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Abstract

This paper presents GenH2R, a framework for learn-
ing generalizable vision-based human-to-robot (H2R) han-
dover skills. The goal is to equip robots with the ability
to reliably receive objects with unseen geometry handed
over by humans in various complex trajectories. We ac-
quire such generalizability by learning H2R handover at
scale with a comprehensive solution including procedural
simulation assets creation, automated demonstration gen-
eration, and effective imitation learning. We leverage large-
scale 3D model repositories, dexterous grasp generation
methods, and curve-based 3D animation to create an H2R
handover simulation environment named GenH2R-Sim, sur-
passing the number of scenes in existing simulators by three
orders of magnitude. We further introduce a distillation-
friendly demonstration generation method that automati-
cally generates a million high-quality demonstrations suit-
able for learning. Finally, we present a 4D imitation learn-
ing method augmented by a future forecasting objective to
distill demonstrations into a visuo-motor handover policy.
Experimental evaluations in both simulators and the real
world demonstrate significant improvements (at least +10%
success rate) over baselines in all cases.

1. Introduction
The embodied AI research community has long been driven
by the goal of empowering robots to interact and collabo-
rate with humans. A crucial aspect of this pursuit is equip-
ping robots with the capability to reliably receive arbitrar-
ily moving objects of varying geometry handed over by hu-
mans, based on dynamic visual observations. This human-
to-robot (H2R) handover ability allows robots to seamlessly
collaborate with humans across a wide range of tasks, in-
cluding cooking, room tidying, and furniture assembly.

However, compared to learning human-free robot manip-
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Figure 1. The overview of GenH2R. We introduce a frame-
work for learning generalizable vision-based human-to-robot han-
dover via scalable synthetic simulation, distillation-friendly expert
demonstration generation, and a forecast-aided 4D imitation learn-
ing method. Our models demonstrate strong generalization capa-
bilities to real datasets and can be deployed to a real robot.

ulation skills, the progress in scalably learning H2R han-
dover that can generalize to various objects and versatile
human behaviors has lagged due to its unique challenges.
Training robots to interact with humans in real-world sce-
narios entails increased risks and expenses, rendering it in-
herently non-scalable. Therefore, it is demanded to simu-
late human behaviors and train robots in simulated environ-
ments prior to real-world deployment. However, creating a
substantial number of assets for humans handing over ob-
jects poses a significant challenge. In a recent study [9]
that employed motion capturing to drive virtual humans in
a simulator, only 1000 unique human hand motion trajec-
tories were provided for handing over 20 objects. Limited
object geometry and human motion assets can hardly cap-
ture the complexities of the real world. Besides, the chal-
lenge extends to the demonstration side. The success of
large language model [6, 32, 52] has suggested a recipe for
scaling up learning through modeling large-scale training
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data. Nevertheless, collecting robot demonstrations receiv-
ing objects from real humans is very costly and unscalable.
How to scale up the number of demonstrations while ensur-
ing effective learning poses additional challenges.

In this work, we aim to learn generalizable H2R han-
dover at scale by tackling the above challenges. We present
a comprehensive solution that scales up both the assets and
demonstrations and effectively learns a closed-loop visuo-
motor policy through a novel imitation learning algorithm.

Specifically, to scale up geometry and motion assets de-
picting humans handing over various objects, we lever-
age large-scale 3D model repositories [7, 16], dexterous
grasp generation methods [46], and curve-based 3D an-
imation. This enables us to procedurally generate mil-
lions of handover scenes, forming an environment named
GenH2R-Sim to support generalizable H2R handover learn-
ing. GenH2R-Sim surpasses HandoverSim [9], an existing
H2R simulator, in both scene quantity (by three orders of
magnitude) and unique object involvement (by two orders
of magnitude). In addition, scenes in GenH2R-Sim go be-
yond a straightforward giving and then receiving and cover
cases when humans might keep transforming the object in
a large range during the entire H2R handover process. This
allows for studying complex behaviors such as humans hes-
itating before handing over.

