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Abstract

Video Motion Magnification (VMM) aims to reveal sub-

tle and imperceptible motion information of objects in the

macroscopic world. Prior methods directly model the mo-

tion field from the Eulerian perspective by Representation

Learning that separates shape and texture or Multi-domain

Learning from phase fluctuations. Inspired by the frequency

spectrum, we observe that the low-frequency components

with stable energy always possess spatial structure and less

noise, making them suitable for modeling the subtle motion

field. To this end, we present FD4MM, a new paradigm

of Frequency Decoupling for Motion Magnification with a

Multi-level Isomorphic Architecture to capture multi-level

high-frequency details and a stable low-frequency structure

(motion field) in video space. Since high-frequency details

and subtle motions are susceptible to information degra-

dation due to their inherent subtlety and unavoidable ex-

ternal interference from noise, we carefully design Sparse

High/Low-pass Filters to enhance the integrity of details

and motion structures, and a Sparse Frequency Mixer to

promote seamless recoupling. Besides, we innovatively de-

sign a contrastive regularization for this task to strengthen

the model’s ability to discriminate irrelevant features, re-

ducing undesired motion magnification. Extensive exper-

iments on both Real-world and Synthetic Datasets show

that our FD4MM outperforms SOTA methods. Meanwhile,

FD4MM reduces FLOPs by 1.63× and boosts inference

speed by 1.68× than the latest method. Our code is avail-

able at https://github.com/Jiafei127/FD4MM .

1. Introduction

Human eyes have a limited resolution range to perceive the

subtle motion in the macroscopic world [22, 37]. Video

Motion Magnification (VMM), as a ªmotion microscopeº,
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Figure 1. Learning-based methods for motion magnification.

(a) Representation Learning methods [12, 34, 43], (b) Multi-

domain Learning method [44] and (c) our Frequency Decoupling

method. Inspired by the theory of frequency spectrum [41, 64], we

utilise it to separate high- and low-frequency features and leverage

their discriminative characteristics for motion magnification.

vividly reveals subtle variations in the macroscopic world

and uncovers important invisible information [29, 52, 61].

It plays a crucial role in various downstream applica-

tions, such as micro-expression recognition [32, 62], robotic

sonography [1, 18] and material property estimation [9, 10,

13, 66], etc. VMM is a complex task that involves gen-

erating pixel-level motion in videos. Especially when the

motion occurs subtle, it is susceptible to confusion with in-

evitable photography noise [3, 34, 61, 71], which comprises

photon noise due to the quantum properties and uncertainty

of light as well as thermal noise inherent in charge-coupled

devices (CCDs) of the acquisition device, resulting in am-

plified noise, undesired motion and distortion.

Early research drew inspiration in fluid mechanics [61],

utilizing spatial decomposition [51, 61] and hand-crafted
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filters [45±47, 69] from the Eulerian perspective to mit-

igate the negative influence of noise on motion magnifi-

cation. However, these methods are prone to ringing ar-

tifacts and require the selection of different hyperparam-

eters for optimal magnification results in specific scenar-

ios, limiting the applicability to downstream tasks. Re-

cent studies [4, 12, 34, 43, 44] have turned their atten-

tion to learning-based methods due to the strong represen-

tation learning capabilities, exhibiting fewer ringing arti-

facts and better noise characterization. (1) Representa-

tion learning methods [4, 12, 34] (in Fig. 1(a)). These

methods rely on the representation consistency principle,

forcing the encoder to disentangle texture-shape represen-

tations using data-induced color translations. However, in-

complete disentanglement (e.g., leaving partial texture clues

in the shape representation) may inadvertently introduce

undesired motions [12, 43], and the data-induced training

is redundant, increasing the training difficulty and cost.

(2) Multi-domain learning method [44] (in Fig. 1(b)).

Singh et al. [44] consider the phase difference between two

frames (called phase fluctuation) to represent the motion

field. However, phase acquisition requires complex pre-

defined traditional algorithms and overhead a more com-

putational cost, e.g., FLOPs and inference time in Table 2.

Admittedly, spatial decomposition remains a major chal-

lenge for efficiently capturing subtle motion. Although the

above spatial decomposition methods provide effective so-

lutions for motion magnification, we find that frequency de-

coupling based on the Fourier spectrum can serve as a new

perspective for distinguishing different spatial features, as

shown in Fig. 2. The high-frequency features reveal more

energetic spatial details, while the low-frequency features

exhibit a centrally clustered spectral distribution with more

stable spatial structures. This paper applies this theory to

the VMM task to achieve effective spatial decomposition

for motion magnification by exploring diverse spectral en-

ergy distributions. We choose the stable low-frequency fea-

tures to model the motion field, and high-frequency fea-

tures with more energy to preserve spatially detailed fea-

tures, such as appearance clues.

In this paper, we present FD4MM, a new paradigm of

Frequency Decoupling for Motion Magnification to cap-

ture spatial high-frequency details while ensuring stable

low-frequency structures for constructing the motion field.

Specifically, based on the principle of spectral entropy dis-

tribution [7, 64], we design an adaptive frequency decou-

pling encoder to separate spatial high- and low-frequency

features. Then, we propose a Multi-level Isomorphic Ar-

chitecture that progressively separates high-frequency com-

ponents within low-frequency features to provide a sta-

ble structure with less energy entropy for modeling mo-

tion. Given the susceptibility of high-frequency details and

subtle motions to information degradation from inherent

Low-frequency

High-frequency

Figure 2. Our idea of frequency decoupling for spatial decom-

position. High-frequency features reveal spatial details, enabling

an expanded bright field in the spectrum, implying more energy.

Low-frequency energy clusters in the central region represent sta-

ble spatial structures appropriate for modeling motion.

subtlety and unavoidable external interference from photo-

graphic noise, we should retain their maximum information

integrity as noise-free before magnification.

To achieve this, we propose Sparse High-pass and Low-

pass Filters within the advanced Transformer to act on the

high-frequency details and the inter-frame low-frequency

motion field, respectively. They are equipped with high-

pass and low-pass operators and employ a sparse strategy to

mitigate degradation caused by noise, enabling the model to

focus on more accurate details and motion structures. Af-

terwards, the filtered motion field is amplified by a Point-

wise Nonlinear Magnifier. Finally, we integrate the decou-

pled features through a Sparse Frequency Mixer, which pro-

motes seamless recoupling of high-frequency details and

magnified low-frequency features. Additionally, we de-

velop a novel contrastive regularization loss to further re-

duce undesired motion magnification while enhancing the

robustness of the model.

