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Abstract

Tracking with bio-inspired event cameras has garnered

increasing interest in recent years. Existing works either

utilize aligned RGB and event data for accurate tracking

or directly learn an event-based tracker. The former incurs

higher inference costs while the latter may be susceptible

to the impact of noisy events or sparse spatial resolution.

In this paper, we propose a novel hierarchical knowledge

distillation framework that can fully utilize multi-modal /

multi-view information during training to facilitate knowl-

edge transfer, enabling us to achieve high-speed and low-

latency visual tracking during testing by using only event

signals. Specifically, a teacher Transformer-based multi-

modal tracking framework is first trained by feeding the

RGB frame and event stream simultaneously. Then, we

design a new hierarchical knowledge distillation strategy

which includes pairwise similarity, feature representation,

and response maps-based knowledge distillation to guide

the learning of the student Transformer network. In par-

ticular, since existing event-based tracking datasets are all

low-resolution (346× 260), we propose the first large-scale

high-resolution (1280 × 720) dataset named EventVOT. It

contains 1141 videos and covers a wide range of categories

such as pedestrians, vehicles, UAVs, ping pong, etc. Ex-

tensive experiments on both low-resolution (FE240hz, Vi-

sEvent, COESOT), and our newly proposed high-resolution

EventVOT dataset fully validated the effectiveness of our

*� Corresponding Author: Bo Jiang

proposed method.

1. Introduction

Visual Object Tracking (VOT) targets predicting the lo-

cations of target object initialized in the first frame. Ex-

isting trackers are usually developed based on RGB cam-

eras and deployed for autonomous driving, drone photog-

raphy, intelligent video surveillance, and other fields. Due

to the influence of challenging factors like fast motion, illu-

mination, background distractor, and out-of-view, the track-

ing performance in complex scenarios is still unsatisfactory.

The video frames with these challenges are unevenly dis-

tributed in the tracking video, making it difficult to improve

the overall tracking results by investing more labeled data.

To address these challenges, some researchers have

started to improve the effectiveness of input data by intro-

ducing new sensors. As a new type of bio-inspired sen-

sor, event cameras are different from traditional video frame

sensors in that they can output event pulses asynchronously

and capture motion information through the detection of

events (e.g., changes in light intensity). Event camera per-

forms better than traditional RGB cameras in capturing fast-

moving objects due to dense temporal resolution. It also

works well on high dynamic range, low energy consump-

tion, and low latency [14]. Event cameras can be used for a

wide range of applications, including surveillance, robotics,

medical imaging, and sports analysis.

Although few, there have been some studies that ex-
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Figure 1. (a). Comparison between our newly proposed EventVOT and other event-based tracking datasets; (b). Comparison between our

tracker and existing SOTA trackers on the tracking speed and accuracy on the EventVOT dataset.

ploit event cameras for visual object tracking. For example,

Zhang et al. propose AFNet [36] and CDFI [34] to com-

bine the frame and event data via multi-modality alignment

and fusion modules. STNet [35] is proposed to connect the

Transformer and spiking neural networks for event-based

tracking. Zhu et al. [41] attempt to mine the key events

and employ a graph-based network to embed the irregu-

lar spatio-temporal information of key events into a high-

dimensional feature space for tracking. These works at-

tempt to obtain stronger tracking algorithms through multi-

modal fusion or pure event training and tracking meth-

ods. Although good performance can be achieved, however,

these algorithms are still easily influenced by the following

issues: Firstly, the spatial signal of event cameras is very

sparse in slow-moving scenes, and the contours of target

objects are not clear enough, which may lead to tracking

failures. Tracking using RGB-Event data can better com-

pensate for this deficiency, but additional modalities will

increase the inference cost. Secondly, existing event-based

tracking datasets are collected using the DVS346 camera,

which has an output resolution of 346 × 260. It has not

been explored or validated whether the event representation

methods designed for low-resolution event stream are still

effective for high-resolution event data. Therefore, it is nat-

ural to raise the following open question: Can we transfer

knowledge from multi-modal or multi-view data during the

training phase and achieve robust tracking only using the

event data during the testing phase?

In this work, we propose a novel event-based visual

tracking framework by designing a new cross-modality hi-

erarchical knowledge distillation scheme. As shown in

Fig. 2, we first train a teacher Transformer network by feed-

ing the RGB frame and event stream. It crops the tem-

plate patch and search region of dual-modality from the

initialized and subsequent frames respectively and adopts

a projection layer to transform them into token represen-

tations. Then, a couple of Transformer blocks are used to

fuse the tokens as a unified backbone. Finally, the track-

ing head is adopted to predict the response maps for tar-

get localization. Once we obtain the teacher Transformer

network, the hierarchical knowledge distillation strategy is

conducted to guide the learning of the student Transformer

network, which is fed only with event data. To be specific,

the similarity matrix, feature representation, and response

maps based knowledge distillation are simultaneously con-

sidered for cross-modality knowledge transfer. Note that,

since only the event data are fed into the student network,

it can achieve not only accurate but also low-latency and

high-speed object tracking in the testing stage.