To scale up robot demonstrations, we draw inspiration
from the Task and Motion Planning (TAMP) [22] literature
and propose to automatically generate demonstrations with
grasp and motion planning using privileged human motion
and object state information. There are some straightfor-
ward ways to achieve this goal, such as using the privileged
human handover destination information to plan a smooth
demonstration. However, the problem is more challeng-
ing than it seems since the generated demonstrations need
to be suitable for distilling into a visuomotor policy. We
identify the vision-action correlation between visual obser-
vations and planned actions as the crucial factor influenc-
ing distillability and point out that due to the constraints of
robot arm morphology one can easily generate observation-
irrelevant actions and thus harm distillation. To tackle this
challenge, we present a distillation-friendly demonstration
generation method that sparsely samples handover anima-
tions for landmark states and periodically replans grasp and
motion based on privileged future landmarks.

Finally, to distill the above demonstrations into a visuo-
motor policy, we utilize point cloud input for its richer ge-
ometric information and smaller sim-vs-real gap compared
to images. We propose a 4D imitation learning method that
factors the sequential point cloud observations into geom-
etry and motion parts, facilitating policy learning by better
revealing the current scene state. Furthermore, the imitation
objective is augmented by a forecasting objective which
predicts the future motion of the handover object. Since our

demonstrating actions are generated based on future land-
marks, the forecasting objective can help further exploit the
vision-action correlation.

We evaluate our learned policy in simulators (Handover-
Sim and our own GenH2R-Sim) and the real world. Re-
markably, without any mocap assets or real-world demon-
strations, our method achieves significantly better perfor-
mance compared to baselines across all settings (at least
+10% success rate). Our experiments highlight that the
scaling-up efforts bring substantial improvement in policy
generalizability to novel geometry and complex motion.
Furthermore, these efforts greatly facilitate skill transfer to
real robotic systems.

In summary, the key contribution of this paper is a novel
framework scaling up the learning of H2R handover with
the following three components: i) a simulation environ-
ment named GenH2R-Sim consists of millions of human
handover animations for generalizable H2R handover learn-
ing, ii) an empirically validated automatic robot demonstra-
tion generation pipeline for vision-based closed-loop con-
trol, iii) a forecast-aided 4D imitation learning method ef-
fective in distilling the large-scale demonstrations.

2. Related Work
2.1. Human-to-Robot Handovers

Recently, significant progress in human-robot handovers
[12, 33, 36] has been observed, driven by the increas-
ing popularity of human-robot interaction [1, 38] and the
emergence of extensive datasets [5, 8, 18, 25, 28, 50] cap-
turing hand-object interactions. Some traditional meth-
ods [2, 4] require 3D object models and struggle to han-
dle unseen objects. One possible way is to consider grasp-
ing and dynamic motion planning [19, 30, 49, 51]. How-
ever, these methods often exhibit constrained motions and
perform poorly on large-scale datasets. HandoverSim [9],
a physics-simulated environment, introduced a new sim-
ulation benchmark for human-to-robot object handovers.
Leveraging DexYCB [8], a dataset of human grasping
objects and performing handover attempts, this environ-
ment allows training learning-based handover policies such
as [11]. However, it lacks large-scale and diverse handover
scenes, which limits generalizable handovers. At the same
time, SynH2R [10] proposes to use synthetic data but makes
limited progress. Building on this, we propose GenH2R-
Sim , aiming to benchmark generalizable handover.

2.2. Scaling Up Robot Demonstrations

For robot learning, scaling up data collection for manipula-
tion skills has spurred extensive research. Approaches in-
clude leveraging large language models [24] or hardware
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Figure 2. The overview of our framework. First, we propose a new simulation environment named GenH2R-Sim, featuring large-scale
synthetic datasets with diversity in object geometry, grasp poses, and complex trajectories. Second, other than destination planning (move
straight toward the final position) and dense planning (replan at each step), we propose a distillation-friendly demonstration generation
method—landmark planning, predicting landmarks on the trajectory (as indicated by the dashed object above) and replanning based on
those landmarks. Thirdly, our Forecast-aided 4D Imitation Learning leverages past flow information, and the forecasting objective enhances
the exploitation of vision-action correlation.

capabilities [39], utilizing non-robotics datasets [23], and
employing trial-and-error explorations [21]. As depicted
in [24], one of the challenges is scaling up robot-complete
data. A popular line of research scales up demonstra-
tion generation via Task and Motion Planning [13, 22, 31].
These works usually focus on fairly static scenes without
active motion or object and task variety [44, 47] while our
method extends to dynamic H2R handover by considering
how to interpret human behavior and generate demonstra-
tions easy to be distilled by closed-loop visuo-motor policy.

