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Figure 1. The left displays sample frames from Human3.6M [18] and HuMMan [7], which were collected under laboratory conditions, and
contrasted with our FreeMan dataset that was collected in real-world scenarios. Frames from FreeMan have been cropped into a square
format for visualization purposes, with the original resolution being 1920× 1080 pixels. The right-hand side demonstrates the test results
on 3DPW of the HMR model [23] trained on these three datasets. Notably, the model trained using FreeMan is able to adapt flawlessly to
real-world conditions, demonstrating its superior generalization ability. Visualization uses implementation of mmHuman3D [11].

Abstract
Estimating the 3D structure of the human body from nat-

ural scenes is a fundamental aspect of visual perception. 3D
human pose estimation is a vital step in advancing fields like
AIGC and human-robot interaction, serving as a crucial tech-
nique for understanding and interacting with human actions
in real-world settings. However, the current datasets, often
collected under single laboratory conditions using complex
motion capture equipment and unvarying backgrounds, are
insufficient. The absence of datasets on variable conditions
is stalling the progress of this crucial task. To facilitate the
development of 3D pose estimation, we present FreeMan, the
first large-scale, multi-view dataset collected under the real-
world conditions. FreeMan was captured by synchronizing
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8 smartphones across diverse scenarios. It comprises 11M
frames from 8000 sequences, viewed from different perspec-
tives. These sequences cover 40 subjects across 10 different
scenarios, each with varying lighting conditions. We have
also established an semi-automated pipeline containing er-
ror detection to reduce the workload of manual check and
ensure precise annotation. We provide comprehensive eval-
uation baselines for a range of tasks, underlining the sig-
nificant challenges posed by FreeMan. Further evaluations
of standard indoor/outdoor human sensing datasets reveal
that FreeMan offers robust representation transferability in
real and complex scenes. FreeMan is publicly available at
https://wangjiongw.github.io/freeman.

1. Introduction

Estimating 3D human poses from real scene input is a long-
standing yet active research topic since its huge potential in
real applications, such as animation creation [60, 63], virtual
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reality [15, 56], the metaverse [30, 39, 62] and human-robot
interaction [17]. Specifically, it aims to identify and deter-
mine the spatial positions and orientations of the human
body’s parts in 3D space from input data such as the im-
age or the video. Despite numerous models proposed in
recent years [27, 34, 58], practical implementation in real
scenes remains challenging due to the varying conditions
such as viewpoint, occasions, human scale, uneven light
conditions and complex background. Some challenges may
stem from the disparity between the recent benchmarks and
real-world scenarios. As shown in Fig. 1, the widely rec-
ognized Human3.6M [18], along with the currently largest
dataset HuMMan [7], are usually in laboratory settings uti-
lizing intricate equipment, which maintains constant camera
parameters and offers minimal variation in background con-
ditions. The effectiveness of the trained models when trained
using these datasets often decline significantly in real-world
environments.

From a data-oriented perspective, we have identified sev-
eral constraints that hinder the performance of the existing
models. (1) Insufficient Scene Diversity. Existing datasets,
as shown in Tab. 1, are mainly collected in controlled labora-
tory conditions, which may not be optimal for robust model
training due to static lighting conditions and uniform back-
grounds. This limitation becomes especially crucial when
the objective is to estimate 3D pose in real-world scenarios,
where scene contexts exhibit substantial variability. In cer-
tain datasets, even though the data is collected from outdoor
scenes, e.g., MuCo [43] and 3DPW [55] in Tab. 1, the variety
of scenarios remains remarkably limited. This constraint sig-
nificantly hampers the applicability of trained models across
a broader range of situations. (2) Limited Actions and Body
Scales. In existing datasets, the range of human actions tends
to be rather limited. Even in the currently largest dataset,
HuMMan [7], the variety of actions in the publicly available
data is quite restricted. Additionally, these large datasets
typically employ fixed cameras to capture data from various
perspectives. The distance from the camera to the actor is
relatively constant, which results in a relatively fixed human
body scale across different videos. (3) Restricted Scala-
bility. The annotation of current datasets primarily relies
on expensive manual processing, which greatly restricts the
scalability of the datasets. Especially when the camera used
for collection is movable, how to effectively align data from
different cameras and perform efficient annotation remains
an open issue.

To address these above issues, this work presents Free-
Man, a novel large-scale benchmark for 3D human pose
estimation under real-world conditions. FreeMan contains
11M frames in 8000 sequences captured by 8 smartphone
cameras from different views simultaneously, as illustrated
in Fig. 2. It covers 40 subjects in 10 kinds of scenes. To
our best knowledge, it is the current largest multi-view 3D

Dataset Environment #Subj #Action #Scene #Seq #Frame #Camera FPS
HumanEva[51] Laboratory 4 6 1 168 80K 7 30
CMU Panoptic[16] Laboratory 8 5 1 65 154M 31 30
MPI-INF-3DHP[42] Real Scene 8 8 1 16 1.3M 14 30
3DPW[55] Real Scene 7 47 4 60 51K 1 30
Mirrored Human[13] Laboratory - - - - 1.5M 1 30
Human3.6M[18] Laboratory 9 15 1 840 3.6M 4 (Fixed) 30
AIST++[32] Laboratory 30 10 1 1408 10.1M 9 (Fixed) 30
HuMMan[7] Laboratory 1000 500 1 400K 60M† 11 (Fixed) 30
HuMMan-released[7] Laboratory 132 20 1 4466 278K† 11 (Fixed) 30
FreeMan Real Scene 40 123 10‡ 8000 11.3M 8 (Movable) 30 / 60

Table 1. Overview of 3D human pose datasets. 1 Comparison
of our proposed FreeMan dataset with existing 3D Human Pose
datasets. Only HD Cameras counted for CMU Panoptic[16]. †

Only 1% of the HuMMan dataset (600K frames) is made publicly
available. ‡ FreeMan includes 10 types of scenes that correspond
to 29 locations. Fixed means cameras are fixed within the whole
dataset, while our cameras are movable and camera poses vary
among video sequences.