Overall, our main contributions are as follows:

• We introduce a new paradigm for VMM called FD4MM,

which aims to decouple the high- and low-frequency fea-

tures for motion magnification via a multi-level isomor-

phic frequency decoupling architecture.

• We propose Sparse High-pass and Low-pass Filters based

on the Transformer framework to mitigate the degradation

of details and structures caused by noise. Also, a Sparse

Frequency Mixer is developed for seamless recoupling.

• We design a novel contrastive regularization to strengthen

the model’s ability to discriminate irrelevant features,

thereby reducing undesired motion magnification.

• Extensive qualitative and quantitative experiments show

that FD4MM performs favorably against SOTA methods

with fewer FLOPs and faster inference speed.

2. Related Works

Hand-crafted Magnification Filters. Early methods pri-

marily focused on Eulerian perspective [45±47, 51, 61, 69],

aiming to capture the variation occurring within a fixed re-
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gion without tracking each pixel’s motion trajectory. Based

on motion or phase fluctuations captured by Laplacian pyra-

mid [61] or steerable pyramid [51] operators, traditional

Eulerian methods gradually introduced hand-crafted filters

suitable for various scenarios, such as acceleration [69],

jerk [45], anisotropy [46], and bilateral filters [47]. They

amplify the interested motion relying on prior motion varia-

tion but lack consideration to suppress inappropriate ampli-

fication amplitude, unavoidable occlusion, and unexpected

ringing artifacts [44]. Furthermore, in these methods, many

hyperparameters must be re-calibrated for different motion

scenes to be applicable.

Learning-based Magnification. Recent research interests

have shifted towards learning-based approaches to provide

more scene-generalizable magnification [4, 12, 34, 43, 44].

Oh et al. [34] pioneered the disentangled texture and shape

representation learning for motion magnification, achieving

comparable results to hand-crafted filters in static and dy-

namic scenes. Despite their success, inducing representa-

tion separation through color transformation during train-

ing in these works may result in incomplete disentangle-

ment [12] (i.e., leaving partial texture clues in the shape rep-

resentation), thus leading to undesired motion and flicker-

ing artifacts. Singh et al. [43] proposed a lightweight proxy

model to mitigate issues before magnification. They [44]

extended spatial decomposition to multi-domain learning,

modeling motion by phase fluctuations in the frequency do-

main and denoising in the spatial domain. However, the

complex phase mapping differences between domains often

lead to information degradation and unnatural artifacts. In

contrast, our method utilizes a multi-level isomorphic archi-

tecture to achieve adaptive frequency decoupling, capturing

a more stable motion field for magnification.

3. Methodology

3.1. Preliminaries

Definition. Motion Magnification focuses on spatial inten-

sity variations by establishing the motion field δ(x, t) be-

tween spatial coordinates x vs. pixel intensities of the 1D

signal along the temporal sequence t to obtain the ampli-

fied signal Im(x, t) with a magnification factor α, which

can extend to 2D space [61]. Therefore, an effective spatial

decomposition strategy is crucial for a stable motion field.

Overall Pipeline. We aim to make frequency decou-

pling a new paradigm for learnable spatial decomposi-

tion in motion magnification. As shown in Fig. 3, our

overall pipeline is designed as a Multi-level Isomorphic

Architecture to capture multi-scale high-frequency details
∑

i∈{s,m,d} Hi(x, t) (shallow, middle and deep bands) and

a stable low-frequency motion field δ(x, t) = ∆Ld(x, t)
(deep) of the query frame I(x, t) for magnification. Then,

as shown in Fig. 4, Sparse High-pass and Low-pass Fil-
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Figure 3. Pipeline of the Multi-level Isomorphic Architecture

based on Frequency Decoupling. It aims to decouple a stable

motion field and multi-level high-frequency details for magnifica-

tion and recoupling with a magnification factor α, respectively.

ters are developed to minimize the degradation of high-

frequency details and low-frequency structure caused by

noise. Next, the filtered motion field is manipulated in a

Point-wise Nonlinear Magnifier to achieve magnification.

Finally, a Sparse Frequency Mixer is proposed to capture

the magnified low-frequency to guide the seamless recou-

pling with high-frequency details, reducing the difficult-to-

eliminate ringing artifacts. Overall, the magnified frame

Im(x, t) can be represented as:

Im(x, t) ≈
∑

i∈{s,m,d}

Hi(x, t)

︸ ︷︷ ︸

High−Freq.

+ α∆Ld(x, t)
︸ ︷︷ ︸

Low−Freq.

∂f(x)

∂x
.

(1)

3.2. Adaptive Frequency Decoupling Encoder

High-frequency signals typically reflect the detailed fea-

tures of the image, while low-frequency signals reflect the

global structure [7, 15, 28]. Here, we propose an Adaptive

Frequency Decoupling Encoder (AFDE) to achieve spatial

frequency decomposition. Specifically, given a pair of refer-

ence and query frames {I(x, 0), I(x, t)}∈R
H×W×3 in the

video, we apply a 3×3 convolution layer to obtain the initial

feature {F (x, 0), F (x, t)}∈R
H
2
×W

2
×C , respectively. Tak-

ing F (x, t) as an example, a dilated convolution Wr with a

dilation rate of r = 2 is applied to capture the low-frequency

component L(x, t) ∈ R
H
2
×W

2
×C . The dilated receptive

field can smooth the image details to encode approximate

low-frequency energy. Instead, the high-frequency detail

H(x, t)∈R
H
2
×W

2
×C can be obtained by removing L(x, t)

directly from the F (x, t), similar to the way of detail coef-

ficients in the wavelet transform [2], as:
{

L(x, t) = ϑ · WrF (x, t),

H(x, t) = ϑ · (F (x, t)−WrF (x, t)),
(2)

where ϑ denotes the nonlinear activation function GELU.