2.3. Offline Learning from Demonstrations

Imitation Learning (IL) represents a methodology for train-
ing embodied agents in manipulation tasks by utilizing ex-
pert demonstrations. The commonly used Behavior Cloning
(BC) [34] strategy directly trains the policy to imitate expert
actions in a supervised learning manner. Despite its sim-
plicity, this approach has demonstrated remarkable effec-
tiveness in robotic manipulation [3, 20, 29, 53] especially
when combined with a substantial number of high-quality
demonstrations [15, 26]. Inspired by these works, we adopt
an imitation learning paradigm, focusing on how to leverage
spatial-temporal perception and future forecasting to better
consume our distillation-friendly demonstrations.

3. Method

3.1. Overview

For the generalizable H2R handover task, we introduce
GenH2R, a framework designed to learn control policies,

specifically 6D control actions for the robot gripper, us-
ing segmented point cloud data captured from an egocen-
tric camera. We describe our method for synthesizing hu-
man handover animations in Section 3.2, generating expert
demonstrations in Section 3.3, and distilling demonstrations
to 4D vision-based neural networks by imitation learning in
Section 3.4, as the pipeline depicted in Figure 2.

3.2. GenH2R-Sim

The size and quality of human-object datasets in simu-
lators play a crucial role in generating high-quality han-
dover demonstrations and training reliable policies for han-
dover scenarios. The recent handover simulator, Handover-
Sim [9], utilizes the DexYCB [8] dataset, which captures
real-world human grasping objects in a limited manner,
comprising only 1000 scenes with 20 distinct objects. In the
real world, scenarios can be more complex and may involve
intricate trajectories and poses beyond those in DexYCB.

To address these limitations, we introduce a new envi-
ronment, GenH2R-Sim, to overcome these deficiencies and
facilitate generalizable handovers. To diversify geometry
and motion assets depicting humans handing over various
objects, we focus on two primary aspects: the hand grasping
pose and the hand-object moving trajectory within a scene.

In aspects of grasping poses, DexGraspNet [45] has
made significant contributions by employing optimization
techniques to generate a substantial dataset of human hand
grasp poses. We utilize this method to generate approx-
imately 1,000,000 grasp poses for 3,266 different objects
sourced from Shapenet [7]. These objects span a wide range
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of categories, from larger items like computers to smaller
ones like mobile phones, covering most sizes and shapes
encountered in real-life handovers.

In aspects of hand-object moving trajectories, we pro-
pose to use Bézier curves, which are one class of smooth
curves determined by several control points, to generate
complex yet smooth-transiting motion trajectories. We use
multiple Bézier curves to model different stages of the mo-
tion, and link the ends of these curves to create a seamless
track. We can generate scenes matching various scenarios
of different complexity in the real world by adjusting the
distribution of control points of the trajectory and the speed
of the human hand. To enhance the trajectory’s realism,
we incorporate consistent object rotations, which also en-
hances the importance of choosing the appropriate grasp for
the robotic arm. Since we can always attach a new segment
of motion at the end of the current motion and the duration
is much longer than DexYCB scenes, the destination of the
hand-object is not a significant factor, so we just randomly
select a point within the reach of the robotic arm.

We do not guarantee that every item in the dataset
we generate perfectly mimics the human-like characteris-
tics of real-world data, but our approach ensures a signif-
icantly higher degree of domain randomization and pro-
vides greater diversity in terms of geometry and motion.
Given the challenges in scaling up real-world motion cap-
ture datasets, we opt for a large-scale synthetic dataset for
our handover simulations. Our key insight is that for both
demonstrations and policy learning, having a substantial
amount of synthetic data is more beneficial than relying on
a small-scale real-world dataset.

GenH2R-Sim follows the setup of HandoverSim, which
consists of a Panda 7DoF robotic arm with a gripper and
a wrist-mounted RGB-D camera, and a simulated human
hand. Just like HandoverSim, we switch from the pre-
handover kinematic phase to the handover dynamic phase
when the object has been in contact with the gripper. Han-
doverSim is not adaptive to the robot’s action and just loads
and replays every frame of the data. To align with the real-
world handover process more naturally in GenH2R-Sim,
the simulated hand will stop from moving and wait for han-
dover when the robot arm is close to the object.