Figure 2. Equipment setting of data collection using 8 cameras.
Cameras are attached to tripods.

pose estimation dataset, with variable camera parameters and
complex background environments. It is 215× of the famous
outdoor dataset 3DPW [55]. From a practical perspective, it
has several appealing strengths: Firstly, a large number of
scenes introduce diversity in both backgrounds and lighting,
enhancing the generalization ability of models trained on
FreeMan in real-world scenarios. This makes it particularly
suitable for evaluating algorithmic performance in practical
applications. Secondly, the distances between the 8 cam-
eras and the actors are variant (i.e., 2 to 5.5 meters) across
sequences, resulting in significant scale changes in human
bodies. Thirdly, although we employed mobile RGB cam-
eras to collect data, we propose a semi-automated annotation
pipeline and erroneous frame detection, thereby significantly
reduce manual workload and enhance the scalability and
annotation accuracy of the dataset. Lastly, the proposed
FreeMan encompasses a wide range of pose estimation tasks,
which include monocular 3D estimation, 2D-to-3D lifting,
multi-view 3D estimation, and neural rendering of human
subjects. We present thorough evaluation baselines for the
aforementioned tasks on FreeMan, highlighting the inherent
challenges of such a new benchmark.

In summary, this paper has made three contributions:
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• We have constructed a large-scale dataset for 3D human
pose estimation under varied real-world conditions. The
impressive transferability of the models trained on Free-
Man to real-world scenarios has been demonstrated.

• We have showcased a simple yet effective toolchain that
enables the semi-automatic annotation and efficient man-
ual correction.

• We provide comprehensive benchmarks for human pose
estimation and modeling on FreeMan, facilitating down-
stream applications. These baselines highlight potential
directions for future algorithmic enhancements.

2. Related Work
Human Pose Datasets. Human modeling is a significant
task in computer vision. Existing datasets predominantly
rely on 2D and 3D keypoint annotations, with 3D keypoint
datasets available in two forms: monocular and multi-view.
For 2D keypoint, there are some single-frame datasets such
as MPII [3] and COCO [35], which provide diverse images
with 2D keypoints annotations, while video datasets such as
J-HMDB [21], Penn Action [66] and PoseTrack [4] provide
2D keypoints with temporal information. In contrast, 3D
keypoint datasets are often constructed in indoor scenes,
such as Human3.6M [18], CMU Panoptic [22], MPI-INF-
3DHP [42], AIST++ [33] and HuMMan [7] for multi-view.
There also exists some outdoor datasets such as 3DPW [55]
for monocular cases. Details of these datasets are shown in
Tab. 1. However, the majority of outdoor datasets such as
MPI-INF-3DHP, MuCo-3DHP, and 3DPW exhibit a limited
variety of acquisition scenes, and the datasets that involve
fixed camera poses such as AIST++.
3D Human Pose Estimation. The present study catego-
rizes the task of 3D pose estimation into three distinct types,
namely 2D-to-3D pose lifting, monocular 3D pose estima-
tion, and multi-view 3D pose estimation. In the 2D-to-3D
pose lifting task, Martinez [41] proposed a simple baseline to
regress the 3d keypoints based on a convolutional neural net-
work from 2D keypoints. However, subsequent works, such
as Videopose3D [49], PoseFormer [69] and MHFormer [34],
have improved upon this baseline by integrating temporal
information into their models. In monocular 3D pose estima-
tion task, HMR [23], SPIN [29] takes a single RGB image
as input to perform 3D huna pose estimation, which is often
used as baselines for comparison with other algorithms, such
as PARE [27], SPEC [28] and HybrIK [31]. Additionally,
multi-view methods are proposed to accommodate potential
body parts overlapping in monocular view. Iqbal’s [19] and
MCSS [46] adopt weak supervision to reduce the depen-
dence on the 3D annotated pose, while Canonpose [57] and
EpipolarPose [26] turned to self-supervise fashion to deal
with multi-view data.
Neural Rendering of Human Subjects. With the devel-
opment of NeRF [44] in dynamic scene rendering, people

Figure 3. (a) Distribution of distance from the camera to the center
of the system, indicated by translation along the z-axis in camera
parameters. Four vertical red lines represent the distance of 4
cameras in Human3.6M [18]. (b) Distribution of human bounding
box areas. The horizontal axis represents the ratio of the bounding
box area over the image area. The vertical axis is in log scale. (c)
Correspondence of scenes and actions. Areas of blocks represent
the scale of the respective frame number. The outmost circle shows
actions and the circle in the middle present 10 type of scenes in our
dataset. Zoom in 10× for the best view.

also focus on the dynamic rendering of humans. Com-
pared to dynamic scenes, the non-rigid property of hu-
mans has more challenges. The prior knowledge of body
movements can provide a good prior for rendering, and
many methods use SMPL [40] as a prior for body ren-
dering. Most methods reconstruct human bodies through
multi-view videos [38, 47, 59], while recent works have also
employed single-view videos, such as HumanNeRF [61],
FlexNeRF [20], YOTO [24].

