary
of the parameter space), perturbing θ∗ by adding a small
Gaussian noise can accurately approximate the posterior
distribution p(θ|D). For example,

θ∗ + σϵ ∼ N (θ∗, σ2I) where ϵ ∼ N (0, I) (4)

and
sup
θ

|p(θ|D)−N (θ; θ∗, σ2I)| → 0 (5)

where σ → 0 is a small positive constant.

The proof of Proposition 3.1 is based on the Bernstein-
von Mises theorem [8, 13]. This theorem indicates that,
given infinite training data, the posterior distribution tends
toward a Gaussian distribution. Moreover, as the number of
training data increases, this Gaussian distribution narrows.
The detailed proof is shown in Appendix A. Proposition 3.1
underscores the potential of perturbation-based methods to
approximate BNNs, especially in cases where the training
data is comprehensive and the model is robustly trained.
In this scenario, N (0, σ2I) closely approximates p(∆θ|D).
It is worth noting that an adequately large dataset D in
Eq. (5) makes diagonal covariance sufficient for reliable un-
certainty measures. The assumption |D| → ∞ is significant
as they (1) establish conditions for ideal uncertainty estima-
tion and (2) enable the estimation of epistemic uncertainty

for any pre-trained model in a challenging scenario, assum-
ing no extra knowledge or learning is needed. While the as-
sumptions are generally hard to achieve, their strict satisfac-
tion isn’t necessary when most datasets have sufficient sam-
ples and general data augmentation is applied during train-
ing. Furthermore, we can derive an upper bound for the total
variation distance, DTV(p(θ|D), N(θ; θ∗, σ2I))(σ → 0), to
analyze the validity of Proposition 3.1 for finite D:

Proposition 3.2. Denote v(θ) = − 1
|D| log p(θ) −

1
|D|

∑
(x,y)∈D log p(y|x, θ) with p(θ) as a pre-defined prior

distribution. Under Proposition 3.1 and the regularity con-
straints on v(θ) from Sec. 2.2 of [12], we have

DTV≤
√

1

2
KL(N (θ∗, σ2I)||N (θ∗,−H(θ∗)−1)

+c(c23(v) + c4(v))
d2

|D| + |c3(v)|
d√
|D|

.

(6)

H(θ∗) = ∇2
θ∗ log p(θ∗|D). d is the dimension of θ, c is an

absolute constant, and c3(v), c4(v) are constants computed
from third/fourth-order derivatives of v.

Note that N (θ∗,−H(θ∗)−1) is the Laplacian approxi-
mation of p(θ|D) and H(θ∗)−1 → 0 as |D| → ∞ based on
the Bernstein-von Mises theorem. Hence, the upper bound
→ 0 as |D| → ∞. It implies a good convergence when
|D| ≫ d2. The proof will be shown in Appendix A. While
perturbations in the parameter space have a clear link to
BNNs, input-space perturbations offer more understandable
modifications. The large parameter space and complex non-
linear transformations in NNs make it challenging to iden-
tify effective parameter-space perturbations. This complex-
ity also hinders the ability to understand how perturbations
operate within neural networks. In contrast, applying per-
turbations directly to the input is relatively easier, and these
perturbations can be visualized. Intuitively, when a model
has limited knowledge about an input (indicative of high
epistemic uncertainty), it probably also lacks knowledge
about the nearby regions of that input. A slight perturbation
to the input might induce a notable change in prediction.
Additionally, the following proposition suggests parameter-
space and input-space perturbations are transferable under
certain conditions with proof shown in Appendix A:

Proposition 3.3. Denote f(x, θ) as a neural network pa-
rameterized by θ with input x. For any small perturbation
∆θ → 0, there exists a small perturbation ∆x that fulfills

f(x, θ +∆θ) = f(x+∆x, θ). (7)

Conversely, for any small input-space perturbation ∆x,
there exists a small perturbation applied on the first layer
parameters that satisfies Eq. (7). Based on Eq. (7),

Ue(x) = E∆θ [KL(p(y|x, θ∗ +∆θ)||p(y|x, θ∗))]
= E∆x [KL(p(y|x+∆x, θ∗)||p(y|x, θ∗))] .