In particular, in addition to evaluating our tracker on ex-

isting event-based tracking datasets, we also propose a new

first high-resolution event-based tracking dataset, termed

EventVOT, to fully validate the effectiveness of our method

as well as other related works. Different from existing

datasets with limited resolution (e.g., FE240hz, VisEvent,

COESOT are 346× 260) as shown in Fig. 1 (a), our videos

are collected by using the Prophesee camera EVK4–HD

which outputs event stream in 1280× 720. It contains 1141

videos and covers a wide range of target objects, includ-

ing pedestrians, vehicles, UAVs, ping pong, etc. To build

a comprehensive benchmark dataset, we provide the track-

ing results of multiple baseline trackers for future works to

compare. We hope our newly proposed EventVOT dataset

can open up new possibilities for event tracking research.

To sum up, our contributions can be concluded as the

following three aspects:

• We propose a novel hierarchical cross-modality

knowledge distillation approach for event-based track-

ing problem. To our knowledge, it is the first work

to exploit the knowledge transfer from multi-modal
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(RGB-Event) / multi-view (Event Image-Voxel) to an

unimodal event-based tracker, termed HDETrack.

• We propose the first high-resolution benchmark

dataset for event-based tracking, termed EventVOT.

We also provide experimental evaluations of recent

strong trackers to build a comprehensive event-based

tracking benchmark.

• Extensive experiments on four large-scale benchmark

datasets, i.e., FE240hz, VisEvent, COESOT, and

EventVOT, fully validate the effectiveness of our pro-

posed tracker.

2. Related Work

RGB Camera based Tracking. The mainstream vi-

sual trackers are developed based on RGB videos and

boosted by deep learning techniques in recent years. The

convolutional neural networks are first adopted for fea-

ture extraction and learning. Specifically, the MDNet se-

ries [22] extract the deep features using three convolutional

layers and learn domain-specific layers for tracking. Xu

et al. [31] proposes a spatial-time discrimination model

based on affine subspace for visual object tracking. The

SiamFC [1] and SINT [26] first utilize the Siamese fully

convolutional neural networks and Siamese instance match-

ing for tracking, respectively. Besides, A topology-aware

universal adversarial attack method against 3D object track-

ing is proposed by [9]. Later, the Siamese network based

trackers become the mainstream gradually and many rep-

resentative trackers are proposed, like SiamRPN++ [20],

SiamMask [29], SiamBAN [8], Ocean [37], LTM [38],

ATOM [11], DiMP [2], PrDiMP [12], etc.

Inspired by the success of self-attention and Trans-

former networks in natural language processing, some re-

searchers also exploit Transformers for visual object track-

ing [4, 7, 15, 21, 25, 28, 33, 35]. For example, Wang et

al. [28] proposed TrDiMP, which integrates Transformer

with tracking tasks, exploits temporal context for robust

visual tracking. Chen et al. [7] proposed TransT, a novel

attention-based feature fusion network and a Siamese struc-

tured tracking approach that integrates a fusion network

have been designed using Transformer. Other works like

ToMP [21] proposed a Transformer-based model prediction

module, enabling it to learn more powerful target prediction

capabilities, due to the powerful inductive bias of Trans-

former in capturing global relationships. Gao et al. [15] pro-

posed AiATrack that introduce a universal feature extraction

and information propagation module based on Transformer.

A simplified tracking architecture called SimTrack [4] has

been proposed by Chen et al. which utilize the Transformer

as backbone for joint feature extraction and interaction. Ye

et al. [33] propose OSTrack, they design a one-stream track-

ing framework to replace the complex dual-stream frame-

work. Zhang et al. [35] combine spiking neural networks

with Transformer for event-based tracking. CEUTrack [25]

is proposed by Tang et al., who explore a Transformer-based

dual-modal framework for RGB-Event tracking. Different

from these works, we exploit event cameras to achieve re-

liable tracking even under challenging scenarios, like low

illumination and fast motion.

Event Camera based Tracking. Tracking based on event

cameras is a newly arising research topic and has drawn

more and more attention in recent years. Specifically, early

event-based trackers ESVM (event-guided support vector

machine) [18] is proposed by Huang et al. for high-speed

moving object tracking. AFNet [36] proposed by Zhang et

al. incorporates event-guided cross-modality alignment and

cross-correlation fusion module, which effectively aligns

and fuses RGB and event streams. Chen et al. [5] pro-

pose an Adaptive Time-Surface with Linear Time Decay

(ATSLTD) event-to-frame conversion algorithm for asyn-

chronous retinal event-based tracking. EKLT [17] fuse the

frame and event streams to track visual features with high

temporal resolution. Zhang et al. [34] adopt self- and cross-

domain attention schemes to enhance the RGB and event

features for robust tracking. STNet [35] is proposed to cap-

ture the global spatial information and temporal cues by us-

ing Transformer and spiking neural network (SNN). Wang

et al. [30] fuse the RGB and event data using cross-modality

Transformer module. Zhu et al. [41] sample the key-events

using a density-insensitive downsampling strategy and em-

bed them into high-dimensional feature space for tracking.