3.3. Generating Demonstrations for Distillation

In this section, we address a key question in learning visuo-
motor policy: how to efficiently generate robot demon-
strations that incorporate paired vision-action data from
successful task experiences. While distilling successful
demonstrations into a single policy has proven effective for
open-loop control tasks, the challenge lies in closed-loop
visuo-motor control, where the quality of demonstrations
becomes crucial for learning. Merely ensuring success is
no longer sufficient. We present two examples of demon-

Figure 3. Different demonstration generation methods for dy-
namic handover. The orange curve shows the hand-object trajec-
tory. The blue, red, and green curves show the example trajectories
generated by the foresighted planner, the shortsighted planner, and
our planner, respectively.

stration generation with different grasp and motion plan-
ning strategies as shown in Figure 3. In the first exam-
ple, a foresighted planner generates smooth, short demon-
strations based on the privileged destination end state of a
human handover animation. Though efficient, the planned
path does not align actions with the dynamic visual obser-
vations during the handover. Distilling such demonstra-
tions requires accurately forecasting the end state of the
human trajectory, which can be extremely challenging in
complex handover cases. The second example involves a
shortsighted planner that independently replans grasp and
motion at each time step using privileged hand and object
states. Due to robot morphology constraints and the multi-
solution nature of common robot planners, smooth visual
observations may correspond to unsmooth and multi-modal
robot trajectories, increasing the difficulty of distillation.
We emphasize the importance of distillability as a quality
factor for handover demonstrations. An effective demon-
stration generation method must consider the vision-action
correlation by jointly incorporating robot morphology and
dynamic vision during grasp and motion planning.

Along this line, we base our method on the foresighted
and shortsighted planner mentioned above to combine the
advantages of both sides while encouraging the demonstra-
tion distillability. We first improve the shortsighted plan-
ner so that sequentially smooth visual observations result in
smooth grasp and motion plans. Then we improve the han-
dover efficiency by looking toward the future while guaran-
teeing the vision-action correlation.

To be specific, we build our method based on the OMG
planner [41] for grasp and motion planning. This planner
optimizes the grasp and motion path by considering the ob-
ject’s 6D pose and a set of candidate grasp poses. To support
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this optimization, we provide privileged knowledge that in-
cludes the object’s 6D pose, candidate grasps generated
through physics simulation [16], and human hand poses for
filtering out invalid grasps. However, independently calling
the OMG planner for each time step may result in unsmooth
trajectories, as it is designed for static scenarios. To address
this, we sequentially plan the grasp and motion based on
the privileged knowledge by: 1) sorting grasps based on
their pose distance to the robot end effector and attempting
inverse kinematics (IK) starting from the nearest grasp until
success; 2) initializing IK based on the robot arm pose from
the previous time step; 3) invoking the OMG planner only
when IK can be successfully solved. By prioritizing closer
grasps, we encourage the object to remain within the field of
view of a wrist camera, reducing visually irrelevant actions
when the object is not visible. Additionally, enforcing IK
smoothness improves the overall trajectory smoothness. As
a result, the enhanced vision-action correlation dramatically
improves the demonstration quality.

Our approach modifies the OMG planner for dynamic
grasp and motion planning. However, densely replanning
at each time step leads to inefficient and non-smooth zigzag
demonstrations, which does not align with how humans re-
ceive objects. Humans anticipate dynamic scene changes
before taking action. On the other hand, a highly fore-
sighted planner that directly plans grasp and motion based
on the end state of a human handover animation can disrupt
the vision-action correlation. To strike a balance between
these extremes, we propose an algorithm that sparsely sam-
ples handover animations for landmark states and peri-
odically replans grasp and motion based on future land-
marks. The key idea is to select landmarks strategically
so that the planner only considers visually foreseeable fu-
tures. Specifically, let ξ = (T0, T1, · · · , TT−1) represent
an object trajectory, where Tt ∈ SE(3) denotes the ob-
ject pose in the t-th frame within the world coordinate sys-
tem. Based on all the object trajectories in the training set,
we train an object pose forecasting network which con-
sumes past and current object poses (T0, T1, · · · , Tt) for
each time step t within each trajectory and forecasts the ob-
ject poses (Tt+1, Tt+2, · · · , Tt+N ) in future N steps. By
thresholding the forecasting error corresponding to each
time step, we identify a set of endpoints where past observa-
tions cannot forecast the future very well and partition the
complete trajectory ξ to several segments using endpoints
0 = l0 < l1 < · · · < lk = T . Within each segment, we
assume the ability to predict the future object pose based
on historical information. We then denote P ∈ N as the
hyperparameter determining the replaning period. For each
planning frame t = 0, P, 2P, · · ·, suppose the next endpoint
is li+1, i.e., li ≤ t < li+1. Then we will plan based on the
object pose at frame t̂ = min(t+ P, li+1), which serves as
a landmark. Note here planning is based on the future states

but avoids bypassing the sharply transitioning points where
human motion becomes unpredictable. Also worth men-
tioning, densely planning is a special case of our method,
and landmark planning is a full version.