(8)
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As a result, under the conditions of Proposition 3.1 and
3.3, suitable perturbations in the input space and subsequent
evaluation of output variations can also effectively emulate
the behavior of BNNs to measure epistemic uncertainty.
Note that when both ∆θ and ∆x are small, Eq. (7) can
be well-approximated by the first-order Taylor expansion
of both sides. This reveals a linear relation between ∆x and
∆θ. Thus, for small Gaussian ∆θ as per Proposition. 3.1,
∆x is also Gaussian and sampling ∆x ∼ N (0, σ2I) with a
small σ is a suitable approximation.

3.3. Gradient-based UQ

Gradients tracing from the model’s output back to its pa-
rameters are indicative of epistemic uncertainty. Funda-
mentally, these gradients measure the slight changes neces-
sary in the model’s parameters to better represent the input.
When faced with an unfamiliar input, the model needs more
substantial adjustments in its parameters. Conversely, for
familiar, in-distribution samples, these gradients are close
to zero. This concept is demonstrated in Proposition 3.4:

Proposition 3.4. Let us assume the neural network f pa-
rameterized by θ has sufficient complexity and it is trained
with a sufficiently large dataset D (|D| → ∞) in the neigh-
borhood of an in-distribution input x. Under mild regularity
conditions (i.e., the likelihood function of θ is continuous,
θ∗ is not on the boundary of the parameter space), the op-
timized θ∗ achieves global optimality in x’s neighborhood,
denoted N (x). For ∀x+∆x ∈ N (x), we have:

∂f(x, θ∗)

∂θ∗
= 0

∂f(x+∆x, θ∗)

∂θ∗
= 0 . (9)

Proposition 3.4, whose proof is in Appendix A, theoreti-
cally supports using gradients as epistemic uncertainty indi-
cators, as they may reflect data density and often approach
zero for in-distribution data. Intuitively, out-of-distribution
data often has non-zero gradients, as it is typically not
well-represented by the model, suggesting a need for larger
model adjustments to recognize them. Proposition 3.4 also
indicates that the gradients around the neighborhood of in-
distribution x are small. This inspires us to merge the gradi-
ents of neighboring samples with the original sample, cre-
ating smoother gradients to estimate epistemic uncertainty.

In exploring the relationship between perturbation-based
and gradient-based UQ, it’s evident that both approaches
fundamentally depend on the sensitivity of the model’s out-
puts to its parameters. While perturbation-based UQ di-
rectly modifies parameters or inputs and observes the re-
sulting variations in outputs, gradient-based UQ achieves
a similar understanding indirectly through gradient analy-
sis. They do not actively change the parameters but employ
gradients directly as a tool for constructing the uncertainty
score. The gradients can be viewed as a first-order approxi-

mation of the changes observed in perturbation-based meth-
ods. Therefore, under small perturbations, both methods are
likely to yield similar insights into the model’s uncertainty.
Building on the connection between perturbation-based and
gradient-based methods, the effectiveness of perturbation-
based methods by Proposition 3.1 in measuring epistemic
uncertainty suggests a similar potential in gradient-based
approaches. The subsequent proposition bridges gradient-
based UQ with perturbation-based UQ mathematically:

Proposition 3.5. The epistemic uncertainty derived by the
expected gradient norm can serve as an upper bound com-
pared to the uncertainty produced by perturbation-based
methods when the perturbations are small.

Ep(∆θ) [KL(p(y|x, θ∗)||p(y|x, θ∗ +∆θ))]

≤
C∑

c=1

p(y = c|x, θ∗)
∥∥∥∥∂ log p(y = c|x, θ∗)

∂θ∗

∥∥∥∥Ep(∆θ)[||∆θ||]

∝ Ey∼p(y|x,θ∗)

[∥∥∥∥∂ log p(y|x, θ∗)
∂θ∗

∥∥∥∥] (ExGrad [11])

(10)

where ∆θ → 0 and Ep(∆θ)[||∆θ||] is independent of x.

It is notable that the uncertainty expressed by
perturbation-based methods in Eq. (10) employs the reverse
KL divergence, in contrast to Eq. (2). Nevertheless, it re-
mains a valid uncertainty metric. Proposition 3.5 further
implies the necessity to adjust the gradients using the as-
sociated probability, indicating different treatments for the
gradient of each class. Given the link between gradient-
based UQ and perturbation-based techniques, under the
conditions of Proposition 3.1, the epistemic uncertainty de-
rived from gradient-based methods might also offer a good
approximation to the epistemic uncertainty quantified by
BNNs. Although the assumptions underlying these propo-
sitions might not always hold, it is noteworthy that ExGrad
(as detailed in Eq.(10)) could surpass perturbation-based
methods, especially in scenarios where perturbations sig-
nificantly deviate from the optimum.