3. FreeMan Dataset
FreeMan is a large-scale multi-view dataset under real-
world conditions with precise 3D pose annotations. It com-
prises 11M frames from 1000 sessions, featuring 40 subjects
across 10 types of scenes. The dataset includes 10M frames
recorded at 30FPS and an additional 1M frames at 60FPS.
Next, we highlight the diversity of FreeMan, from various
scenario selections, actions, camera settings and subjects.
Scenarios. We design 10 types of real-world scenes, includ-
ing 4 indoor and 6 outdoor scenes, for our data collection.
Fig. 3 (c) illustrates the scene diversity of our FreeMan. The
blue section represents the outdoor part, while the red part
refers to frames captured in indoor scenes. Specifically, there
are 2.76 million frames captured indoors and 8.45 million
frames captured outdoors. In the outdoor data, there are
different frame numbers collected under varying lighting
conditions, with 1 million frames captured at night or dusk
and 7.45 million frames captured during daytime. Moreover,
the central block of the circle denotes different scenarios,
while the blocks on the outermost circle refer to actions. The
areas of the blocks are proportional to frame number. Please
refer to supplementary material for more details.
Action Set. Following the popular action recognition dataset
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NTU-RGBD120 [37], we compose our action set with sev-
eral common actions corresponding to scenes in daily life,
e.g., drinking and talking in a cafe, reading in the library.
Meanwhile, subjects interact with real objects to make data
as close to real world as possible. As shown in the topmost
row of Fig. 4, interaction with objects brings complicated
occlusions, making our data more challenging. For outdoor
scenarios, we set the data collection field as large as possible
to help subjects perform actions with little restriction.
Camera Positions. Cameras in previous 3D human pose
datasets [7, 16, 18] are fixed, resulting that only a few camera
poses being included. As shown in Fig. 2, cameras are
attached to tripods and are newly placed from time to time,
and translation from the center of the system to camera
d, which is the physical distance between the camera and
the system center, can vary from 2m to 5.5m. Fig. 3 (a)
shows the distribution of d and the corresponding number of
cameras. Most cameras are located around 4 meters far away
from the system center. Besides, we show the distribution
of the human bounding box area in Fig. 3 (b), in a unit of
ratio to the whole image area, to demonstrate the variation
of human size. With variations in camera translation and
human actions, the area of human bounding boxes varies
from 0.01 to 0.7 of the whole image area.
Subjects. There are 40 subjects participating in the con-
struction of FreeMan and recruitment is completely based
on voluntary. Among them, 22 actors are trained dancers for
dance actions. All of them are well-informed and signed the
agreement to make data public for research purposes only.

4. Data Acquisition & Annotation Pipeline
Overview. To collect a large-scale dataset from real-world
environments, we developed a comprehensive toolchain, as
shown in Fig. 5. Unlike previous toolchains used in con-
trolled or idealized conditions, we carefully accounted for
potential challenges in outdoor settings, including calibration
and synchronization errors. To overcome these issues, we
proposed an semi-automated pipeline including error detec-
tion and manual correction to ensure efficient data collection
and annotation.

4.1. Hardware Setup

Cameras. We collect FreeMan via 8 Mi11 phones [1] in-
dexed from 1 to 8 as our data collection devices. Note 8
collection of one action as one session, which corresponds
to 8 RGB sequences from 8 views, and each phone is at-
tached to a tripod to keep stable during data collection. As
shown in Fig. 2, all devices are positioned in a circle around
a human at a height of approximately 1.6 meters above the
ground, and the distance from cameras to the system center
varying from 2 to 5.5 meters, which is similar to real-life
usage scenarios. Each smartphone captures RGB sequences
using its main camera at 1920×1080 resolution and 30/60

FPS. During the data collection process, actors perform ac-
tions facing the cameras with odd-numbered indices. As
shown in Fig. 5 (a), the only requirement beyond devices is
a stable network connection to server for data transmission.
Device Synchronization. Previous works [7, 16, 18] have
synchronized devices using wired interfaces in a laboratory.
However, the complexity of the entire system coupled with
the difficulty in deploying it in real-world environments, has
prompted us to consider alternative methods. To address
issues related to usability and device constraints, we con-
nect all devices wirelessly to a single server and developed
an Android app that utilizes the Network Time Protocol
(NTP) [45] to calculate the time difference between each
device and the server’s clock. During the capture process,
temporal information is stored locally on each device as a
timecode, while the server records the synchronized capture
interval for all devices. The starting frame is determined by
matching the timecode to the frame closest to the server’s
clock time. As shown in Fig. 5(b), synchronization errors are
smaller than a single frame during our testing, corresponding
to 33ms and 16ms for 30FPS and 60FPS, respectively.
Chessboard-based Calibration. At the beginning of each
session, we first shoot a chessboard with known size tiled
at the center of the system, then calculate the intrinsic and
extrinsic camera parameters following the standard imple-
mentation in OpenCV [6, 68]. Please refer to supplementary
meterial for details of data flow.
Pixel Alignment However, calibration with coarse match-
ing points on chessboard is not accurate enough. After data
collection and synchronization, we extract one frame from
all synchronized videos, and then use LightGlue [36] to
calculate dense matching points across views. Then dense
matching points are used to further refine the camera extrin-
sic parameters resulted from chessboard-based calibration.

4.2. Pose Annotation.

Once videos are collected, we use a state-of-the-art detector
YOLOX [14] to detect human bounding box and HRNet-
w48 [52] to detect 2D keypoints of 8 views K2D ∈ R8×17×2

in COCO [35] format. To eliminate the effect of potential
wrong keypoints output, keypoint predictions with confi-
dence lower than a threshold ϕ are removed. Then remain-
ing 2D keypoints are used for triangulation to get 3D human
pose K3D ∈ R17×3 with pre-computed camera parameters.
Here, we set ϕ to be 0.5. Furthermore, we optimize K3D

with smoothness constraints and bone length constraints in-
troduced in HuMMan [7] resulting in optimized 3D pose
K̃3D ∈ R17×3. Then we fit a standard SMPL [40] model
to the estimated 3D skeleton by SMPLify [5] to produce
a rough mesh annotation. After that, we project 3D key-
points to 2D image planes of each view using corresponding
camera parameters. With regularization in triangulation and
optimization along the temporal axis, the re-projected 2D
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Figure 4. The diverse frames in FreeMan. The topmost two rows presents a range of indoor and outdoor scenes, highlighting human-object
interactions and the diversity of scene contexts, lighting conditions, and subjects. The third row exhibits frames from different views. The
final row illustrates the temporal variation of human poses from a consistent viewpoint, emphasizing the dynamism of motion capture.