3.4. Forecast-Aided 4D Imitation Learning

Traditional methods for human-to-robot handover face
challenges in gaining insights into dynamic scene percep-
tion. Approaches based on motion planning [42] often em-
phasize robot morphology and lack dynamic vision percep-
tion. They struggle to capture long-horizon information,
mainly focusing on the current frame and failing to predict
the future. Reinforcement Learning methods [11, 43], while
powerful, require extensive training and may train unstably
across different scenarios. To enhance the vision-action cor-
relation and establish an efficient training paradigm, we in-
troduce our forecast-aided 4D imitation learning approach.

In robot perception, the 4D point cloud serves as the
common representation. In the t-th frame, we can de-
fine M i

t ∈ SE(3) as the relative object pose between the
current frame and the i-th frame in the egocentric view.
While frame stacking is a straightforward approach, it strug-
gles to capture both motion and geometry effectively. In-
spired by recent 4D learning methods [14, 40], we em-
ploy the Iterative Closest Point (ICP) registration algo-
rithm [37] to efficiently compute transformation matrices
{M̂ t−1

t , M̂ t−2
t , · · · , M̂ t−L1

t } between the point cloud in
the t-th frame and the point clouds in previous L1 frames.
Applying these transformation matrices to a specific point
in the current frame yields its rough coordinates in previ-
ous frames. Then we incorporate this flow feature into 3D
PointNet++ [35] to encode a global spatial-temporal feature
and use Multilayer Perceptron (MLP) to decode it into a 6D
egocentric action. The loss function, denoted as Laction, is
computed as the L1 loss for aligning 3D points on the robot
gripper as defined in [27]. We believe some sophisticated
4D backbones [17, 48] are suitable for 4D understanding,
but they are often not suitable for robotic tasks that require
a fast reference speed. Our method strikes a balance be-
tween effectiveness and simplicity.

To enhance the responsiveness of our policy to hu-
man motion and extend the vision horizon into the future,
we introduce an auxiliary task to predict the future mo-
tion {M t+1

t ,M t+2
t , · · · ,M t+L2

t } of objects in the next L2

frames. Using the ground truth object poses from trajec-
tories, we compute the motion prediction loss for the t-th
frame:

Lpred =

t+L2∑
i=t+1

∥M̂ i
t −M i

t∥ (1)

In contrast to reinforcement learning, our imitation
learning method requires only a few hours of training and
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achieves great generalizability through large-scale, high-
quality demonstrations. We acquire vision-action pairs and
ground truth object states from demonstrations, and then su-
pervise our policy using the loss function L = Laction +
λLpred, where λ serves as a weighting hyper-parameter
to balance the losses. This efficient distillation paradigm
empowers our policy to naturally approach objects with a
forecasting intention and to effectively generalize to a wide
range of unseen objects and motions.

4. Experiments
Dataset (1) HandoverSim [9] contains 1000 real-world
H2R handover scenes and 20 objects from DexYCB [8].
We evaluate on the “s0” setup which contains 720 training
and 144 testing scenes. Each handover motion has a dura-
tion of 3 seconds. Following the evaluation of Handover-
Sim2real [11], we consider “Sequential” and “Simultane-
ous” settings. In “s0 (Sequential)”, the robot is allowed to
move when the hand reaches the handover location and re-
mains static. In “s0 (Simultaneous)”, the robot is allowed
to move from the beginning of the episode. (2) GenH2R-
Sim contains 1,000,000 complex synthetic H2R handover
scenes and 3266 objects. We evaluate the “t0” setup which
contains 1,000,000 training and 3260 testing scenes. Each
handover motion has a duration of 8s and will stop when
the robot gripper is close to the object. To introduce more
real-world handover scenes into GenH2R-Sim for evalua-
tion, we extract and clip the handover point cloud sequence
from HOI4D [28], a real-world mocap dataset. This addi-
tional setup is referred to as “t1”, which only contains 1000
testing scenes for evaluation.
Metrics We adhere to the HandoverSim evaluation proto-
col. A successful handover involves grasping the object
from the human hand and moving it to a designated loca-
tion. Failure cases involve hand contact, object drop, and
timeout (Tmax = 13s). We report the successful rate and
the execution time. Given that some policies prioritize suc-
cess over speed, potentially wasting considerable human
time, and others prioritize speed without considering suc-
cess, we aim to evaluate both success rate and completion
efficiency. To achieve this, we introduce AS (Average Suc-
cess), akin to AP (Average Precision):