To further obtain more stable low-frequency, we design

a Multi-level Isomorphic Architecture to recursively sep-

arate frequency at different scales. The separation of the

frequency bands consists of shallow (s), medium (m) and

deep (d) levels, each of which depends on the isomorphic

AFDE module and downsampling. So far, we obtain the
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Figure 4. Overall pipeline of the proposed FD4MM. Based on Multi-level Isomorphic FD4MM Architecture, the multi-level high-

frequency details {Hs(x, t), Hm(x, t), Hd(x, t)} and the stable motion field (δ(x, t) = ∆Ld(x, t)), obtained from the reference I(x, 0)
and query frames I(x, t), are filtered by Sparse High- and Low-pass Filters (FH(·), FL(·)) to minimize the degradation of high-frequency

details and low-frequency motion structures caused by noise, respectively. Then, the motion field FL(δ(x, t)) is amplified by the Point-

wise Nonlinear Magnifier. Next, the Sparse Frequency Mixer M(·) allows the magnified low-frequency to guide the high-frequency

details to complete the seamless recoupling to avoid ringing artifacts, ending up a magnified frame Im(x, t). Besides, we introduce a novel

Contrastive Regularization to eliminate undesired magnification results, thus enhancing the model’s robustness and magnification effects.

multi-level high-frequency details Hs(x, t) ∈ R
H
2
×W

2
×C ,

Hm(x, t) ∈ R
H
4
×W

4
×2C , Hd(x, t) ∈ R

H
8
×W

8
×4C , and mo-

tion field δ(x, t) = ∆Ld(x, t)∈R
H
8
×W

8
×4C .

3.3. Sparse High-pass and Low-pass Filters

Obtaining a stable and as noise-free as possible motion

field is crucial to accurate magnification. Therefore, we

revisit the advanced attention mechanism [65] and intro-

duce Sparse High- and Low-pass Filters (FH(·) and FL(·))
via the Transformer infrastructure, acting on the high-

frequency details and the motion field in Fig. 4, respectively.

Considering that subtle motion is susceptible to struc-

tural degradation caused by noise and frequency attenua-

tion, FL(·) emphasizes to address these issues before the

magnification operation. Given the input δ(x, t), it first un-

dergoes a 1×1 convolution and a 3×3 depth-wise convolu-

tion to encode channel-wise context. Next, to preserve over-

all motion structure, we capture the low-frequency of query

using a learnable low-pass operator (AvgPool [7, 35, 41])

before reshaping to obtain each single-headed h projections

{QL,K,V} ∈ R
(H

8
×W

8
)×C′

, where C ′ = 4C
h

. Therefore,

the standard attention matrix A
(h)
L ∈R

C′×C′

as:

A
(h)
L = Softmax(

QLK
T

τ
), (3)

where KT is the transpose of K and τ denotes a learnable

temperature parameter defined by τ =
√
C ′.

Previous work [6, 25, 26] pointed out that the atten-

tion A
(h)
L using all tokens is redundant, as it may involve

noise interactions between unrelated features, which hin-

ders noise suppression and results in magnified distortion

and artifacts. Recent studies [26, 27, 39, 59] have found

that ReLU, an activation function with gating properties,

can effectively aggregate positive knowledge while remov-

ing negative features without additional operators such as

dropout [24, 30] and Top-k [53]. Thus, our work replaces

Softmax with ReLU as an alternative way to compute sparse

attention matrix SA
(h)
L ∈R

C′×C′

, and Eq. 3 is rewritten as:

SA
(h)
L = ReLU(

QLK
T

τ
). (4)

Thus, the output is obtained by weighted aggregation of

the SA
(h)
L with V and concatenating the residual across all

heads. Besides, we employ a simple Convolutional Feed-

Forwards Network (ConvFFN) [11, 73] for a more flexible

information update to obtain the noise-free and structure-

complete motion field FL(δ(x, t))∈R
H
8
×W

8
×4C .

As for FH(·), we employ an overall architecture similar

to FL(·) to enhance the desired high-frequency details and

suppress noise at multi-level bands. A critical aspect lies

in performing sparse attention computation using the pro-

jection query that undergoes a high-pass operator (Max-

Pool [41]). Here, the results of the FH(·) for multi-level

high-frequency details are FH(Hd(x, t)) ∈ R
H
8
×W

8
×4C ,

FH(Hm(x, t))∈R
H
4
×W

4
×2C , FH(Hs(x, t))∈R

H
2
×W

2
×C .
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3.4. Point-wise Nonlinear Magnifier

This section is crucial for manipulating the motion field

FL(δ(x, t)) magnification in the Eulerian perspective. Un-

like previous approaches [34, 43], our Point-wise Nonlin-

ear Magnifier expects to preserve its nonlinear spatial in-

tensity transformation during amplification while avoiding

excessive checkerboard artifacts and spatial frequency col-

lapse [33, 51]. Therefore, it abandons the local operation

of a large convolution kernel in favor of a simple point-wise

convolution and a more stable nonlinear activation function,

GELU, to achieve the global feature intensity interactions.

L′
d(x, t) = Ld(x, t) +Wp(α · Wp(FL(δ(x, t)))), (5)

where Wp(·) denotes a 1×1 point-wise convolution with

GELU activation and L′
d(x, t)∈R

H
8
×W

8
×4C is the magni-

fied low-frequency component with magnification factor α.

3.5. Sparse Frequency Mixer

A challenge in VMM is the ªexpandedº or ªretractedº of

high-frequency details when superimposed on the magni-

fied low-frequency structure [34, 61]. However, achiev-

ing a perfect high- and low-frequency alignment is often

unattainable, resulting in ringing artifacts at high-frequency

boundaries. To address this, we develop a Sparse Frequency

Mixer M(·) to progressively promote seamless recoupling

of {Hs,m,d(x, t)} and L′
d(x, t) on a level-by-level basis to

avoid ringing artifacts. For the deep band, we first con-

catenate {L′
d(x, t),FH(Hd(x, t))} and compress their fea-

ture channels through 1×1 convolution to obtain the cou-

pled feature Rd(x, t)∈R
H
8
×W

8
×4C . Then, M(·) integrates

the frequency decoupling capabilities of the AFDE into

sparse attention to further encoding the contextual high- and

low-frequency vectors of the normalized Rd(x, t). For the

deep band implementation, we utilize the low-frequency as

Qd ∈ R
(H

8
×W

8
)×C′

to guide sparse attention computation

with the high-frequency {Kd,Vd}∈R
(H

8
×W

8
)×C′

by:

Qd, {Kd,Vd} = E(Rd(x, t)),

SA
(h)
M = ReLU(

QdK
T
d

τ
),

(6)

where E(·) is the AFDE module and SA
(h)
M ∈ R

C′×C′

is

the sparse attention matrix of M(·) with ReLU. Similarly,

the final output M(Rd(x, t))∈R
H
8
×W

8
×4C is obtained by

weighted aggregation and concatenation of SA
(h)
M with Vd,

and updated by the ConvFFN.