Tang et al. [25] conduct RGB-Event tracking through a

unified backbone network to simultaneously realize multi-

modal feature extraction, correlation, and fusion. Zhu et

al. [40] introduce prompt tuning to drive the pre-trained

RGB backbone for multi-modal tracking. AFNet [36] is

proposed to combine both modalities at different measure-

ment rates by using multi-modality alignment and fusion

modules. Zhu et al. [42] randomly masks tokens of a spe-

cific modality and proposes an orthogonal high-rank loss

function to enforce the interaction between different modal-

ities. Different from existing works, we propose to conduct

knowledge distill from multi-modal or multi-view in the

training phase and only utilize the event data for efficient

and low-latency tracking.

Knowledge Distillation. Learning a student network us-

ing knowledge distillation for efficient and accurate infer-

ence is widely studied. Deng et al. [13] provide explicit

feature-level supervision for the learning of event stream

by using knowledge distilled from the image domain. For

the tracking task, Shen et al. [23] propose to distill large

Siamese trackers using a teacher-students knowledge distil-

lation model for small, fast, and accurate trackers. Chen

et al. [6] attempt to learn a lightweight student correlation

filter-based tracker by distilling a pre-trained deep convo-
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lutional neural network. Zhuang et al. [43] introduce En-

semble learning (EL) into the Siamese tracking framework

and treat two Siamese networks as students and enabling

them to learn collaboratively. Sun et al. [24] conduct cross-

modal distillation for TIR tracking from RGB modality on

unlabeled paired RGB-TIR data. Wang et al. [27] distill

the CNN model pre-trained from the image classification

dataset into a lightweight student network for fast correla-

tion filter trackers. Zhao et al. [39] propose a distillation-

ensemble-selection framework to address the conflict be-

tween the tracking efficiency and model complexity. Ge

et al. [16] propose channel distillation for correlation fil-

ter trackers which can accurately mine better channels and

alleviate the influence of noisy channels. Different from

these works, our proposed hierarchical knowledge distilla-

tion enables message propagation from multi-modality or

multi-view to event-tracking networks.

3. Methodology

3.1. Overview

To achieve efficient and low-latency visual tracking, in

this paper, we exploit tracking using an event camera only.

To ensure its tracking performance, we resort to the knowl-

edge distillation (KD) from multi-modal or multi-view data.

Therefore, we first train a large-scale teacher Transformer

using the RGB frames and event stream, as shown in Fig. 2.

To be specific, the template patch and search patch of dual

modalities are extracted and transformed into tokens by us-

ing the projection layer. These tokens are directly con-

catenated and fed into a unified Transformer backbone net-

work for simultaneous feature extraction, interactive learn-

ing, and fusion. For the event student tracking network, we

take the event images or voxels as the input and optimize

the parameters based on tracking loss function and knowl-

edge distillation (KD) functions. More in detail, the similar-

ity matrix based KD, feature based KD, and response map

based KD are considered for a higher tracking performance.

We will introduce the more details about the network archi-

tecture and hierarchical knowledge distillation strategies in

the following subsections.

3.2. Input Representation

In this work, we denote the RGB frames as I =
{I1, I2, ..., IN}, where Ii denotes each video frame and N
is the number of video frames. We treat event stream as

E = {e1, e2, ..., eM}, where ej denotes each event point

asynchronously launched and M is the number of event

points for the input data.

For the video frames I, we utilize the standard pro-

cessing approach for Siamese tracking and extract the tem-

plate patch TI and search patch SI as the input. For

the event stream E , we stack/split them into event im-

ages/voxels which can fuse more conveniently with exist-

ing RGB modality. More in detail, the event images are

obtained by aligning with the exposure time of RGB modal-

ity. Event voxels are obtained by splitting the event stream

along with the spatial (width W and height H) and tempo-

ral dimensions (Ti). The scale of each voxel grid is denoted

as (a, b, c), thus, we can get W
a
× H

b
× Ti

c
voxel grids. Simi-

larly, we can obtain the template and search regions of event

data, i.e., TE and SE .

3.3. Network Architecture

We propose a novel hierarchical knowledge distillation

framework for event-based tracking. As shown in Fig. 2, it

primarily consists of the Multi-modal/Multi-view Teacher

Transformer and Unimodal Student Transformer network.

Multi-modal/multi-view Teacher Tracker. We feed the

RGB frame and event stream or different event data (e.g.,

event image and voxel) into the teacher Transformer net-

work. The template and search patches of both modali-

ties/views are concatenated and fed into a projection layer

for feature embedding. Following the unified backbone

based trackers [25, 33], we propose a teacher network con-

sisting of Transformer layers for multi-modal feature learn-

ing and fusing. Then, the tokens corresponding to the search

region are selected for target object localization by using the

tracking head.

Unimodal Student Tracker. To achieve efficient and low-

latency visual tracking, we don’t conduct tracking using

multi-modal data. A lightweight student Transformer based

tracker is proposed, as shown in Fig. 2. Note that, only event

data is fed into the student Transformer for tracking. Due

to the influence of challenging factors of event-based track-

ing, such as sparse event points and clutter background, we

introduce a hierarchical knowledge distillation strategy to

enhance its tracking performance.