AS =

∫ 1

0

Success(t) dt (2)

where Success(t) is success rate considering only success-
ful cases within t · Tmax. This method can better evaluate
success-time relations which is more suitable in our han-
dover scenarios.

4.1. Evaluating on Different Benchmarks

Setup We have 2 training sets: small-scale real-world “s0”
from HandoverSim and large-scale synthetic “t0” from our

GenH2R-Sim. Evaluation is conducted on four testing sets:
“s0 (Sequential)”/“s0 (Simultaneous)” from HandoverSim
and “t0”/“t1” from our GenH2R-Sim. We conduct exper-
iments on our forecast-aid 4D imitation learning from dif-
ferent demonstration strategies including destination plan-
ning, dense planning, and landmark planning. As discussed
in Section 3.3, destination planning denotes the foresighted
planner, dense planning denotes the improved shortsighted
planner and landmark planning is our proposed method.
Baselines We compare our methods with Handover-
Sim2real*, the state-of-the-art method in HandoverSim. We
additionally compare GA-DDPG which is designed for
grasping objects, and OMG Planner.
Results on different datasets As depicted in Table 1, our
method trained on “t0” outperform all methods trained on
“s0” by a large margin. Compared with Handover-Sim2real
trained on “s0”, our landmark planning method trained on
“t0” exhibits 11.34%, 16.90%, 12.26%, and 15.93% in-
crease in the success rate across the four testing sets. More-
over, compared with our landmark planning method trained
on “s0”, the version trained on “t0” demonstrates notable
improvements, achieving success rate increases of 8.79%,
6.48%, 11.80%, and 14.13% increase in the same testing
sets. This underscores the importance of having a sub-
stantial amount of synthetic data for handover training in
simulation, which is more beneficial than only relying on a
small-scale real-world dataset. Our GenH2R-Sim, with its
large-scale complex human hand behavior, generalizes ef-
fectively to real-world scenarios such as “s0” in DexYCB
and “t1” in HOI4D.
Results for different methods We can compare our meth-
ods with the baseline HandoverSim2real within the same
training set in different benchmarks. When trained on “s0”,
our landmark planning method demonstrates improvements
of 2.55%, 10.42%, 0.46%, and 1.8% (13.43%, 53.48%,
1.07%, and 23.60% in our reproduced version) across the
4 test sets. Similarly, When trained on “t0”, our land-
mark planning method gives substantial improvements of
20.78%, 23.15%, 7.72%, and 21.23% (23.02%, 46.76%,
8.12%, and 34.98% in our reproduced version). The last
3 benchmarks (“s0”(simultaneous), “t0”, and “t1”) closely
resemble real-world scenarios. They greatly demonstrate
the effectiveness of our pipeline from distillation-friendly
demonstrations to forecast-aided 4D imitation learning,
which is capable of handling dynamic robot perception in
complex handover scenarios. We also show visualizations
on different methods in Figure 4 (a)(b).

*Our approach strictly adheres to the simultaneous setting defined in
the paper of HandoverSim and HandoverSim2real: the robot moves from
the beginning of the handover episode. However, it’s noteworthy that Han-
doverSim2real manually makes their policy hold still in the first 1.5 sec-
onds in the code implementation, deviating from the simultaneous setting
definition. To ensure a fair comparison, we reproduce their results in the
true simultaneous setting.
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s0 (Sequential) s0 (Simultaneous) t0 t1
S T AS S T AS S T AS S T AS

OMG Planner† [42] 62.50 8.31 22.5 - - - - - - - - -

s0

GA-DDPG [43] 50.00 7.14 22.5 36.81 4.66 23.6 23.59 7.31 10.3 46.7 5.50 26.9

train on
Handover-Sim2real [11] 75.23 7.74 30.4 68.75 6.23 35.8 29.17 6.29 15.0 52.40 7.09 23.8