Overall, the recouple process involves all the high-

frequency details with deep, middle and shallow bands

{FH(Hd(x, t)), FH(Hm(x, t)), FH(Hs(x, t))} and the

magnified low-frequency L′
d(x, t) progressively recoupling

by the above M(·) at each level. Inter-level PixelShuf-

fle [40, 49] is employed to transform sub-pixel spatial res-

olution and latent feature dimensions, resulting in the final

magnified frame Im(x, t)∈R
H×W×3.

3.6. Loss Function

Contrastive Regularization. Simple consistency and per-
ceptual loss are insensitive to noise and tend to overfit
the model at the wrong magnified positions, failing to ap-
proximate the correct magnification. Contrastive learn-
ing [5, 17, 72] has emerged as an effective paradigm in vi-
sual tasks as a self-supervised technique. It aims to learn a
representation that pulls ªpositiveº anchors closer together
and pushes ªnegativeº anchors away in metric space. Our
work involves two considerations: (1) Construction of pos-
itive and negative pairs. To obtain accurate and clear mag-
nified frames, positive and negative pairs are respectively
constructed from ground-truth IGT (x, t) and query frames
I(x, t), while the magnified frames Im(x, t) serve as an-
chors. (2) Choice of metric space. We follow [19, 50, 60] to
utilize the feature map extracted from the Conv3-2 layer of
a pre-trained VGG-19 [42] Λv(·) as the perceptual metric
space and minimizing the metric distance of all samples N
in the batch by Charbonnier penalty term as:

LCR =

N
∑

n=1

√

∥Λv(Inm(x, t)),Λv(InGT (x, t))∥
2 + ε2

∥Λv(Inm(x, t)),Λv(In(x, t))∥
2 + ε2

, (7)

where ε is a constant value, empirically set to 10−3.

Optimization. The final loss function L of FD4MM is a

weighted sum of the following three loss terms:

L = Lmag + Ledge + λLCR, (8)

where Lmag is a basic Charbonnier penalty term for mini-

mizing {Im(x, t),IGT (x, t)} and we set λ = 0.1 for the con-

trastive loss LCR. Similar to [44] using edge loss, we find

that utilizing the Laplacian of Gaussian (LoG) edge detec-

tion operator [68] ELoG(·) with second-order gradients is

more sensitive in smoothing the magnified global structure,

avoiding motion blur and texture damage induced by am-

plifying subtle motions. Thus, we integrate it into the edge

loss Ledge with Charbonnier penalty, as:

Ledge =

√

∥ELoG(Im(x, t))− ELoG(IGT (x, t))∥2 + ε2. (9)

4. Experiments

4.1. Experiment Setup

Training Dataset. Following the protocol in [34, 43, 44],

all existing learning-based methods are trained on the same

training dataset proposed by [34]. In this field, performance

evaluation is conducted through cross-dataset testing.

Real-world Test Dataset. We examine all available real-

world video datasets released for this task, which includes

two inference modes [34] and refers to twelve videos of

various motion scenes [14, 34, 44±46, 51, 69] in Table 1.

In static mode (inference on initial frame I(x, 0) and cur-

rent frame I(x, t)), we test subtle breathing motions of the

baby [34, 51, 61], rapid vibrations of the fork [14], etc. In

dynamic mode (inference on continuous frames, {I(x, t−1)
and I(x, t)}, we test forward jumps of the cattoy [34, 69],
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Motion：𝑦(𝑡) = 2𝛼 ⋅ sin 2𝜋𝑇 𝑡
(a) A sample of Synthetic Dataset.               (b) Comparison of magnification accuracy.                                   (c) Comparison of noise robustness. 
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Figure 5. Performance comparison with SOTA methods for SSIM↑ and LPIPS↓ scores on the Synthetic Dataset. (a) Schematic of a

synthetic video. (b) Comparison of magnification accuracy for different α. (c) Analysis of model robustness under different σ.

Method Venue
Static Mode Dynamic Mode

Avg.
Baby Fork Drum Engine Crane Face Gunshot Cattoy Eye Bottle Drill Balloon

Acceleration [69] CVPR’17 0.7081 0.6786 0.6432 0.6663 0.7338 0.6212 0.6049 0.6342 0.6145 0.5096 0.6592 0.6182 0.6401

Jerk-Aware [45] CVPR’18 0.7089 0.6826 0.6739 0.6706 0.7410 0.6255 0.6176 0.6415 0.6170 0.5141 0.6768 0.6281 0.6498

Anisotropy [46] CVPR’19 0.7124 0.6835 0.6926 0.6765 0.7423 0.6289 0.6199 0.6482 0.6188 0.5164 0.6833 0.6290 0.6535

LBVMM [34] ECCV’18 0.7069 0.6744 0.6873 0.6744 0.7532 0.6320 0.6155 0.6415 0.6163 0.5130 0.7018 0.6283 0.6537

LNVMM [43] WACV’23 0.6715 0.6742 0.6949 0.6436 0.7665 0.6521 0.6088 0.6407 0.6074 0.5080 0.7146 0.6205 0.6516

MDLMM [44] CVPR’23 0.6571 0.6820 0.6946 0.6556 0.7644 0.6558 0.6087 0.6394 0.6105 0.5195 0.7183 0.6293 0.6551

Ours - 0.7338 0.7125 0.7080 0.6938 0.7721 0.6633 0.6345 0.6946 0.6206 0.5422 0.7185 0.6417 0.6780

Table 1. Performance comparison with SOTA methods regarding MANIQA↑ scores on Real-world Datasets. To ensure experimental

fairness, all videos have a magnification factor α of 20 in Static Mode and 10 in Dynamic Mode for inference. The results show that

FD4MM achieves the best average score (Avg.) for magnification quality in all challenging scene videos.

Method Pre-proc Networks FLOPs(G) Params(M) Times(ms)

LBVMM [34] - CNNs 268.6 0.98 105.7

LNVMM [43] - CNNs 562.0 1.81 198.5

MDLMM [44] Fourier Transform CNNs 65.4 0.12 222.1

Ours - Transformer 24.9 1.47 82.9

Table 2. Fair comparison with SOTA methods for parameters,

FLOPs, and inference time.