poses K̃2D is more accurate than K2D, especially for occlu-
sion cases. Comparison between original K2D and K̃2D are
shown in the left part of Fig. 7.
Erroneous Pose Detection & Correction. Although 2D
pose estimator has been well developed, pose with heavy
occlusions can be inaccurate. Thus, we propose a pipeline to
filter erroneous 2D keypoints among vast millions of frames
and then correct them by human annotators. As shown in
Fig. 5, estimated 2D poses are feed into a pre-trained image
generator to generate human images. Then we use SAM [25]
to get human mask of original and generated images and
intersection-over-union (IoU) between these mask are calcu-
lated. Poses correspond to IoU lower than a threshold α are
considered as erroneous ones and then checked by human
annotator. Specifically, we choose Stable Diffusion 1.5 and
ControlNet [64] as conditional image generator and Deep-
DataSpace [2] are used as annotation tools. Fig. 6 presents
examples of correct and erroneous cases. More detailed
processes and results are displayed in the supplementary
material.

4.3. Keypoint Quality Assessment

To demonstrate the effectiveness of our toolchain, we test it
on Human3.6M [18]. We select 3 different actions of each
subject in the training set, which covers 10% sequences of

the whole training set and all kinds of actions. Following [7],
keypoint quality is assessed by Euclidean distance between
estimated 2D poses and ground truth 2D poses in units of
pixels. The error results in less than 1% of pixels for images
of 1000 × 1000, indicating that our toolchain can generate
annotations with an accuracy that is acceptable considering
the cognitive errors inherent in human labeling.

5. Benchmarks
We have constructed four benchmarks utilizing images and
annotations derived from our dataset. The data is subdivided
based on subjects, allocating 18 subjects for training, 7 for
validation, and 15 for testing purposes. This partitioning
results in three subsets composed of 5.87M , 700K, and
3.69M frames, respectively. For each benchmark, subject
lists of each subset are shared, and only views selected from
the session vary for each task.
Monocular 3D Human Pose Estimation (HPE). This task
involves taking a monocular RGB image or sequence as
input and predicting 3D coordinates in camera coordinate
system. We randomly select one view from each session
for this task. The performance of algorithms is measured
by widely used Mean Per Joint Position Error (MPJPE) [18]
and Procrustes analysis MPJPE (PA-MPJPE) [40].
2D-to-3D Lifting. Given that 2D human poses can be pre-
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Figure 5. The illustration of data collection and annotation toolchain: (a) depicts the transmission of signals between cameras and servers for
camera calibration, where chessboard frames are sent to the server, and camera parameters are returned. (b) demonstrates the synchronization
process among devices. (c) showcases the pipeline for pose annotation.
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Figure 6. Demonstration of erroneous pose detection in Sec. 4.
Human3.6M examples shown for quality assessment. The first row
shows input frame and 2D keypoints by Pose estimator, and the
last two rows show segment mask of original image and generated
image by SAM. The left two columns are examples of correct poses,
while the right two columns refer to cases with erroneous keypoints
as highlighted by the red boxes. Please zoom in for details.

dicted using existing 2D keypoint detectors [8, 9, 12, 52],
the primary goal of this task is to effectively elevate these
2D poses into the 3D space within the camera coordinate
system. The evaluation metrics are the same as HPE.
Multi-View 3D Human Pose Estimation. Estimating the
3D human pose from multiple views presents a natural solu-
tion to overcome occulusion in motion capture. For this task,
models are provided with images or videos from multiple
views, along with corresponding camera parameters. The
objective is to predict the 3D coordinates of human joints in
the same world coordinate system as the cameras. following
implementation of [54], metrics of the task is MPJPE and
average precision (AP) with specific thresholds.
Human Neural Rendering. The free-viewpoint rendering
of humans is a significant issue in human modeling. With the
rise in popularity of neural radiance fields (NeRF) [44] for
the novel view rendering task, several methods, including

Method HMR PARE
Train Supervision Test MPJPE PA MPJPE PA

Human3.6M 2D+3D KPTs 3DPW 279.92 133.13 118.54 81.22
HuMMan 2D+3D KPTs 3DPW 407.57 192.75 110.99 63.11
HuMMan 2D KPTs+SMPL 3DPW 475.73 184.15 114.20 66.19
HuMMan 2D+3D KPTs+SMPL 3DPW 437.52 203.17 114.33 72.12
FreeMan 2D+3D KPTs 3DPW 157.46 87.93↑33.95% 118.31 68.72↑15.39%
FreeMan 2D KPTs+SMPL 3DPW 151.85 88.85↑51.75% 94.27 60.39↑8.76%
FreeMan 2D+3D KPTs+SMPL 3DPW 159.31 91.33↑55.04% 98.33 64.51↑10.55%

Table 2. Monocular 3D HPE performance of HMR [23] and
PARE [27] trained on different dataset for monocular Human Pose
Estimation. PA stands for PA-MPJPE and both metrics are in unit
of millimeters. The lower metrics is, the better performance model
obtains. All released part of HuMMan is used for training. ↑ refers
to the improvement relative to HuMMan and ↑ refers to the im-
provent relative to Human3.6M.

HumanNeRF [61], have emerged. These methods utilize
monocular human motion videos as input to synthesize novel
views of dynamic humans through NeRF. The widely used
metrics of prediction are PSNR, SSIM [67] and LPIPS [65].