3.4. Hierarchical Knowledge Distillation

The tracking loss functions used in OSTrack [33] (i.e.,

focal loss Lfocal, L1 loss, and GIoU loss LGIoU ) and three

knowledge distillation functions are used to optimize our

visual tracker. Generally speaking, the overall loss can be

denoted as:

Ltotal = λ1Lfocal + λ2L1 + λ3LGIoU+ (1)

η1LsimKD + η2LfeatKD + η3LresKD

For the first three loss functions for tracking, we refer the

readers to check OSTrack [33] for better understanding. In

the following paragraphs, we will describe the hierarchical

knowledge distillation loss functions in detail.

Similarity Matrix based Distillation. The similarity ma-

trix computed in the multi-head self-attention layers incor-

porates abundant long-range and cross-modal relation in-
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Figure 2. An overview of our proposed Hierarchical Knowledge Distillation Framework for Event Stream based Tracking, termed

HDETrack. It contains the teacher and student Transformer network which takes multi-modal/multi-view data and event data only as the

input respectively. The two networks share the same architecture, i.e., tracking using a unified Transformer backbone network similar to

OSTrack [33] and CEUTrack [25]. Our tracker achieves a better tradeoff between accuracy and model complexity, as shown in Fig. 1(b).

formation. In this work, we exploit the knowledge trans-

fer from the similarity matrix learned by the teacher Trans-

former to the student Transformer. Specifically, we denote

the similarity matrix of the ith teacher Transformer layer as

Si
t ∈ R

640×640. The similarity matrix of the jth student

Transformer is denoted as Sj
s ∈ R

320×320. We repeat the

Sj
s to make it have the same dimension as Si

t . In addition to

tracking loss functions, the learning of similarity matrix Sj
s

also depends on distilling loss LsimKD as follows,

LsimKD = L2(S
j
s , S

i
t). (2)

Feature based Distillation. The feature distillation from

the robust and powerful teacher Transformer network is the

second strategy. We denote the token representation of the

teacher and student network as Ft and Fs. Then, the distill-

ing loss between them can be represented as,

LfeatKD = ∥Ft − Fs∥
2
F (3)

Response based Distillation. The response maps out-

put from tracking networks are used for target object lo-

calization. Obviously, if we can directly mimic this re-

sponse map Rt, the obtained tracking results will be bet-

ter. In this paper, the weighted focal loss function [19]

is adopted to achieve this target. We denote the ground

truth target center and the corresponding low-resolution

equivalent as p̂ and p̄ = [p̄x, p̄y], respectively. The Gaus-

sian kernel is used to generate the ground truth heatmap

P̂xy = exp(−
(x−p̄x)

2+(y−p̄y)
2

2δ2p
), where δ denotes the ob-

ject size-adaptive standard deviation [19]. Thus, the Gaus-

sian Weighted Focal (GWF) loss function is formulated as:

LGWF = −

∑

xy

{

(1− Pxy)
αlog(Pxy), if P̂xy = 1

(1− P̂xy)
β(Pxy)

αlog(1− Pxy), otherwise

(4)

where α and β are two hyper-parameters and which are set

to 2 and 4 respectively in our experiments, as suggested in

OSTrack [33]. In our implementation, we normalize the

response maps of both the teacher and student networks by

dividing them via the temperature coefficient τ (empirically

set to 2), followed by inputting them into the focal loss for

response distillation, i.e., LresKD = LGWF (Rs/τ,Rt/τ).

4. EventVOT Dataset

4.1. Criteria for Collection and Annotation

To construct a dataset with a diverse range of target cate-

gories, as shown in Fig. 4, capable of reflecting the distinct

features and advantages of event tracking, this paper pri-

marily considers the following aspects during data collec-

tion. 1). Diversity of target categories: Many common and

meaningful target objects are considered, including UAVs,

pedestrians, vehicles, ball sports, etc. 2). Diversity of

data collection environments: The videos in our dataset are

recorded in day and night time, and involved venue infor-

mation includes playgrounds, indoor sports arenas, main
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Table 1. Event camera based datasets for visual tracking. # denotes the number of corresponding items.

Datasets Year #Videos #Frames #Class #Att #Resolution Aim Absent Frame Reality Public

VOT-DVS 2016 60 - - - 240× 180 Eval ✗ ✗ ✗ ✓

TD-DVS 2016 77 - - - 240× 180 Eval ✗ ✗ ✗ ✓

Ulster 2016 1 9,000 - - 240× 180 Eval ✗ ✗ ✓ ✗

EED 2018 7 234 - - 240× 180 Eval ✗ ✗ ✓ ✓

FE108 2021 108 208,672 21 4 346× 260 Train & Eval ✗ ✗ ✓ ✓

VisEvent 2021 820 371,127 - 17 346× 260 Train & Eval ✓ ✓ ✓ ✓

COESOT 2022 1354 478,721 90 17 346× 260 Train & Eval ✓ ✓ ✓ ✓

EventVOT 2023 1141 569,359 19 14 1280 × 720 Train & Eval ✓ ✗ ✓ ✓

Figure 3. Distribution visualization of challenging factors, category of the target object, and bounding box.