Networks FLOPs(G) Params(M) SSIM↑ LPIPS↓
A0 Shllow Band (C = 24) 11.0 0.08 0.8582 0.3132

A1 + Middle Band 18.3 0.37 0.8938 0.1869

A2 + Deep Band 24.9 1.47 0.9104 0.1376

A3 + Extra Band 33.1 5.80 0.9008 0.1449

Table 3. Ablation studies of multi-level isomorphic architec-

ture on the Synthetic Dataset.

Networks Components
FLOPs

(G)

Params

(M)
SSIM↑ LPIPS↓

B0 Baseline MIA 6.4 0.30 0.7651 0.3750

B1
Main

Components

+ FL(·) 9.0 0.64 0.8177 0.3005

B2 + FH(·) 16.4 1.09 0.8521 0.2197

B3 + M(·) 24.9 1.47 0.9104 0.1376

B4

Transformer

Swin-T [31] 33.9 1.91 0.8864 0.1654

B5 Restormer [65] 35.6 2.03 0.8973 0.1488

B6 Ours 24.9 1.47 0.9104 0.1376

Table 4. Ablation studies of main components and compar-

isons with mainstream Transformer blocks on the Synthetic

Dataset. MIA is the basic Multi-level Isomorphic Architecture.

Networks FLOPs(G) Params(M) SSIM↑ LPIPS↓
C0 FD4MM w/o sparse 24.9 1.47 0.9088 0.1405

C1 FD4MM 24.9 1.47 0.9104 0.1376

Table 5. Effects of the sparse strategy on the Synthetic Dataset.

arm motions with gunshot recoil [44, 46], etc.

Synthetic Test Dataset. The magnified ground-truth videos

are inaccessible for real-world videos, so we attempt to pro-

Lmag Ledge LCR LSobel Lperc SSIM↑ LPIPS↓
D0 ! - - - - 0.8864 0.1877

D1 ! - - ! - 0.8901 0.1723

D2 ! ! - - - 0.8937 0.1697

D3 ! ! - - ! 0.9018 0.1564

D4 ! ! ! - - 0.9104 0.1376

Table 6. Ablation studies of loss terms on the Synthetic Dataset.

pose a synthetic dataset with controllable magnification as a

reliable criterion for quantitative assessment. The synthetic

test dataset of [34] is not available, and we follow the syn-

thesis process to produce a new one that comprises ten syn-

thetic videos. Each video is synthesized with a foreground

object from the public StickPNG library and a background

image from the DIS5K [36]. Adhering to the synthetic rule

of [34, 46], we move the position of the foreground object

in the frame sequence to exhibit meaningful subtle motion.

The video resolution is set to 640×640 pixels, and the sub-

tle motion is defined as y(t) = 2α · sin
(
2π
T
t
)
, where t de-

notes the video frame index, T is the harmonic period of

60, and the magnification factor α in the original videos

with 30 fps. Thus, by varying α, we can obtain the ground-

truth magnified videos with different scales. Besides, fol-

lowing [14, 46], we add the Gaussian noise with the mean

and standard deviation setting [0, σ] onto the spatial context

to assess the model’s noise robustness [14, 34, 44, 46].

Evaluation Metrics. Real-world videos exhibit rich and

naturally occurring variations in motion but lack accurate

ground truth. Thus, we introduce an advanced no-reference

image quality assessment metric called MANIQA [63] for
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Figure 6. Visualization examples on Real-world Datasets. We enlarge the magnified spatial regions and display the spatiotemporal (ST)

slices. It is clear that the hand-crafted filters [45, 46, 69] have much smaller magnified amplitudes and suffer from more ringing artifacts

(e.g., the fork’s vibration). In contrast, the learning-based methods [34, 43, 44] achieve much larger magnified amplitudes and still face

flickering artifacts in [34, 43] (e.g., the baby’s abdomen) and unnatural artifacts and deformation in [44] (e.g., the arm and bracelet). Our

FD4MM achieves the best appearances with satisfactory magnified amplitudes and high-quality generated images.

the Real-world test dataset. It benefits from efficiently as-

sessing artifacts and distortion in magnified videos. For the

synthetic test dataset, with accurate ground truth, we can

adhere to [14, 34] by using evaluation metrics such as the

structural similarity index measure SSIM [8, 16, 38, 54, 55]

and LPIPS [56±58, 67] to quantitatively assess the similar-

ity between the magnified frame and the ground truth.

Implementation Details. All methods are trained on the

same training dataset of [34] to ensure the fairness of the

experiments. In FD4MM, the channel size is set to C = 24.

FH(·) and M(·) from the shallow to deep bands are set to

{2, 4, 4} and {6, 4, 4} layers respectively, and set with the

consistent multi-head h = {4, 4, 8}. The layers of FL(·) at

deep band is set to 4 and h = 8. We empirically set λ =

0.1 for the contrastive loss LCR. We utilize the Adam [21]

optimizer with a learning rate of 1×10−4 for training.

4.2. Quantitative Evaluation

Comparison on Real-world Datasets. Table 1 reports

Anisotropy [46] achieves higher MANIQA scores than

other traditional methods but still sacrifices the motion am-

plitude in many scenes. The latest learning-based method

MDLMM [44] gains a higher MANIQA score of 0.6551 vs.

0.6535 compared to Anisotropy. The proposed FD4MM is

superior to MDLMM with an overall score of 0.6780 vs.

0.6551, indicating its superior magnification quality to re-

spond to various motion scenes.

Comparison on Synthetic Datasets. We perform compari-

son between FD4MM and existing methods [34, 43±46, 69]

on Synthetic Datasets with the magnification factor α = {5,

10, 20, 50, 100} and the noise level σ = {0.01, 0.05, 0.1,

0.2}. From Figs. 5 (b) and (c), the results indicate that

FD4MM consistently achieves the best SSIM and LPIPS.

Model Complexity Analysis. Following [43, 44], we com-

pare FD4MM with other learning-based methods [34, 43,

44] in terms of the model size and run-time values calcu-

lated at 720×720 resolution in Table 2. Although the lat-

est MDLMM [44] reduces learnable parameters by adopt-

ing the traditional algorithm, our FD4MM achieves the opti-

mal performance within acceptable parameters, considering

both model complexity and inference speed.

4.3. Ablation Studies

We further perform the ablation studies in the magnification

accuracy evaluation of the Synthetic Dataset.