4. Proposed Method

Our proposed method, rooted in solid theoretical founda-
tions, brings three key advancements to gradient-based UQ.
First, as highlighted in Proposition 3.5, it underscores the
necessity of assigning distinct weights to the gradients of
each class. The proposed method aims to explore these
weights to improve UQ effectiveness. Second, previous
approaches uniformly apply the gradient to the parameters
across all neural network layers, which may be unsuitable
for practical applications. Lastly, motivated by Proposi-
tion 3.3, we combine input perturbations with gradients for
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enhanced performance. Proposition 3.4 suggests leverag-
ing gradients from samples near the target input when con-
structing the uncertainty score. By integrating gradients
with perturbations, our approach seeks to enhance UQ by
utilizing a smoother gradient representation.

4.1. Class-specific Gradient Weighting

When Eq. (10) suggests weighing the gradient of each class
by its associated probability, the method can face chal-
lenges. It can produce overconfident results, where a high
model probability overshadows the contributions from gra-
dients of other classes, potentially leading to an overem-
phasis. This might neglect important insights about the
model’s decision boundaries and uncertain regions indi-
cated by other class gradients. While the gradients of the
class with the maximum probability still take the largest
weight, we utilize the L2 probability-weighted gradient
norm to normalize gradients with a square root:

UREGrad(x) =

C∑
c=1

√
p(y = c|x, θ∗)

∥∥∥∥∂ log p(y = c|x, θ∗)
∂θ∗

∥∥∥∥2
2

.

(11)
The proposed L2 root-normalized expected gradient
method (REGrad) effectively mitigates overconfidence is-
sues, ensuring a more balanced incorporation of gradient
information from all classes.

4.2. Layer-selective Gradients

In deep neural networks, each layer captures distinct fea-
ture representations, with initial layers extracting low-level
features such as edges/texture and deeper layers interpreting
complex patterns. Thus, the uncertainty at each layer varies,
ranging from ambiguity in basic feature recognition to con-
fusion in decision boundaries. Gradients from deeper layers
excel at discerning classification patterns and may struggle
to represent out-of-distribution samples, thus being more in-
dicative of epistemic uncertainty.

Recognizing the hierarchical structure of neural net-
works, we introduce a weighting scheme that assigns im-
portance to layers based on their depth as follows:∥∥∥∥∂ log p(y|x, θ∗)

∂θ∗

∥∥∥∥ layer−−−−→
selective

∑
θ∗
l ∈θ∗

al

∥∥∥∥∂ log p(y|x, θ∗)
∂θ∗l

∥∥∥∥ .
(12)

Based on Eq. (12), our approach does not treat all param-
eter gradients equally. Instead, we apply a coefficient al
to the gradients of each layer θl, indexed by l. This coef-
ficient progressively increases from early to deeper layers.
Specifically, we use an exponential weighting mechanism,
where the weight for layer l is defined as al = exp(λl).
Here, λ > 0 is a hyperparameter controlling the rate of
exponential weight increase in deeper layers. By giving
more weight to gradients from deeper layers, our method

enhances the role of these gradients in measuring uncer-
tainty. This approach emphasizes classification-specific in-
sights and decision-making aspects crucial for detecting
out-of-distribution instances. Notably, integrating these
layer-selective gradients can improve any gradient-based
UQ approach without adding computational complexity.

4.3. Gradient-Perturbation Integration

While gradients and perturbations are both valuable for
understanding model behavior and uncertainty, we aim to
combine their strengths for UQ. Our method calculates gra-
dients for both the original and perturbed inputs to pro-
duce a smoother and more informative gradient represen-
tation, addressing the issue of noisy raw gradients. As
Proposition 3.4 suggests, gradients from perturbed inputs
offer additional uncertainty insights. This concept aligns
with Smilkov et al.’s findings [32], where averaging gra-
dients from perturbed inputs results in smoother gradients.
While their research focused on using these gradients for
clearer saliency maps in model explanation, we specifi-
cally apply these refined gradients to improve UQ. Specif-
ically, for an input x0, we introduce input perturbations
∆x ∼ N (0, σ2I), controlled by a hyperparameter σ. This
process generates perturbed inputs x1, x2, · · · , xN . The
smoothed gradients are then calculated as follows:∥∥∥∥∂ log p(y|x0, θ

∗)