streets and roads, cafeteria, dormitory, etc. 3). Recorded

specifically for event camera characteristics: Different mo-

tion speeds, such as high-speed, low-speed, momentary

stillness, and varying light intensity, etc. 14 challenging

factors are reflected by our EventVOT dataset. 4). High-

definition, wide-field event signals: The videos are collected

using a Prophesee EVK4–HD event camera, which outputs

event stream with 1280 × 720. This high-definition event

camera excels in supporting pure event-based object track-

ing, thereby avoiding the influences of the RGB cameras

and showcasing its features and advantages in various as-

pects such as high-speed, low-light, low-latency, and low-

power consumption. 5). Data annotation quality: All

data samples are annotated by a professional data annota-

tion company and has undergone multiple rounds of quality

checks and iterations to ensure the accuracy of the anno-

tations. For each event stream, we first stack into a fixed

number (499 in our case) of event images for annotation.

6). Data size: Collect a sufficiently large dataset to train

and evaluate robust event-based trackers. A comparison

between the newly proposed dataset and existing tracking

datasets is summarized in Table 1.

4.2. Statistical Analysis

In the EventVOT dataset, we have defined 14 challeng-

ing factors, involving 19 classes of target objects. The num-

ber of videos corresponding to these attributes and cate-

gories is visualized in Fig. 3 (a, c). We can find that BC,

BOM, and SV are top-3 major challenges which demon-

strates that our dataset is relatively challenging. The bal-

ance between different categories is also well-maintained,

with the number of samples roughly distributed between 50

to 60. Among them, UAVs (Unmanned Aerial Vehicles) are

a special category of targets, with a total count of 96. The

distribution of the center points of the annotated bounding

boxes is visualized in Fig. 3 (b).

4.3. Benchmarked Trackers

To construct a comprehensive benchmark dataset for

event-based visual tracking, we consider the following vi-

sual trackers: 1). Siamese or Discriminate trackers:

DiMP50 [2], PrDiMP [12], KYS [3], ATOM [11], 2).

Transformer trackers: OSTrack [33], TransT [7], Sim-

Track [4], AiATrack [15], STARK [32], ToMP50 [21],

MixFormer [10], TrDiMP [28]. Note that, we re-train

these trackers using their default settings on our training

dataset, instead of directly testing on the testing subset. Our

EventVOT dataset is split into training/validation/testing
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Figure 4. Representative samples of our proposed EventVOT

dataset. The 1th column is the 3D event point stream and the 2th

columns are sampled event images. 3th-5th columns are more

samples of our EventVOT dataset.

subset which contains 841, 18, and 282 videos, respectively.

We believe that these retrained tracking algorithms can play

a crucial role in future comparisons of their performance.

5. Experiment

5.1. Dataset, Metric, Implementation Details

In addition to our newly proposed EventVOT dataset,

we also compare our tracker with other SOTA visual track-

ers on existing event-based tracking datasets, including

FE240hz [34], VisEvent [30], and COESOT [25] dataset.

For the evaluation metrics, we adopt the widely used

Precision Rate (PR), Normalized Precision Rate (NPR),

and Success Rate (SR). The efficiency is also an important

metric for a practical tracker, in this work, we adopt FPS

(Frames Per Second) to measure the speed of each tracker.

More details of datasets, evaluation metrics, and implemen-

tation details can be found in our supplementary material.

5.2. Comparison on Public Benchmarks

As shown in Table 2, we re-train and report multiple

SOTA trackers on the EventVOT dataset. We can find

that our baseline tracker OSTrack achieves 55.4, 60.4, 71.1
on the SR, PR, and NPR, respectively. When adopting

our proposed hierarchical knowledge distillation framework

in the training phase, these results can be improved to

57.8, 62.2, 73.5 which fully validates the effectiveness of

our proposed method for event-based tracking. Our re-

sults are also better than other SOTA trackers, including the

Siamese trackers and Transformer trackers (STARK, Mix-

Former, PrDiMP, etc.). These experimental results fully

demonstrate the effectiveness of our proposed hierarchi-

cal knowledge distillation from multi-modal to event-based

tracking networks. Similar conclusions can also be drawn

Table 2. Overall tracking performance on EventVOT dataset.

Trackers Source SR PR NPR Params FPS

Ours – 57.8 62.2 73.5 92.1 105

TrDiMP CVPR21 39.9 34.8 48.7 26.3 26

ToMP50 CVPR22 37.6 32.8 47.4 26.1 25

OSTrack ECCV22 55.4 60.4 71.1 92.1 105

AiATrack ECCV22 57.4 59.7 72.8 15.8 38

STARK ICCV21 44.5 39.6 55.7 28.1 42

TransT CVPR21 54.3 56.5 68.8 18.5 50

DiMP50 ICCV19 52.6 51.1 67.2 26.1 43

PrDiMP CVPR20 55.5 57.2 70.4 26.1 30

KYS ECCV20 38.7 37.3 49.8 – 20

MixFormer CVPR22 49.9 49.6 63.0 35.6 25

ATOM CVPR19 44.4 44.0 57.5 8.4 30

SimTrack ECCV22 55.4 57.5 69.9 57.8 40

Table 3. Experimental results (SR/PR) on FE240hz dataset.