6. Experiments
In this section, we experiment with the four benchmarks. In
human 3D pose estimation tasks, we conduct several transfer
tests with other standard datasets to evaluate the effective-
ness and transferability of our proposed FreeMan dataset.
Existing similar datasets, Human3.6M [18] & HuMMan [7],
are used for comparison. Since HuMMan only releases 1%
of data for pose estimation*, we only involve it in monocular
3D human pose estimation and 2D-to-3D lifting. As for the
neural human rendering, we train the model from one of the
8 views and test on the other the views in selected sessions.

6.1. Monocular 3D Human Pose Estimation

Implementation details. For the Human3.6M [18] and
HuMMan [7] datasets, all views in their training set are uti-
lized. To balance number of frames, we randomly sample
a single view from sessions in the training split for Free-
Man, resulting that the frame numbers of all three datasets

*https://opendatalab.com/OpenXDLab/HuMMan
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Figure 7. The examples of human pose annotations are presented as follows. At left, the first row displays 2D keypoints directly generated by
HRNet-w48 [52], while the second row presents re-projected 2D poses. For heavy occlusions, our pipeline corrects the erroneous keypoints
effectively. The right part showcases the SMPL annotation examples for each view in our dataset.

being 312K, 253K, and 233K, respectively. Videos of all
three datasets are downsampled to 10FPS, following the im-
plementation of MMPose [10]. Following [48], we select
HMR [23] and PARE [27] as models to evaluate and imple-
ment experiments with configurations open-sourced by [48].
Please refer to supplementary material for more.
Results. We perform testing on the test set of 3DPW [55].
The performance of the models trained on different datasets,
with varying types of supervision, are reported in Tab. 2.
Notably, the HMR models trained on FreeMan exhibit signif-
icantly better performance on the 3DPW test set compared to
those trained on Human3.6M and HuMMan with PA-MPJPE
133.13mm and 192.75mm respectively, which indicates that
FreeMan demonstrates superior generalizability compared
to the others. The same results are obtained with PARE,
further confirming that FreeMan outperforms even in more
advanced algorithms. This can be attributed to the diversity
of scene contexts and human actions present in our dataset,
which provides better transferability in real-world scenarios.

6.2. 2D-to-3D Pose Lifting

Implementation Details. For this task, we employ CNN-
based methods, SimpleBaseline [41] and VideoPose3D [49],
and Transformer-based methods, PoseFormer [69] and MH-
Former [34], and all methods follow corresponding official
implementations. To verify the effect of the dataset scale, we
also train our model on the whole training set. The results of
SimpleBaseline and MHFormer are presented in Tab. 3, and
more details can be found in supplementary material.
Results. As shown in Tab. 3, results of the in-domain test
on FreeMan are provided as a baseline for future work. For
in-domain testing, MPJPE of SimpleBaseline on FreeMan
(79.22mm) is larger than that on HuMMan [7] (78.5mm†)
and Human3.6M [18] (53.4mm‡), demonstrating that Free-
Man is a more challenging benchmark. Besides, all the

†As full data not accessible, we use result from HuMMan [7] directly.
‡Results of our implementation.

Algorithm Train Test MPJPE (mm) PA (mm)

SimpleBaseline

FreeMan FreeMan 90.53 54.17
FreeMan† FreeMan 79.22 49.11

Human3.6M AIST++ 212.57 138.98
HuMMan AIST++ 255.5 116.86
FreeMan AIST++ 156.96 105.85↑10.30%
FreeMan† AIST++ 126.23 88.07↑24.64%

MHFormer

FreeMan FreeMan 93.00 63.50
FreeMan† FreeMan 77.06 53.38

Human3.6M AIST++ 171.19 133.37
HuMMan AIST++ 188.73 101.52
FreeMan AIST++ 132.99 88.79↑12.54%
FreeMan† AIST++ 124.34 79.22↑21.97%

Table 3. Performance of methods with different training and testing
datasets in 2D-to-3D Pose Lifting. PA stands for PA-MPJPE. † refer
to experiments with the whole training set of FreeMan. Smaller
MPJPE and PA-MPJPE indicate better performance. Highlighted
rows show training on our dataset achieves the best performance in
the transfer test. ↑ refers to the improvement relative to HuMMan.

methods trained on FreeMan tend to generalize better than
that on HuMMan and Human3.6M when testing on AIST++
under the same setting as MPJPE and PA-MPJPE are much
smaller in cross-domain test. Although the scale of FreeMan
training set is of a similar magnitude as HuMMan’s, which
is much smaller than Human3.6M’s, models trained on Free-
Man outperform models trained on the other two by a large
margin. Furthermore, when the training set is expanded to all
frames in training split, FreeMan can further boost models
to achieve better performance, proving that our large-scale
data helps to improve model performance.

6.3. Multi-View 3D Human Pose Estimation

Implementation Details. We conduct in-domain and cross-
domain tests between Human3.6M and FreeMan to evaluate
the effectiveness and generalization ability. We conduct the
experiments with VoxelPose [53], which locates the human
root first and then regresses 3D joint location accordingly.
COCO-format poses in FreeMan are interpolated to match
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Train Test AP@25mm (%) ↑ AP@50mm (%) ↑ AP@75mm (%) ↑ AP@100mm (%) ↑ Recall@500mm (%) ↑ MPJPE@500mm (mm) ↓
Human3.6M Human3.6M 32.32 97.47 98.61 98.99 100.00 25.29
Human3.6M FreeMan 0.00 0.00 0.00 0.00 0.06 89.85
Human3.6M FreeMan (w/ GT Root) 0.00 1.27 11.44 21.40 96.20 103.02

FreeMan FreeMan 43.38 88.77 97.73 99.12 99.97 26.07
FreeMan Human3.6M 0.00 5.77 82.85 92.62 96.68 61.29
FreeMan Human3.6M (w/ GT Root) 0.00 6.60 87.91 95.38 100.00 58.30

Table 4. Multi-View 3D Pose Estimation results of VoxelPose [54]. Ground truth root position (GT Root) is not used if not specified.
Recall@500mm shows the percentage that falls within the threshold, and the MPJPE@500mm indicates the average MPJPE values within
the threshold. Rows highlighted shows the best setting in cross-domain test.