∂θ∗

∥∥∥∥ perturb−−−−−→
smoothed

∥∥∥∥∥ 1

N + 1

N∑
i=0

∂ log p(y|xi, θ
∗)

∂θ∗

∥∥∥∥∥
(13)

Eq. (13) effectively mitigates sharp, uncharacteristic
spikes in the gradient space, ensuring a more stable un-
certainty measure. It is crucial to note that we maintain a
small value for σ, aligning with the guidelines of Propo-
sition 3.1. Calculating smoothed gradients does not com-
plicate the backpropagation process, as it requires only one
backward pass for the averaged probability vector. The ad-
ditional computation mainly involves forward passes for the
perturbed inputs. However, with all perturbed inputs pre-
pared, these forward passes can be executed concurrently,
leveraging parallel processing for efficiency.

5. Experiments
Dataset. We evaluated our method using benchmark image
classification datasets, including MNIST [5], SVHN [27],
CIFAR-10 (C10) [16], and CIFAR-100 (C100) [15].
Implementation Details. For MNIST and SVHN, we em-
ployed standard CNN architectures. For C10 and C100, we
used ResNet18 and ResNet152, respectively. These models
were trained following standard protocols to develop deter-
ministic classification models, which then served as the pre-
trained models for our epistemic UQ experiments. Detailed
experiment settings, baseline implementations, and hyper-
parameter information are provided in Appendix B.
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Table 1. OOD detection results for AUROC (%) ↑ and AUPR (%) ↑ with epistemic uncertainty. “*” represents our method (REGrad +
layer-selective + perturbation). The experiments are aggregated over three independent runs.

Method
MNIST → Omniglot MNIST → FMNIST C10→ SVHN C10→ LSUN

Avg
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

NEGrad 41.99 ±1.75 43.49 ±0.91 40.99 ±3.51 44.41 ±0.91 72.80 ±1.27 64.47 ±1.09 66.96 ±2.05 58.51 ±1.64 54.20
UNGrad 92.81 ±0.09 90.79 ±0.33 95.41 ±0.48 94.91 ±0.34 38.07 ±9.79 46.86 ±9.31 17.08 ±8.56 33.52 ±9.27 63.68
GradNorm 16.52 ±1.47 35.47 ±0.61 22.71 ±2.01 40.88 ±0.61 10.73 ±3.09 32.04 ±1.15 10.57 ±3.93 32.04 ±0.89 25.12
Exgrad 97.55 ±0.05 96.99 ±0.16 98.11 ±0.14 97.98 ±0.16 88.87 ±0.01 84.85 ±1.15 88.23 ±0.11 82.26 ±1.02 91.86
Perturb x 97.16 ±0.00 95.65 ±0.16 97.09 ±0.14 95.39 ±0.31 92.35 ±0.22 91.57 ±1.32 82.89 ±0.40 72.35 ±0.55 90.56
Perturb θ 97.64 ±0.09 97.05 ±0.24 97.99 ±0.16 97.64 ±0.22 89.31 ±1.26 85.80 ±3.96 88.33 ±0.11 82.99 ±0.27 92.09
MC-AA 91.23 ±0.35 89.40 ±0.28 95.28 ±0.44 95.24 ±0.19 87.56 ±0.57 82.22 ±2.08 82.96 ±0.84 71.79 ±1.62 86.96
Inserted Dropout 97.52 ±0.14 96.88 ±0.35 97.00 ±0.68 95.75 ±0.79 88.84 ±1.02 88.01 ±1.19 88.18 ±0.62 86.93 ±0.73 92.39
Entropy 97.70 ±0.08 97.38 ±0.19 98.04 ±0.22 97.94 ±0.17 88.86 ±0.34 84.10 ±0.36 89.84 ±0.30 87.72 ±0.57 92.70
ExGrad V Term 97.70 ±0.02 97.39 ±0.13 98.04 ±0.14 97.95 ±0.26 89.04 ±0.43 84.64 ±0.41 89.96 ±0.18 88.09 ±0.29 92.85
LA 97.92 ±0.14 97.45 ±0.29 97.95 ±0.27 97.37 ±0.43 91.86 ±0.27 88.06 ±0.27 86.81 ±0.27 85.04 ±0.27 92.81
REGrad* 98.19 ±0.02 97.95 ±0.06 98.78 ±0.14 98.79 ±0.07 92.32 ±0.59 89.42 ±2.81 91.11 ±0.44 89.93 ±0.69 94.56