STNet TransT STARK PrDiMP EFE SiamFC++

58.5/89.6 56.7/89.0 55.4/83.7 55.2/86.8 55.0/83.5 54.5/85.3

DiMP ATOM Ocean SiamPRN OSTrack Ours

53.4/88.2 52.8/80.0 50.2/76.4 41.6/75.5 57.1/89.3 59.8/92.2

Table 4. Results on VisEvent dataset. EF and MF are short for

early fusion and middle-level feature fusion.

Trackers SR PR NPR

R
G

B
+

E
v
en

t
In

p
u

t

CEUTrack 64.89 69.06 73.81

LTMU (EF) 60.10 66.76 69.78

PrDiMP (EF) 57.20 64.47 67.02

CMT-MDNet (MF) 57.44 67.20 69.78

ATOM (EF) 53.26 60.45 63.41

SiamRPN++ (EF) 54.11 60.58 64.72

SiamCAR (EF) 52.66 58.86 62.99

Ocean (EF) 43.56 52.02 54.21

SuperDiMP (EF) 36.21 46.99 42.84

E
v
en

t
In

p
u

t STNet (Event-Only) 39.7 49.2 -

TransT (Event-Only) 39.5 47.1 -

STARK (Event-Only) 34.8 41.8 -

OSTrack (Event-Only) 34.5 50.1 41.6

Ours (Event-Only) 37.3 54.6 44.5

from the experimental results on FE240hz (Table 3), VisEv-

ent (Table 4), and COESOT (Table 5).

5.3. Ablation Study

Analysis on Hierarchical Knowledge Distillation. In this

section, we will isolate each distillation strategy for indi-

vidual evaluation to assess its impact on the final track-

ing performance. On the COESOT dataset, we take the

RGB and event image as the input of teacher network and

feed the event data only into the student tracker. For the

EventVOT dataset, we stack the event stream into images

and voxels and conduct hierarchical knowledge distillation

based on multi-view settings. As shown in Table 6, the

base denotes the tracker which is trained using three track-

ing loss functions only as the same as methods OSTrack
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Table 5. Overall tracking performance on COESOT dataset.

Trackers Source SR PR NPR

Ours - 53.1 64.1 64.5

TrDiMP CVPR21 50.7 59.2 58.4

ToMP50 CVPR22 46.3 55.2 56.0

OSTrack ECCV22 50.9 61.8 61.5

AiATrack ECCV22 50.6 59.5 59.2

STARK ICCV21 40.8 44.5 46.1

TransT CVPR21 45.6 54.3 54.2

DiMP50 ICCV19 53.8 64.8 65.1

PrDiMP CVPR20 47.5 57.8 57.9

KYS ECCV20 42.6 52.7 52.1

MixFormer CVPR22 44.4 50.2 51.1

ATOM CVPR19 42.1 50.4 51.3

SimTrack ECCV22 48.3 55.7 56.6

Table 6. Component Analysis results (PR/SR) on COESOT and

EventVOT dataset.

No. Base SKD FKD RKD COESOT EventVOT

1 ✓ 61.8/50.9 60.4/55.4

2 ✓ ✓ 62.5/51.6 60.8/56.5

3 ✓ ✓ 63.0/52.1 60.4/56.4

4 ✓ ✓ 62.3/51.5 60.6/56.2

5 ✓ ✓ ✓ 63.3/52.2 61.3/57.2

6 ✓ ✓ ✓ 63.2/52.1 62.2/57.5

7 ✓ ✓ ✓ 63.3/52.3 62.1/57.6

5 ✓ ✓ ✓ ✓ 64.1/53.1 62.2/57.8

and CEUTrack do. We can note that it achieves 61.8/50.9,

and 60.4/55.4 on the COESOT and EventVOT datasets,

respectively. When introducing new distillation loss like

similarity-based, feature-based, and response-based distil-

lation functions, the results are all improved in both set-

tings. Note that, the feature-based distillation works better

on the COESOT in contrast to the EventVOT dataset. When

all these distillation strategies are used, better tracking per-

formance can be obtained on multi-modal and multi-view

settings. On the basis of all these experiments, we can draw

the conclusion that all the proposed hierarchical knowledge

distillation strategies can contribute to event-based tracking.

Analysis on Tracking in Specific Challenging Environ-

ment. In this work, our proposed EventVOT dataset re-

flects 14 core challenging factors in the tracking task. As

shown in Fig. 5, we report the results of our tracker and

other state-of-the-art trackers under each challenging sce-

nario. We can note that our proposed tracker achieves bet-

ter performance when facing attributes like DEF (Deforma-

tion), CM (Camera motion), SIO (Similar interferential ob-

ject) and BC (Background clutter), etc. We also achieve

similar tracking results in other attributes which demon-

strate that our proposed hierarchical knowledge distillation

strategy works well for transferring knowledge from multi-

modal/multi-view data to event-based tracker.

Figure 5. Tracking results (SR) under each challenging factor.

Table 7. Ablation studies on event representation on EventVOT.