Necessity of Multi-level Isomorphic Architecture. We

evaluate the results by increasing frequency decoupling lev-

els in Table 3. The model has a narrow bandwidth with only

one or two band levels, so frequency decoupling yields no

significant benefits. With a three-level isomorphic archi-

tecture, FD4MM achieves the best performance in terms of

computational costs and results. However, further increas-

ing the decoupling levels inevitably brings more compu-

tational costs and frequency attenuation. Considering the

trade-offs [23, 48], we adopt the three-level isomorphic ar-

chitecture to effectively cope with the task.
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Figure 7. Visualization of the eye video Sample from the Real-world Datasets. On the left, frequency decoupling results in a significant

feature difference. It is verified in the Fourier spectrum analysis on the right, where the bright field diffusing in four directions in the high-

frequency spectrum indicates that it has more energy. With deeper levels, the low-frequency energy distribution is more focused in the

central region, indicating greater stability. Besides, a detailed implementation process of FD4MM is provided for intuitive understanding.

Effect of Main Components and Their Sparsity. Ta-

ble 4 reports the impact of each crucial component in

this task.By incrementally adding each component sepa-

rately, all of them contribute to improvement, especially for

M(·) (e.g., SSIM from 0.8521 to 0.9104 and LPIPS from

0.2197 to 0.1376). Besides, we replace them with different

mainstream Transformer blocks such as Swin-T [31] and

Restormer [65] for comparison, FD4MM still exhibits the

best performance. Notably, Table 5 verifies that the sparse

strategy (ReLU) results in gains of 0.9104 vs. 0.9088 in

SSIM and 0.1376 vs. 0.1405 in LPIPS.

Effectiveness of Loss Functions. In this study, we pro-

pose new loss functions compared to existing methods, i.e.,

Ledge (LoG) and LCR. From Table 6, the combination

of Ledge and LCR results in a significant improvement in

SSIM from 0.8864 to 0.9104. Moreover, we replace our

losses with an alternative edge loss LSobel [70] and a per-

ceptual loss Lperc [20] that are used in MDLMM. Ledge

compared to LSobel yields a performance improvement of

SSIM of 0.8937 vs. 0.8901, and LCR has even more gains

compared to Lperc for SSIM of 0.9104 vs. 0.9018.

4.4. Qualitative Analysis

Visualization of Motion Magnification. We perform an

intuitive comparison of some challenging motion videos in

Real-world Datasets. In Fig. 6, traditional hand-crafted fil-

ters [45, 46, 69] always result in small amplitudes and ring-

ing artifacts (e.g., the fork’s vibration) under the same mag-

nification factor. The learning-based methods [34, 43, 44]

guarantee larger magnification amplitudes but are still ac-

companied by distortion, flickering, and unnatural artifacts

(e.g., the baby’s abdomen), exhibiting disrupted spatial con-

sistency. In contrast, FD4MM retains spatial consistency

and suppresses distortion and artifacts well while enhanc-

ing magnified amplitude and overall quality.

Visualization of Frequency decoupling. In Fig. 7, high-

and low-frequency features have different energy spectra.

Especially in the deep band, the low-frequency feature has

a more stable energy distribution and is therefore chosen

for modeling the motion field δ(x, t). Next, FH(·) captures

vital high-frequency details through its high-pass operator

properties, such as the pupil and blood filaments of the eye.

FL(·) focuses on low-frequency structures to promote well-

structured motion, reducing the undesired motion magnifi-

cation. Ultimately, the multi-level high-frequency details

and magnified low-frequency are seamlessly recoupled by

the M(·), thereby inhibiting ringing artifacts.

5. Conclusion

We introduce FD4MM, a Multi-level Isomorphic Architec-

ture based on frequency decoupling for motion magnifica-

tion. FD4MM effectively preserves high-frequency spatial

details and captures low-frequency overall structure, mod-

eling a stable motion field. It employs Sparse High/Low-

pass Filters and Sparse Frequency Mixer to handle the high-

frequency details, to-be-amplified motion field, and seam-

less recoupling, respectively. Besides, a novel contrastive

regularization is used to eliminate undesired motion and en-

hance model robustness. In extensive evaluations on Real-

world and Synthetic test datasets, FD4MM achieves supe-

rior performance with fewer FLOPs and faster inference

speed, offering a promising solution for future research.

6. Acknowledgments

This work was supported by the National Natural Science

Foundation of China (62272144, 72188101, 62020106007,

and U20A20183), and the Major Project of Anhui Province

(202203a05020011).

18991



References

[1] Freddy Abnousi, Guson Kang, John Giacomini, Alan Yeung,

Shirin Zarafshar, Nicholas Vesom, Euan Ashley, Robert Har-

rington, and Celina Yong. A novel noninvasive method for

remote heart failure monitoring: the eulerian video magni-

fication applications in heart failure study (amplify). NPJ

Digital Medicine, 2(1):80, 2019.

[2] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid

Daubechies. Image coding using wavelet transform. IEEE

TIP, 1:20±5, 1992.

[3] David F Barbe. Imaging devices using the charge-coupled

concept. Proceedings of the IEEE, 63(1):38±67, 1975.

[4] Biagio Brattoli, Uta BÈuchler, Michael Dorkenwald, Philipp

Reiser, Linard Filli, Fritjof Helmchen, Anna-Sophia Wahl,

and BjÈorn Ommer. Unsupervised behaviour analysis and

magnification (ubam) using deep learning. Nature Machine

Intelligence, 3(6):495±506, 2021.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In International conference on ma-

chine learning, pages 1597±1607, 2020.

[6] Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learn-

ing a sparse transformer network for effective image derain-

ing. In CVPR, pages 5896±5905, 2023.

[7] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yan-

nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Ji-

ashi Feng. Drop an octave: Reducing spatial redundancy in

convolutional neural networks with octave convolution. In

ICCV, pages 3435±3444, 2019.

[8] Xiaofeng Cong, Jie Gui, Kai-Chao Miao, Jun Zhang, Bing

Wang, and Peng Chen. Discrete haze level dehazing net-

work. In ACM MM, pages 1828±1836, 2020.

[9] Abe Davis, Katherine L Bouman, Justin G Chen, Michael

Rubinstein, Fredo Durand, and William T Freeman. Visual

vibrometry: Estimating material properties from small mo-

tion in video. In CVPR, pages 5335±5343, 2015.

[10] Abe Davis, Katherine L Bouman, Justin G Chen, Michael

Rubinstein, Oral Buyukozturk, Fredo Durand, and William T

Freeman. Visual vibrometry: Estimating material properties

from small motions in video. IEEE TPAMI, 39(4), 2017.