Method
SVHN → C10 SVHN → C100 C100→ SVHN C100→ LSUN

Avg
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

NEGrad 30.26 ±1.80 39.13 ±1.31 30.93 ±1.24 39.38 ±0.98 44.62 ±2.65 42.52 ±1.96 43.99 ±2.21 42.74 ±3.28 39.20
UNGrad 68.28 ±3.45 69.21 ±3.18 68.34 ±2.77 68.95 ±2.42 44.34 ±7.36 43.44 ±6.66 47.46 ±4.63 45.41 ±5.36 56.93
GradNorm 24.49 ±3.75 36.56 ±2.06 25.62 ±2.72 37.26 ±1.42 10.67 ±2.08 32.11 ±0.44 27.53 ±3.91 36.97 ±2.19 28.90
Exgrad 88.57 ±0.61 85.55 ±1.33 88.25 ±0.62 85.21 ±1.14 79.99 ±1.37 72.68 ±0.82 76.93 ±1.64 71.00 ±2.62 81.02
Perturb x 72.76 ±0.36 60.60 ±0.26 73.96 ±0.42 62.27 ±0.25 86.49 ±1.62 86.76 ±1.72 41.10 ±1.42 44.35 ±0.72 66.04
Perturb θ 89.01 ±0.22 86.04 ±0.41 88.75 ±0.14 85.83 ±0.21 50.99 ±2.23 51.28 ±3.08 39.42 ±0.70 42.57 ±1.07 66.74
MC-AA 71.53 ±1.32 60.98 ±1.67 72.75 ±2.12 62.55 ±2.72 54.74 ±1.08 59.26 ±2.49 31.61 ±1.81 39.40 ±2.22 56.60
Inserted Dropout 88.47 ±1.23 83.97 ±0.71 86.96 ±1.09 82.40 ±0.88 57.39 ±1.46 55.49 ±2.02 59.41 ±1.61 58.30 ±0.92 71.55
Entropy 89.64 ±0.04 87.76 ±2.19 89.09 ±0.13 87.25 ±0.06 53.38 ±0.49 55.20 ±0.18 42.28 ±0.99 46.07 ±0.39 68.83
ExGrad V Term 89.72 ±0.08 87.90 ±1.87 89.19 ±0.07 87.40 ±0.02 50.35 ±0.42 52.66 ±0.73 41.67 ±1.51 45.91 ±1.12 68.10
LA 80.73 ±0.73 87.46 ±1.00 88.77 ±0.78 86.06 ±1.12 80.09 ±0.12 73.63 ±0.39 76.50 ±0.40 71.92 ±0.48 80.65
REGrad* 91.11 ±0.19 89.63 ±0.37 90.37 ±0.26 88.83 ±0.37 88.06 ±1.29 85.74 ±1.45 79.11 ±0.32 74.39 ±0.67 85.91

Baselines. Our method (REGrad + layer-selective + pertur-
bation) is compared against various baselines:
• Gradient-based Methods:

NEGrad [11] (||Ey∼p(y|x,θ∗)[∇θ∗ log p(y|x, θ∗)]||),
UNGrad [11] (Ey∼uniform[||∇θ∗ log p(y|x, θ∗)||]),
GradNorm [10] (||∇θ∗Ey∼uniform[log p(y|x, θ∗)]||),
ExGrad [11] (Ey∼p(y|x,θ∗)[||∇θ∗ log p(y|x, θ∗)]||] ).

• Perturbation-based Methods:
Perturb x (E∆x∼N (0,σ2I) [KL(p(y|x+∆x, θ∗)||p(y|x, θ∗))]),
Perturb θ (E∆θ∼N (0,σ2I) [KL(p(y|x, θ∗ +∆θ)||p(y|x, θ∗))]),
MC-AA [1], Inserted Dropout [18].

• Entropy-based Methods:
Entropy (-Ey∼p(y|x,θ∗)[log p(y|x, θ∗)]),
ExGrad V Term (

∑
c |p(y = c|x, θ∗)− 1

C |)
• Approximated BNN using training data: LA [14].
Evaluation Tasks. Section 5.1 presents our evaluation of
epistemic UQ performance in out-of-distribution (OOD)
detection. Section 5.2 details our uncertainty calibration
evaluations. In Section 5.3, we discuss our findings from
uncertainty-guided active learning evaluations.