Scene PSNR↑ SSIM↑ LPIPS∗ ↓
Square 25.98 0.9501 58.38

Corridor 24.57 0.9340 81.39
Sports Port 26.33 0.9662 30.09

Park 23.86 0.9439 73.61
Courtyard 28.56 0.9630 53.99

Dance Room 30.11 0.9658 43.34
Library 29.41 0.9665 31.53

Platform 26.79 0.9439 70.01
Lobby 25.41 0.9387 78.80
Cafe 27.32 0.9644 37.88

Table 5. Neural rendering results by using HumanNeRF [61] on
10 scenes of FreeMan. Note that LPIPS∗ = LPIPS ×103. The
highest values are bolded and underlined ones refer to the lowest.

that in Human3.6M. We trained VoxelPose [53] following
official implementation. For Human3.6M, bounding box
annotations are from [50] and its validation set is used for
the test. For FreeMan, we only use 4 odd-indexed views
from the training set.
Results. Results of all experiments are reported in Tab. 4.
For in-domain testing, the model trained on FreeMan
achieves MPJPE@500mm of 26.61mm on test set consisting
of odd-indexed views. For cross-domain testing, the model
trained on FreeMan achieves Recall@500mm of 96.68%
and MPJPE@500mm is 61.29mm on Human3.6M valida-
tion set. However, the model trained on the Human3.6M
dataset fails to locate human on FreeMan test set, resulting
zero AP with threshold smaller than 100mm. To get rid of
the effects of root location, we input the ground truth root lo-
cations to model directly. With this setting, the model trained
on Human3.6M obtains MPJPE@500mm of 103.02mm on
FreeMan test set, while the model trained on FreeMan can
obtain MPJPE@500mm of 58.30mm on Human3.6M vali-
dation set. Results show that the model trained on FreeMan
has a much better generalization ability, while that on Hu-
man3.6M struggles in transfer testing.

6.4. Neural Rendering of Human Subjects.

Implementation Details. We employ 10 scenes captured
by FreeMan to train HumanNeRF [61]. To obtain human
body segmentation annotations, we utilize the SAM [25]
algorithm with our bounding boxes as prompts. Throughout
the training step, we randomly select one view for each ses-
sion and render the rest 7 view as novel views for testing. We

then calculate metrics including PSNR, SSIM, and LPIPS,
to evaluate the performance of the model. Please refer to
supplementary material for results of data at 60FPS.
Results. The reconstruction results in 10 scenes are shown
in Tab. 5. The best reconstruction achieves a high PSNR of
30.11dB which indicates FreeMan contains contents that the
models can learn and fit very well. While the performance
varies, the lowest PSNR of 23.86 shows FreeMan also con-
tains contents that are outside of model’s learning scope and
challenging. Additionally, the results in 10 scenes including
both easy contents that the model can handle well and chal-
lenging contents demonstrating the diversity of FreeMan.

7. Conclusion
We present FreeMan, a novel large-scale multi-view 3D
pose estimation dataset 3D human pose annotations. We
elaborately develop a simple yet effective semi-annotation
pipeline to automatically annotate frame-level 3D landmarks
at a much lower cost, and build a comprehensive benchmark
for 3D human pose estimation.

Extensive experimental results demonstrate the difficulty
of test in varied conditions and the strengths of the proposed
FreeMan. As a large-scale human motion dataset, our Free-
Man addresses the existing gap between the current datasets
and real-scene applications, and we hope that it will catalyze
the development of algorithms designed to model and sense
human behavior in real-world scenes.

Limitations. Prompts to generation model require careful
tuning for high quality and accuracy of error pose detection
can be limited by human image generation models.

Acknowledgement
We sincerely thank all volunteers and MaxDancingClub
from CUHK(SZ) for participation, and Mr. Ruipeng
Cao for software development. The work is partially
supported by the Young Scientists Fund of the Na-
tional Natural Science Foundation of China under grant
No. 62106154, by the Natural Science Foundation of
Guangdong Province, China (General Program) under
grant No.2022A1515011524, and by Shenzhen Science
and Technology Program JCYJ20220818103001002 and
ZDSYS20211021111415025 and by the Guangdong Provin-
cial Key Laboratory of Big Data Computing, The Chinese
University of Hong Kong (Shenzhen).

21985



References
[1] Mi11. https://www.mi.com/global/product/

mi-11/, 2022. 4
[2] International Digital Economy Academy. Deepdatas-

pace. https://github.com/IDEA-Research/
deepdataspace, 2023. 5

[3] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014. 3

[4] Mykhaylo Andriluka, Umar Iqbal, Anton Milan, Eldar Insa-
futdinov, Leonid Pishchulin, Juergen Gall, and Bernt Schiele.
Posetrack: A benchmark for human pose estimation and track-
ing. CoRR, abs/1710.10000, 2017. 3

[5] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J. Black. Keep it SMPL:
Automatic estimation of 3D human pose and shape from a
single image. In Computer Vision – ECCV 2016. Springer
International Publishing, 2016. 4

[6] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 4

[7] Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin, Tao
Yu, Wenjia Wang, Xiangyu Fan, Yang Gao, Yifan Yu, Liang
Pan, Fangzhou Hong, Mingyuan Zhang, Chen Change Loy,
Lei Yang, and Ziwei Liu. HuMMan: Multi-modal 4d human
dataset for versatile sensing and modeling. In 17th European
Conference on Computer Vision, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part VII, pages 557–577. Springer,
2022. 1, 2, 3, 4, 5, 6, 7