[11] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang

Ding. Scaling up your kernels to 31x31: Revisiting large

kernel design in cnns. In CVPR, pages 11963±11975, 2022.

[12] Michael Dorkenwald, Uta Buchler, and Bjorn Ommer. Unsu-

pervised magnification of posture deviations across subjects.

In CVPR, pages 8256±8266, 2020.

[13] Marc Eitner, Benjamin Miller, Jayant Sirohi, and Charles

Tinney. Effect of broad-band phase-based motion magnifi-

cation on modal parameter estimation. Mechanical Systems

and Signal Processing, 146:106995, 2021.

[14] Brandon Y Feng, Hadi Alzayer, Michael Rubinstein,

William T Freeman, and Jia-Bin Huang. 3d motion mag-

nification: Visualizing subtle motions from time-varying ra-

diance fields. In ICCV, pages 9837±9846, 2023.

[15] Ge Gao, Pei You, Rong Pan, Shunyuan Han, Yuanyuan

Zhang, Yuchao Dai, and Hojae Lee. Neural image com-

pression via attentional multi-scale back projection and fre-

quency decomposition. In ICCV, pages 14677±14686, 2021.

[16] Dan Guo, Kun Li, Zheng-Jun Zha, and Meng Wang. Dadnet:

Dilated-attention-deformable convnet for crowd counting. In

Proceedings of the 27th ACM international conference on

multimedia, pages 1823±1832, 2019.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In CVPR, pages 9729±9738, 2020.

[18] Dianye Huang, Yuan Bi, Nassir Navab, and Zhongliang

Jiang. Motion magnification in robotic sonography: En-

abling pulsation-aware artery segmentation. IROS, 2023.

[19] Shirui Huang, Keyan Wang, Huan Liu, Jun Chen, and Yun-

song Li. Contrastive semi-supervised learning for under-

water image restoration via reliable bank. In CVPR, pages

18145±18155, 2023.

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, pages 694±711, 2016.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015.

[22] Anh Cat Le Ngo and Raphael C-W Phan. Seeing the invisi-

ble: Survey of video motion magnification and small motion

analysis. ACM CSUR, 52(6):1±20, 2019.

[23] Kun Li, Dan Guo, and Meng Wang. Proposal-free video

grounding with contextual pyramid network. In AAAI, pages

1902±1910, 2021.

[24] Kun Li, Dan Guo, and Meng Wang. Vigt: proposal-free

video grounding with a learnable token in the transformer.

Science China Information Sciences, 66(10):202102, 2023.

[25] Kun Li, Jiaxiu Li, Dan Guo, Xun Yang, and Meng Wang.

Transformer-based visual grounding with cross-modality in-

teraction. ACM Transactions on Multimedia Computing,

Communications and Applications, 19(6):1±19, 2023.

[26] Xiang Li, Jiangxin Dong, Jinhui Tang, and Jinshan Pan. Dl-

gsanet: Lightweight dynamic local and global self-attention

networks for image super-resolution. In ICCV, pages 12792±

12801, 2023.

[27] Yufeng Li, Jiyang Lu, Hongming Chen, Xianhao Wu, and

Xiang Chen. Dilated convolutional transformer for high-

quality image deraining. In CVPRW, pages 4198±4206,

2023.

[28] Yufei Liang, Jiangning Zhang, Shiwei Zhao, Runze Wu,

Yong Liu, and Shuwen Pan. Omni-frequency channel-

selection representations for unsupervised anomaly detec-

tion. IEEE TIP, 32:4327±4340, 2023.

[29] Ce Liu, Antonio Torralba, William T Freeman, FrÂedo Du-

rand, and Edward H Adelson. Motion magnification. ACM

TOG, 24(3):519±526, 2005.

[30] Rui Liu, Young Jin Kim, Alexandre Muzio, and Hany Has-

san. Gating dropout: Communication-efficient regulariza-

tion for sparsely activated transformers. In ICLR, pages

13782±13792, 2022.

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

ICCV, pages 10012±10022, 2021.

18992



[32] Xuan-Bac Nguyen, Chi Nhan Duong, Xin Li, Susan Gauch,

Han-Seok Seo, and Khoa Luu. Micron-bert: Bert-based fa-

cial micro-expression recognition. In CVPR, pages 1482±

1492, 2023.

[33] Augustus Odena, Vincent Dumoulin, and Chris Olah. De-

convolution and checkerboard artifacts. Distill, 1(10):e3,

2016.

[34] Tae-Hyun Oh, Ronnachai Jaroensri, Changil Kim, Mohamed

Elgharib, Fr’edo Durand, William T Freeman, and Wojciech

Matusik. Learning-based video motion magnification. In

ECCV, pages 633±648, 2018.

[35] Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Fast vision

transformers with hilo attention. In NeurIPS, pages 14541±

14554, 2022.

[36] Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan, Ling

Shao, and Luc Van Gool. Highly accurate dichotomous im-

age segmentation. In ECCV, pages 38±56, 2022.

[37] Michael Rubinstein, Neal Wadhwa, Fredo Durand,

William T Freeman, and Hao-Yu Wu. Revealing invis-

ible changes in the world. Science, 339(6119):519±519,

2013.

[38] Hao Shen, Zhong-Qiu Zhao, and Wandi Zhang. Adaptive dy-

namic filtering network for image denoising. In AAAI, pages

2227±2235, 2023.

[39] Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang,

and Jiang Bian. A study on relu and softmax in transformer.

arXiv preprint arXiv:2302.06461, 2023.

[40] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

CVPR, pages 1874±1883, 2016.

[41] Chenyang Si, Weihao Yu, Pan Zhou, Yichen Zhou, Xin-

chao Wang, and Shuicheng Yan. Inception transformer. In

NeurIPS, pages 23495±23509, 2022.

[42] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015.

[43] Jasdeep Singh, Subrahmanyam Murala, and G Kosuru.

Lightweight network for video motion magnification. In

WACV, pages 2041±2050, 2023.

[44] Jasdeep Singh, Subrahmanyam Murala, and G Kosuru. Multi

domain learning for motion magnification. In CVPR, pages

13914±13923, 2023.

[45] Shoichiro Takeda, Kazuki Okami, Dan Mikami, Megumi

Isogai, and Hideaki Kimata. Jerk-aware video acceleration

magnification. In CVPR, pages 1769±1777, 2018.