5.1. Out-of-distribution Detection

OOD detection is a crucial application for UQ [24, 25]. It
aims to identify data points that deviate from the training

data distribution by utilizing uncertainty measures. Epis-
temic uncertainty, inversely correlating with data density,
tends to be higher when the model encounters anomalous
data.

Experiment Settings. For MNIST dataset, OOD samples
come from the Omniglot [17] and Fashion-MNIST (FM-
NIST) [36] datasets. In the case of C10 and C100, the OOD
datasets are SVHN [27] and LSUN [37]. Conversely, for
SVHN as in-distribution data, C10 and C100 serve as OOD
datasets. We evaluated OOD detection using two metrics:
area under the receiver operating characteristic curve (AU-
ROC) and area under the precision-recall curve (AUPR).

Experiment Analysis In the OOD detection experiments
shown in Table 1, REGrad demonstrates superior perfor-
mance over various baselines, including gradient-based,
perturbation-based, and entropy-based methods. It achieves
an impressive average improvement of 30% to 60% over
NEGrad, UNGrad, and GradNorm. Moreover, REGrad*
consistently outperforms the strongest competitor in each
category. Against ExGrad, the state-of-the-art gradient-
based method, REGrad* shows average enhancements of
2.7% and 4.84% across two tables. Within the perturbation-
based category, it notably surpasses Perturb x and Perturb
θ by 19.82% and 19.12% for SVHN and C100 datasets,
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Table 2. Uncertainty calibration results for MNIST, C10, SVHN, and C100 datasets using rAULC ↑. “*” represents our method and the
experiments are aggregated over three independent runs.

Method
MNIST C10 SVHN C100

Avg
rAULC rAULC rAULC rAULC

NEGrad 0.143 ±.055 0.598 ±.039 -0.861 ±.042 0.127 ±.050 0.002
UNGrad 0.934 ±.004 0.840 ±.022 0.429 ±.061 0.403 ±.038 0.652
GradNorm -2.810 ±.022 -1.275 ±.095 -1.176 ±.026 -0.995 ±.098 -1.564
ExGrad 0.985 ±.001 0.893 ±.016 0.868 ±.003 0.841 ±.017 0.897
Perturb x 0.985 ±.001 0.890 ±.014 0.830 ±.001 0.772 ±.032 0.869
Perturb θ 0.984 ±.001 0.892 ±.015 0.869 ±.001 0.705 ±.002 0.863
MC-AA 0.969 ±.002 0.879 ±.018 0.807 ±.000 0.784 ±.017 0.860
Inserted Dropout 0.973 ±.003 0.891 ±.005 0.851 ±.006 0.783 ±.003 0.874
Entropy 0.985 ±.001 0.893 ±.015 0.867 ±.004 0.863 ±.017 0.902
ExGrad V Term 0.985 ±.001 0.893 ±.015 0.865 ±.004 0.854 ±.020 0.899
LA 0.983 ±.002 0.865 ±.003 0.857 ±.002 0.792 ±.007 0.874
REGrad* 0.985 ±.001 0.898 ±.016 0.873 ±.002 0.858 ±.013 0.904

respectively. Compared to entropy-based methods, which
mainly capture aleatoric uncertainty, REGrad*’s improve-
ment over Entropy and ExGrad V Term ranged from 1.71%
to 17.76% in averaged results across both tables. Even
against LA, which approximates the posterior distribution
of parameters using training data, REGrad* shows consid-
erable improvements. Notably, given its assumption of a
single Gaussian posterior and the computational constraints
requiring a diagonal or block-diagonal covariance matrix,
LA may not always be the most effective. These findings
underscore REGrad*’s robustness and advanced capability
in epistemic UQ across diverse scenarios.

5.2. Uncertainty Calibration

In this section, we demonstrate the effectiveness of our
methods in uncertainty calibration. Uncertainty calibra-
tion measures the alignment of a model’s predicted uncer-
tainty with its actual performance. Well-calibrated uncer-
tainty is crucial for informed decision-making, as it indi-
cates not just what a model predicts, but also the reliability
of those predictions. Traditional calibration metrics, such as
the expected calibration error and negative log-likelihood,
are unsuitable for our scenario. These metrics typically as-
sess p(y|x, θ∗), but in our case, p(y|x, θ∗) remains constant
across all UQ baselines when using a pre-trained model
θ∗. Therefore, we opt for the relative area under the lift
curve (rAULC) as our evaluation metric. Introduced in [28],
rAULC is derived by ordering predictions by increasing un-
certainty, then plotting the performance for samples with an
uncertainty value below a certain quantile of the uncertainty
against that quantile.
Experiment Analysis The uncertainty calibration results
in Table 2 show that REGrad* consistently outperforms
perturbation-based methods and LA, achieving approxi-
mately 3% to 4% higher performance. Moreover, our
method significantly surpasses most gradient-based meth-
ods, such as NEGrad, UNGrad, and GradNorm. However,