[8] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017. 6

[9] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang,
Gang Yu, and Jian Sun. Cascaded pyramid network for multi-
person pose estimation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
7103–7112, 2018. 6

[10] MMPose Contributors. Openmmlab pose estimation tool-
box and benchmark. https://github.com/open-
mmlab/mmpose, 2020. 7

[11] MMHuman3D Contributors. Openmmlab 3d human para-
metric model toolbox and benchmark. https://github.
com/open-mmlab/mmhuman3d, 2021. 1

[12] Hao-Shu Fang, Jiefeng Li, Hongyang Tang, Chao Xu, Haoyi
Zhu, Yuliang Xiu, Yong-Lu Li, and Cewu Lu. Alphapose:
Whole-body regional multi-person pose estimation and track-
ing in real-time. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022. 6

[13] Qi Fang, Qing Shuai, Junting Dong, Hujun Bao, and Xiaowei
Zhou. Reconstructing 3d human pose by watching humans in
the mirror. In CVPR, 2021. 2

[14] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430, 2021. 4

[15] Shivam Grover, Kshitij Sidana, and Vanita Jain. Pipeline
for 3d reconstruction of the human body from ar/vr

headset mounted egocentric cameras. arXiv preprint
arXiv:2111.05409, 2021. 2

[16] TomasSimon HanbyulJoo, HaoLiu XulongLi, LinGui LeiTan,
and TimothyGodisart SeanBanerjee. Panoptic studio: A mas-
sively multiview system for social interaction capture. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
41(1), 2019. 2, 4

[17] Abdelfetah Hentout, Mustapha Aouache, Abderraouf Maoudj,
and Isma Akli. Human–robot interaction in industrial collab-
orative robotics: a literature review of the decade 2008–2017.
Advanced Robotics, 33(15-16):764–799, 2019. 2

[18] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36(7):1325–1339, 2014. 1, 2, 3, 4, 5, 6, 7

[19] Umar Iqbal, Pavlo Molchanov, and Jan Kautz. Weakly-
supervised 3d human pose learning via multi-view images
in the wild. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5243–5252,
2020. 3

[20] Vinoj Jayasundara, Amit Agrawal, Nicolas Heron, Abhinav
Shrivastava, and Larry S Davis. Flexnerf: Photorealistic free-
viewpoint rendering of moving humans from sparse views.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21118–21127, 2023. 3

[21] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black.
Towards understanding action recognition. In International
Conf. on Computer Vision (ICCV), pages 3192–3199, 2013. 3

[22] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,
Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser
Sheikh. Panoptic studio: A massively multiview system for
social motion capture. In ICCV, 2015. 3

[23] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In Computer Vision and Pattern Regognition (CVPR),
2018. 1, 3, 6, 7

[24] Jaehyeok Kim, Dongyoon Wee, and Dan Xu. You only train
once: Multi-identity free-viewpoint neural human rendering
from monocular videos. arXiv preprint arXiv:2303.05835,
2023. 3

[25] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross
Girshick. Segment anything. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
4015–4026, 2023. 5, 8

[26] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Self-
supervised learning of 3d human pose using multi-view geom-
etry. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1077–1086, 2019. 3

[27] Muhammed Kocabas, Chun-Hao P. Huang, Otmar Hilliges,
and Michael J. Black. PARE: part attention regressor for 3d
human body estimation. CoRR, abs/2104.08527, 2021. 2, 3,
6, 7

[28] Muhammed Kocabas, Chun-Hao P. Huang, Joachim Tesch,
Lea Müller, Otmar Hilliges, and Michael J. Black. SPEC:

21986



seeing people in the wild with an estimated camera. CoRR,
abs/2110.00620, 2021. 3

[29] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In Proceedings of the
IEEE International Conference on Computer Vision, 2019. 3

[30] Lik-Hang Lee, Tristan Braud, Pengyuan Zhou, Lin Wang,
Dianlei Xu, Zijun Lin, Abhishek Kumar, Carlos Bermejo, and
Pan Hui. All one needs to know about metaverse: A complete
survey on technological singularity, virtual ecosystem, and
research agenda. arXiv preprint arXiv:2110.05352, 2021. 2

[31] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang,
and Cewu Lu. Hybrik: A hybrid analytical-neural inverse
kinematics solution for 3d human pose and shape estimation.
CoRR, abs/2011.14672, 2020. 3

[32] Ruilong Li, Shan Yang, David A. Ross, and Angjoo
Kanazawa. Learn to dance with aist++: Music conditioned
3d dance generation, 2021. 2

[33] Ruilong Li, Shan Yang, David A. Ross, and Angjoo
Kanazawa. Learn to dance with aist++: Music conditioned
3d dance generation, 2021. 3

[34] Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc Van
Gool. Mhformer: Multi-hypothesis transformer for 3d human
pose estimation. CoRR, abs/2111.12707, 2021. 2, 3, 7

[35] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312,
2014. 3, 4

[36] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. LightGlue: Local Feature Matching at Light Speed. In
ICCV, 2023. 4

[37] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-
Yu Duan, and Alex C Kot. Ntu rgb+ d 120: A large-scale
benchmark for 3d human activity understanding. IEEE trans-
actions on pattern analysis and machine intelligence, 42(10):
2684–2701, 2019. 4

[38] Lingjie Liu, Weipeng Xu, Marc Habermann, Michael Zoll-
höfer, Florian Bernard, Hyeongwoo Kim, Wenping Wang,
and Christian Theobalt. Neural human video rendering by
learning dynamic textures and rendering-to-video translation.
arXiv preprint arXiv:2001.04947, 2020. 3

[39] Doina Popescu Ljungholm. Metaverse-based 3d visual mod-
eling, virtual reality training experiences, and wearable bi-
ological measuring devices in immersive workplaces. Psy-
chosociological Issues in Human Resource Management, 10
(1), 2022. 2

[40] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc. SIG-
GRAPH Asia), 34(6):248:1–248:16, 2015. 3, 4, 5

[41] Julieta Martinez, Rayat Hossain, Javier Romero, and James J.
Little. A simple yet effective baseline for 3d human pose
estimation. CoRR, abs/1705.03098, 2017. 3, 7

[42] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Olek-
sandr Sotnychenko, Weipeng Xu, and Christian Theobalt.