Input Data SR PR NPR

1. Event Frames 57.8 62.2 73.5

2. Event Voxels 8.6 7.5 10.3

3. Event Time Surface 53.3 55.1 68.7

4. Event Reconstruction Images 54.5 60.5 69.2

Analysis on Different Event Representations. In this

part, we conduct tracking with multiple representations of

event data and analyze the influences of different event rep-

resentations. Specifically, the event image, event voxel, and

time surface are considered, as shown in Table 7. We can

observe that the event voxel based tracking performs worse

than others on our high-resolution event stream. We believe

this may be attributed to the necessity of a meticulous de-

sign for the feature representation of voxels.

6. Conclusion

In this paper, we propose a novel hierarchical knowledge

distillation framework for event-based tracking. It formu-

lates the learning of event trackers based on the teacher-

student knowledge distillation framework. The teacher net-

work takes the multi-modal or multi-view data as the input

while the student network takes the event data for track-

ing. In the distillation phase, it simultaneously considers

similarity-based, feature-based, and response-based knowl-

edge distillation. To bridge the data gap, in this work,

we also propose the first large-scale, high-resolution event-

based tracking dataset, termed EventVOT. Extensive exper-

iments on multiple datasets fully validated the effectiveness

of our proposed hierarchical knowledge distillation strategy.

In our future work, we will consider collecting more high-

resolution event videos and pre-train a strong event-based

tracker in a self-supervised learning manner.

19255



References

[1] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea

Vedaldi, and Philip H. S. Torr. Fully-convolutional siamese

networks for object tracking. In European Conference on

Computer Vision, page 850–865, 2016.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In Proceedings of the IEEE/CVF international confer-

ence on computer vision, page 6182–6191, 2019.

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Know your surroundings: Exploiting scene infor-

mation for object tracking. In European Conference on Com-

puter Vision, page 205–221, 2020.

[4] Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, Qiuhong Shen, Bo

Li, Weihao Gan, Wei Wu, and Wanli Ouyang. Backbone

is all your need: A simplified architecture for visual object

tracking. In European Conference on Computer Vision, page

375–392, 2021.

[5] Haosheng Chen, Qiangqiang Wu, Yanjie Liang, Xinbo Gao,

and Hanzi Wang. Asynchronous tracking-by-detection on

adaptive time surfaces for event-based object tracking. In

Proceedings of the 27th ACM International Conference on

Multimedia, pages 473–481, 2019.

[6] Qihuang Chen, Bineng Zhong, Qihua Liang, Qingyong

Deng, and Xianxian Li. Teacher-student knowledge distil-

lation for real-time correlation tracking. Neurocomputing,

500:537–546, 2022.

[7] Xin Chen, Jiawen Yan, Bin Zhu, Dong Wang, Xiaoyun Yang,

and Huchuan Lu. Transformer tracking. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, page 8126–8135, 2021.

[8] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,

and Rongrong Ji. Siamese box adaptive network for vi-

sual tracking. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6668–

6677, 2020.

[9] Riran Cheng, Xupeng Wang, Ferdous Sohel, and Hang Lei.

Topology-aware universal adversarial attack on 3d object

tracking. Visual Intelligence, 1:1–12, 2023.

[10] Yutao Cui, Cheng Jiang, Limin Wang, and Wu Gangshan.

Mixformer: End-to-end tracking with iterative mixed atten-

tion. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, page 13608–13618,

2022.

[11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Atom: Accurate tracking by overlap max-

imization. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, page 4660–4669,

2019.

[12] Martin Danelljan, Luc Van Gool, and Radu Timofte. Prob-

abilistic regression for visual tracking. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, page 7183–7192, 2019.

[13] Yongjian Deng, Hao Chen, Huiying Chen, and Youfu Li.

Learning from images: A distillation learning framework for

event cameras. IEEE Transactions on Image Processing, 30:

4919–4931, 2021.

[14] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara

Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,

Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al.

Event-based vision: A survey. IEEE transactions on pattern

analysis and machine intelligence, 44(1):154–180, 2020.

[15] Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang,

and Junsong Yuan. Aiatrack: Attention in attention for trans-

former visual tracking. In European Conference on Com-

puter Vision, page 146–164, 2022.

[16] Shiming Ge, Zhao Luo, Chunhui Zhang, Yingying Hua, and

Dacheng Tao. Distilling channels for efficient deep track-

ing. IEEE Transactions on Image Processing, 29:2610–

2621, 2019.

[17] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-

vide Scaramuzza. Eklt: Asynchronous photometric feature

tracking using events and frames. International Journal of

Computer Vision, 128(3):601–618, 2020.

[18] Jing Huang, Shizheng Wang, Menghan Guo, and Shoushun

Chen. Event-guided structured output tracking of fast-

moving objects using a celex sensor. IEEE Transactions

on Circuits and Systems for Video Technology, 28(9):2413–

2417, 2018.

[19] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proceedings of the European confer-

ence on computer vision (ECCV), pages 734–750, 2018.

[20] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, page

8971–8980, 2018.

[21] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu

Paul, Danda Pani Paudel, Fisher Yu, and Luc Van Gool.

Transforming model prediction for tracking. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, page 8731–8740, 2022.

[22] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4293–4302, 2016.