it exhibits only a marginal improvement over ExGrad. Ex-
Grad’s effectiveness in uncertainty calibration may be due
to its use of the predictive probability vector for weighting
gradients of each class. This suggests that the probability
vector could be a reliable indicator of model performance.
Additionally, REGrad* shows only a slight advantage over
Entropy and ExGrad V Term. This can be attributed to the
fact that the well-measured aleatoric uncertainty can also
indicate model performance, as noted in [28]. Overall, RE-
Grad* serves as the most effective performance indicator
among all evaluated baselines.

5.3. Active Learning

Epistemic uncertainty is important in active learning (AL),
where the aim is to annotate data points with the highest
uncertainty for retraining the model, thus targeting areas
where the model has minimal information. Initially, we
train the model with m1 data points. Over 10 acquisition
cycles, we select m2 new data points at each cycle from
the unused training pool, focusing on those with the highest
epistemic uncertainty to retrain the model along with the
previously chosen data. Our experiments include MNIST,
C10, SVHN, and C100 datasets, setting m1 at 20, 500, 500,
and 1000, and m2 at 20, 100, 100, and 500 for each dataset,
respectively. Due to the experiments’ reliance on smaller
data subsets, we use a standard CNN with two convolutional
and two fully connected layers across all datasets. Imple-
mentation details are available in Appendix B. We evaluate
the model’s performance by measuring accuracy (ACC) and
negative log-likelihood (NLL) on the original testing data.
Experiment Results. Table 3 presents the average ACC
and NLL across 10 active learning acquisition cycles. Vi-
sualizations that illustrate the ACC/NLL progression for all
datasets throughout these cycles can be found in Appendix
C. REGrad* demonstrates superior performance over vari-
ous baselines. For example, it shows a 1.72% improvement
in ACC over ExGrad. Compared to perturbation-based
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Table 3. Active learning results of averaged ACC ↑ and NLL ↓ across 10 acquisition cycles for all datasets . “*” represents our method.

Method
MNIST C10 SVHN C100 Avg

ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL
NEGrad 70.22 ±3.02 1.833 ±.04 39.13 ±.72 2.074 ±.02 65.12 ±2.25 1.827 ±.02 13.16 ±.27 4.507 ±.01 46.91 2.560
UNGrad 69.56 ±2.94 1.867 ±.03 38.90 ±.74 2.071 ±.01 67.27 ±2.17 1.808 ±.02 12.56 ±.58 4.508 ±.01 47.07 2.564
GradNorm 66.85 ±3.18 1.884 ±.04 39.02 ±.81 2.069 ±.01 65.43 ±2.30 1.827 ±.03 12.89 ±.33 4.509 ±.01 46.05 2.572
ExGrad 69.91 ±2.21 1.847 ±.03 39.20 ±.87 2.069±.01 66.76 ±2.11 1.812 ±.02 12.55 ±.32 4.506 ±.00 47.11 2.559
Perturb x 71.10 ±3.43 1.844 ±.05 38.57 ±.72 2.072±.01 64.00 ±2.39 1.838 ±.02 12.23 ±.27 4.511 ±.00 46.47 2.566
Perturb θ 71.44 ±2.43 1.826 ±.03 38.97 ±1.03 2.070 ±.02 66.31 ±2.62 1.817 ±.03 13.17 ±.37 4.506 ±.01 47.47 2.555
MC-AA 71.69 ±.42 1.809 ±.00 38.57 ±.72 2.073 ±.01 64.56 ±1.17 1.831 ±.02 12.14 ±.40 4.515 ±.01 46.74 2.557
Inserted Dropout 72.84 ±0.62 1.836 ±.00 38.34 ±.11 2.075 ±.01 66.99 ±2.58 1.811 ±.02 12.59 ±.13 4.507 ±.00 47.69 2.557
Entropy 70.40 ±4.33 1.846 ±.06 38.73 ±.65 2.074 ±.01 63.42 ±2.86 1.845 ±.03 11.57 ±.41 4.521 ±.01 46.03 2.572
ExGrad V Term 68.53 ±4.40 1.881 ±.04 38.66 ±.67 2.071 ±.01 62.32 ±2.87 1.856 ±.03 11.30 ±.38 4.520 ±.01 45.20 2.582
LA 62.65 ±.58 1.935 ±.02 37.56 ±.29 2.083 ±.00 63.44 ±.75 1.846 ±.00 12.59 ±.12 4.505 ±.00 44.06 2.592
REGrad* 75.31 ±3.48 1.808 ±.03 39.28 ±.83 2.067 ±.01 67.37 ±2.13 1.807 ±.02 13.37 ±.25 4.505 ±.00 48.83 2.547