Monocular 3d human pose estimation in the wild using im-
proved cnn supervision. In 3D Vision (3DV), 2017 Fifth
International Conference on. IEEE, 2017. 2, 3

[43] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller,
Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll, and Chris-
tian Theobalt. Single-shot multi-person 3d pose estimation
from monocular rgb. In 3D Vision (3DV), 2018 Sixth Interna-
tional Conference on. IEEE, 2018. 2

[44] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 3,
6

[45] D.L. Mills. Internet time synchronization: the network time
protocol. IEEE Transactions on Communications, 39(10):
1482–1493, 1991. 4

[46] Rahul Mitra, Nitesh B Gundavarapu, Abhishek Sharma, and
Arjun Jain. Multiview-consistent semi-supervised learning
for 3d human pose estimation. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition, pages
6907–6916, 2020. 3

[47] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Neural articulated radiance field. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 5762–5772, 2021. 3

[48] Hui En Pang, Zhongang Cai, Lei Yang, Tianwei Zhang, and
Ziwei Liu. Benchmarking and analyzing 3d human pose and
shape estimation beyond algorithms. In Thirty-sixth Confer-
ence on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022. 7

[49] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and
Michael Auli. 3d human pose estimation in video with
temporal convolutions and semi-supervised training. CoRR,
abs/1811.11742, 2018. 3, 7

[50] Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang,
and Wenjun Zeng. Cross view fusion for 3d human pose
estimation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4342–4351, 2019. 8

[51] Leonid Sigal, Alexandru O. Balan, and Michael J. Black.
Humaneva: Synchronized video and motion capture dataset
and baseline algorithm for evaluation of articulated human
motion. Int. J. Comput. Vis., 87(1-2):4–27, 2010. 2

[52] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-
resolution representation learning for human pose estimation.
In CVPR, 2019. 4, 6, 7

[53] Hanyue Tu, Chunyu Wang, and Wenjun Zeng. Voxelpose:
Towards multi-camera 3d human pose estimation in wild
environment. In European Conference on Computer Vision,
pages 197–212. Springer, 2020. 7, 8

[54] Hanyue Tu, Chunyu Wang, and Wenjun Zeng. Voxelpose:
Towards multi-camera 3d human pose estimation in wild
environment. In European Conference on Computer Vision
(ECCV), 2020. 6, 8

[55] Timo Von Marcard, Roberto Henschel, Michael J Black, Bodo
Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3d
human pose in the wild using imus and a moving camera. In
Proceedings of the European conference on computer vision
(ECCV), pages 601–617, 2018. 2, 3, 7

21987



[56] Thomas Waltemate, Dominik Gall, Daniel Roth, Mario
Botsch, and Marc Erich Latoschik. The impact of avatar
personalization and immersion on virtual body ownership,
presence, and emotional response. IEEE Transactions on Vi-
sualization and Computer Graphics, 24(4):1643–1652, 2018.
2

[57] Bastian Wandt, Marco Rudolph, Petrissa Zell, Helge Rhodin,
and Bodo Rosenhahn. Canonpose: Self-supervised monocular
3d human pose estimation in the wild. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13294–13304, 2021. 3

[58] Tao Wang, Jianfeng Zhang, Yujun Cai, Shuicheng Yan, and
Jiashi Feng. Direct multi-view multi-person 3d human pose
estimation. Advances in Neural Information Processing Sys-
tems, 2021. 2

[59] Chung-Yi Weng, Brian Curless, and Ira Kemelmacher-
Shlizerman. Vid2actor: Free-viewpoint animatable per-
son synthesis from video in the wild. arXiv preprint
arXiv:2012.12884, 2020. 3

[60] Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan,
Jonathan T. Barron, and Ira Kemelmacher-Shlizerman. Hu-
mannerf: Free-viewpoint rendering of moving people from
monocular video. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 16210–16220, 2022. 1

[61] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan,
Jonathan T Barron, and Ira Kemelmacher-Shlizerman. Hu-
mannerf: Free-viewpoint rendering of moving people from
monocular video. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
16210–16220, 2022. 3, 6, 8

[62] Jae Shin Yoon. Metaverse in the Wild: Modeling, Adapting,
and Rendering of 3D Human Avatars from a Single Camera.
PhD thesis, University of Minnesota, 2022. 2

[63] Jae Shin Yoon, Lingjie Liu, Vladislav Golyanik, Kripasindhu
Sarkar, Hyun Soo Park, and Christian Theobalt. Pose-guided
human animation from a single image in the wild. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15039–15048, 2021. 1

[64] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3836–3847, 2023. 5

[65] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
586–595, 2018. 6

[66] Weiyu Zhang, Menglong Zhu, and Konstantinos G. Derpanis.
From actemes to action: A strongly-supervised representation
for detailed action understanding. In 2013 IEEE International
Conference on Computer Vision, pages 2248–2255, 2013. 3

[67] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul De-
bevec, William T Freeman, and Jonathan T Barron. Nerfactor:
Neural factorization of shape and reflectance under an un-
known illumination. ACM Transactions on Graphics (TOG),
40(6):1–18, 2021. 6

[68] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(11):1330–1334, 2000. 4

[69] Ce Zheng, Sijie Zhu, Matías Mendieta, Taojiannan Yang,
Chen Chen, and Zhengming Ding. 3d human pose es-
timation with spatial and temporal transformers. CoRR,
abs/2103.10455, 2021. 3, 7

21988