[23] Jianbing Shen, Yuanpei Liu, Xingping Dong, Xiankai Lu,

Fahad Shahbaz Khan, and Steven Hoi. Distilled siamese

networks for visual tracking. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 44(12):8896–8909,

2021.

[24] Jingxian Sun, Lichao Zhang, Yufei Zha, Abel Gonzalez-

Garcia, Peng Zhang, Wei Huang, and Yanning Zhang. Unsu-

pervised cross-modal distillation for thermal infrared track-

ing. In Proceedings of the 29th ACM International Confer-

ence on Multimedia, pages 2262–2270, 2021.

[25] Chuanming Tang, Xiao Wang, Ju Huang, Bo Jiang, Lin Zhu,

Jianlin Zhang, Yaowei Wang, and Yonghong Tian. Revisiting

color-event based tracking: A unified network, dataset, and

metric. arXiv preprint arXiv:2211.11010, 2022.

[26] Ran Tao, Efstratios Gavves, and Arnold W. M. Smeulders.

Siamese instance search for tracking. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1420–1429, 2016.

19256



[27] Ning Wang, Wengang Zhou, Yibing Song, Chao Ma, and

Houqiang Li. Real-time correlation tracking via joint model

compression and transfer. IEEE Transactions on Image Pro-

cessing, 29:6123–6135, 2020.

[28] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.

Transformer meets tracker: Exploiting temporal context for

robust visual tracking. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, page

1571–1580, 2021.

[29] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip H.S.Torr. Fast online object tracking and segmenta-

tion: A unifying approach. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 1328–1338, 2019.

[30] Xiao Wang, Jianing Li, Lin Zhu, Zhipeng Zhang, Zhe Chen,

Xin Li, Yaowei Wang, Yonghong Tian, and Feng Wu. Visev-

ent: Reliable object tracking via collaboration of frame and

event flows. arXiv preprint arXiv:2108.05015, 2021.

[31] Tianyang Xu, Xuefeng Zhu, and Xiaojun Wu. Learning

spatio-temporal discriminative model for affine subspace

based visual object tracking. Visual Intelligence, 1:1–13,

2023.

[32] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and

Huchuan Lu. Learning spatio-temporal transformer for vi-

sual tracking. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, page 10448–10457, 2021.

[33] Botao Ye, Hong Chang, Bingpeng Ma, and Shiguang Shan.

Joint feature learning and relation modeling for tracking: A

one-stream framework. In European Conference on Com-

puter Vision, 2022.

[34] Jiqing Zhang, Xin Yang, Yingkai Fu, Xiaopeng Wei, Bao-

cai Yin, and Bo Dong. Object tracking by jointly exploiting

frame and event domain. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 13043–

13052, 2021.

[35] Jiqing Zhang, Bo Dong, Haiwei Zhang, Jianchuan Ding, Fe-

lix Heide, Baocai Yin, and Xin Yang. Spiking transform-

ers for event-based single object tracking. In Proceedings of

the IEEE/CVF conference on Computer Vision and Pattern

Recognition, pages 8801–8810, 2022.

[36] Jiqing Zhang, Yuanchen Wang, Wenxi Liu, Meng Li, Jinpeng

Bai, Baocai Yin, and Xin Yang. Frame-event alignment and

fusion network for high frame rate tracking. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 9781–9790, 2023.

[37] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and

Weiming Hu. Ocean: Object-aware anchor-free tracking. In

European Conference on Computer Vision, page 771–787,

2020.

[38] Zhipeng Zhang, Yihao Liu, Xiao Wang, Bing Li, and Weim-

ing Hu. Learn to match: Automatic matching network design

for visual tracking. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, page 13339–13348,

2021.

[39] Shaochuan Zhao, Tianyang Xu, Xiao-Jun Wu, and Josef Kit-

tler. Distillation, ensemble and selection for building a better

and faster siamese based tracker. IEEE transactions on cir-

cuits and systems for video technology, 2022.

[40] Jiawen Zhu, Simiao Lai, Xin Chen, Dong Wang, and

Huchuan Lu. Visual prompt multi-modal tracking. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 9516–9526, 2023.

[41] Zhiyu Zhu, Junhui Hou, and Xianqiang Lyu. Learning graph-

embedded key-event back-tracing for object tracking in event

clouds. Advances in Neural Information Processing Systems,

35:7462–7476, 2022.

[42] Zhiyu Zhu, Junhui Hou, and Dapeng Oliver Wu. Cross-

modal orthogonal high-rank augmentation for rgb-event

transformer-trackers. arXiv preprint arXiv:2307.04129,

2023.

[43] Junfei Zhuang, Yuan Dong, and Hongliang Bai. Ensemble

learning with siamese networks for visual tracking. Neuro-

computing, 464:497–506, 2021.

19257


	. Introduction
	. Related Work
	. Methodology
	. Overview
	. Input Representation
	. Network Architecture
	. Hierarchical Knowledge Distillation

	. EventVOT Dataset
	. Criteria for Collection and Annotation
	. Statistical Analysis
	. Benchmarked Trackers

	. Experiment
	. Dataset, Metric, Implementation Details
	. Comparison on Public Benchmarks
	. Ablation Study

	. Conclusion