methods, REGrad* outperforms Perturb x with a 2.36%
increase in ACC. Moreover, compared to LA, REGrad*
achieves significant enhancements in both ACC and NLL.
These improvements are particularly noteworthy given that
training data is limited.

5.4. Ablation Studies

Effectiveness of Component Contributions. This section
delves into the individual impact of REGrad, layer-selective
gradients, and perturbations in OOD detection. The detailed
results are presented in Table 4. It shows that REGrad itself
can achieve enhanced performance compared to ExGrad,
with further improvements observed when layer-selective
gradients are added. The combination of REGrad with both
layer-selective gradients and perturbations yields the best
results, indicating the cumulative positive impact of these
components. More analysis is shown in Appendix D.
Table 4. OOD detection for ablation studies using AUROC/AUPR.

Method MNIST → FMNIST C10 → SVHN
ExGrad 98.11/97.98 88.87/84.85
REGrad 98.42/98.45 89.64/85.75
REGrad + layer-selective 98.51/98.55 90.33/87.45
REGrad + layer-selective + perturb 98.78/98.79 92.32/89.42

Method SVHN → C10 C100 → SVHN
ExGrad 88.57/85.55 79.99/72.68
REGrad 90.22/88.16 81.43/81.12
REGrad + layer-selective 90.72/88.82 87.32/83.39
REGrad + layer-selective + perturb 91.11/89.63 88.06/85.74

Hyperparameter Analysis. We analyze the coefficient λ
in layer-selective gradients which adjusts weights towards
deeper layers. As λ → ∞, only the last layer’s parame-
ters influence gradient computation, whereas λ → 0 treats
all parameters equally. Our study in Table 5 shows that the
OOD detection performance is relatively stable within spe-
cific λ ranges. Additionally, we examine the impact of σ
in perturbations, selecting small values as per Proposition
3.1, and find the results are similarly stable within certain σ
ranges. More analysis is shown in Appendix D.
Efficiency Analysis. While the complexity of the layer-

selective gradients and the perturbation-integrated gradients
are discussed in Section 4, we provide the empirical runtime
in Appendix D.

Table 5. OOD detection for hyperparameter analysis using AU-
ROC/AUPR. We use λ = 0.3, σ = 0.02 for our method.

Method SVHN→ C10
REGrad + layer-selective (λ → 0) 90.22/88.16
REGrad + layer-selective (λ → ∞) 88.21/83.92
REGrad + layer-selective (λ = 0.25) 90.65/88.72
REGrad + layer-selective (λ = 0.3) 90.72/88.82
REGrad + layer-selective (λ = 0.35) 90.80/88.82
REGrad + layer-selective (λ = 0.3) + perturb (σ = .015) 91.05/89.55
REGrad + layer-selective (λ = 0.3) + perturb (σ = .02) 91.11/89.63
REGrad + layer-selective (λ = 0.3) + perturb (σ = .025) 90.98/89.41

Varying Model Architecture. While the main evaluation
focuses on pre-trained CNN-based models, we also assess
our method’s effectiveness on vision transformers in Ap-
pendix D, where it continues to outperform other baselines.

6. Conclusion

In our study, we present a novel gradient-based method for
epistemic UQ in pre-trained models, beginning with a the-
oretical analysis of gradient-based and perturbation-based
methods’ capabilities in capturing epistemic uncertainty.
To improve current gradient-based methods, we introduce
class-specific gradient weighting, layer-selective gradients,
and gradient-perturbation integration. The proposed
method does not require original training data or model
modifications, ensuring broad applicability across any ar-
chitecture and training technique. Our experiments across
diverse scenarios, including out-of-distribution detection,
uncertainty calibration, and active learning, demonstrate
the superiority of our method over current state-of-the-art
UQ methods for pre-trained models.
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