[46] Shoichiro Takeda, Yasunori Akagi, Kazuki Okami, Megumi

Isogai, and Hideaki Kimata. Video magnification in the

wild using fractional anisotropy in temporal distribution. In

CVPR, pages 1614±1622, 2019.

[47] Shoichiro Takeda, Kenta Niwa, Mariko Isogawa, Shinya

Shimizu, Kazuki Okami, and Yushi Aono. Bilateral video

magnification filter. In CVPR, pages 17369±17378, 2022.

[48] Shengeng Tang, Dan Guo, Richang Hong, and Meng Wang.

Graph-based multimodal sequential embedding for sign lan-

guage translation. IEEE TMM, 24:4433±4445, 2021.

[49] Shengeng Tang, Richang Hong, Dan Guo, and Meng

Wang. Gloss semantic-enhanced network with online back-

translation for sign language production. In ACM MM, pages

5630±5638, 2022.

[50] Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai,

and Chia-Wen Lin. Stripformer: Strip transformer for fast

image deblurring. In ECCV, pages 146±162, 2022.

[51] Neal Wadhwa, Michael Rubinstein, FrÂedo Durand, and

William T Freeman. Phase-based video motion processing.

ACM TOG, 32(4):1±10, 2013.

[52] Fei Wang, Dan Guo, Kun Li, and Meng Wang. Eulermormer:

Robust eulerian motion magnification via dynamic filtering

within transformer. arXiv preprint arXiv:2312.04152, 2023.

[53] Pichao Wang, Xue Wang, Fan Wang, Ming Lin, Shuning

Chang, Hao Li, and Rong Jin. Kvt: k-nn attention for boost-

ing vision transformers. In ECCV, pages 285±302, 2022.

[54] Yuwei Wang, Jiaxu Cai, Yuankun Liu, Xiangcheng Chen,

and Yajun Wang. Motion-induced error reduction for phase-

shifting profilometry with phase probability equalization.

Optics and Lasers in Engineering, 156:107088, 2022.

[55] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error visibility

to structural similarity. IEEE TIP, 13(4):600±612, 2004.

[56] Yanyan Wei, Zhao Zhang, Yang Wang, Mingliang Xu, Yi

Yang, Shuicheng Yan, and Meng Wang. Deraincyclegan:

Rain attentive cyclegan for single image deraining and rain-

making. IEEE TIP, 30:4788±4801, 2021.

[57] Yanyan Wei, Zhao Zhang, Mingliang Xu, Richang Hong, Ji-

cong Fan, and Shuicheng Yan. Robust attention deraining

network for synchronous rain streaks and raindrops removal.

In ACM MM, pages 6464±6472, 2022.

[58] Yanyan Wei, Zhao Zhang, Huan Zheng, Richang Hong, Yi

Yang, and Meng Wang. Sginet: Toward sufficient interaction

between single image deraining and semantic segmentation.

In ACM MM, pages 6202±6210, 2022.

[59] Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and Simon

Kornblith. Replacing softmax with relu in vision transform-

ers. arXiv preprint arXiv:2309.08586, 2023.

[60] Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi

Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang Ma. Con-

trastive learning for compact single image dehazing. In

CVPR, pages 10551±10560, 2021.

[61] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag,

FrÂedo Durand, and William Freeman. Eulerian video mag-

nification for revealing subtle changes in the world. ACM

TOG, 31(4):1±8, 2012.

[62] Zhaoqiang Xia, Wei Peng, Huai-Qian Khor, Xiaoyi Feng,

and Guoying Zhao. Revealing the invisible with model

and data shrinking for composite-database micro-expression

recognition. IEEE TIP, 29:8590±8605, 2020.

[63] Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan

Gong, Mingdeng Cao, Jiahao Wang, and Yujiu Yang.

Maniqa: Multi-dimension attention network for no-reference

image quality assessment. In CVPRW, pages 1191±1200,

2022.

[64] Guhnoo Yun, Juhan Yoo, Kijung Kim, Jeongho Lee, and

Dong Hwan Kim. Spanet: Frequency-balancing token mixer

18993



using spectral pooling aggregation modulation. In ICCV,

pages 6113±6124, 2023.

[65] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-

nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.

Restormer: Efficient transformer for high-resolution image

restoration. In CVPR, pages 5728±5739, 2022.

[66] Dashan Zhang, Andong Zhu, Xinlong Gong, Yuwei Wang,

Jie Guo, and Xiaolong Zhang. Hybrid eulerian±lagrangian

framework for structural full-field vibration quantification

and modal shape visualization. Measurement, 219:113270,

2023.

[67] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, pages 586±595,

2018.

[68] Yi Zhang, Xiaoyuan Han, Han Zhang, and Liming Zhao.

Edge detection algorithm of image fusion based on improved

sobel operator. In 2017 IEEE 3rd Information Technology

and Mechatronics Engineering Conference, pages 457±461,

2017.

[69] Yichao Zhang, Silvia L Pintea, and Jan C Van Gemert. Video

acceleration magnification. In CVPR, pages 529±537, 2017.

[70] Bolun Zheng, Shanxin Yuan, Gregory Slabaugh, and Ales

Leonardis. Image demoireing with learnable bandpass filters.

In CVPR, pages 3636±3645, 2020.

[71] Jinxing Zhou, Jianyuan Wang, Jiayi Zhang, Weixuan Sun,

Jing Zhang, Stan Birchfield, Dan Guo, Lingpeng Kong,

Meng Wang, and Yiran Zhong. Audio±visual segmentation.

In ECCV, pages 386±403, 2022.

[72] Jinxing Zhou, Dan Guo, and Meng Wang. Contrastive pos-

itive sample propagation along the audio-visual event line.

IEEE TPAMI, 45(6):7239±7257, 2023.

[73] Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming

Cheng, and Qibin Hou. Srformer: Permuted self-attention

for single image super-resolution. In ICCV, pages 12780±

12791, 2023.

18994


	. Introduction
	. Related Works
	. Methodology
	. Preliminaries
	. Adaptive Frequency Decoupling Encoder
	. Sparse High-pass and Low-pass Filters
	. Point-wise Nonlinear Magnifier
	. Sparse Frequency Mixer
	. Loss Function

	. Experiments
	. Experiment Setup
	. Quantitative Evaluation
	. Ablation Studies
	. Qualitative Analysis

	. Conclusion
	. Acknowledgments