Handover-Sim2real* [11] 64.35 7.61 26.7 25.69 5.43 15.0 28.56 4.73 17.9 30.60 5.98 16.5
Destination Planning 74.31 9.01 22.8 76.16 6.98 35.2 25.68 5.96 14.1 48.4 8.94 15.1

Dense Planning 74.77 9.54 19.8 75.45 7.32 33.0 27.30 6.26 14.1 52.3 9.24 15.1
Landmark Planning 77.78 9.24 22.3 79.17 7.26 34.9 29.63 6.23 15.4 54.2 9.02 16.6

t0

GA-DDPG [43] 54.76 7.26 24.2 44.68 5.30 26.5 24.05 4.70 15.3 25.50 5.86 14.1

train on
Handover-Sim2real [11] 65.97 7.18 29.5 62.50 6.04 33.5 33.71 5.91 18.4 47.10 6.35 24.1

Handover-Sim2real* [11] 63.55 7.58 26.5 38.89 5.29 23.1 33.31 4.64 21.4 33.35 5.81 18.4
Destination Planning 0.93 12.80 0.01 6.48 12.41 0.3 5.96 8.81 1.9 1.60 12.03 0.1

Dense Planning 81.48 9.51 21.9 84.95 7.45 36.3 38.04 7.16 17.1 57.90 8.85 18.4
Landmark Planning 86.57 8.81 28.0 85.65 6.58 42.8 41.43 6.01 22.3 68.33 7.70 27.9

Table 1. Evaluating on different benchmarks. We compare our method against baselines from the test set of HandoverSim [9] benchmark
(“s0 (sequential)” and “s0 (simultaneous)”) and our GenH2R-Sim benchmark (“t0” and “t1”). We use the best-pretrained models from the
repositories of GA-DDPG [43] and Handover-Sim2real [11] for evaluation. The results for our method are averaged across 3 random
seeds. Note that S means success rate(%). T means time(s). AS means average success(%) as defined in Equation 2. †: This method [42]
is evaluated with ground-truth states and cannot handle dynamic handover like “s0 (Simultaneous)”, “t0” and “t1”.*: We reproduce the
results of HandoverSim2real in the true simultaneous setting as detailed in Section 4.1 to make a fair comparison.

Results for different Demonstrations Trained on “s0”
which consists of relatively simple trajectories, demonstra-
tions based on destination planning can offer a rudimentary
cue for downstream visuo-motor policy. However, when
trained on “t0” this strategy may lose focus on the object,
leading to a failure in maintaining vision-action correlation
and providing minimal gains for vision-friendly learning.
There is a significant 73.38% / 69.68% decrease in success
rate in the “s0” setting. Additionally, distillation from land-
mark planning slightly outperforms dense planning in suc-
cess rate and completes the handover process more quickly
in all benchmarks. While dense planning can sustain the
success rate to some extent, it slows down the agent and
may result in unnatural approaches to objects. To jointly
consider the time efficiency and the success rate, we com-
pare the Average Success in methods distilled from these
two strategies and find that landmark planning is a more
efficient and generalizable approach. For instance, when
trained on “t0”, landmark planning exhibits significant im-
provements of 6.1%, 6.5%, 5.2%, and 9.5% across the four
testing sets.

4.2. Evaluating on different Dataset Scales

We have proved the crucial role of large-scale datasets in
handover generalization in Section 4.1. We can also reveal
it by scaling down the usage of “t0” in GenH2R-Sim which
contains 1,000,000 training scenes. With 10% data utiliza-
tion, we observe a 5.93% drop in the success rate on the un-
seen “t1” test set. This result proves the significance of the
dataset scale in our imitation learning method. Thanks to
our large-scale data and efficient demonstration generation
pipeline, concerns about limited datasets hindering general-
ization are alleviated.

Methods S T AS
w/o Flow 31.66 5.67 17.9

w/o Prediction 39.18 6.11 20.7
w/o Flow & Prediction 37.04 5.93 20.1

Ours 41.43 6.01 22.3

Table 2. Ablations on different modules. “w/o Flow” means do
not use flow information in the input. “w/o Prediction” means do
not add prediction loss in the output.

4.3. Ablation Study

As shown in Table 2, we prove the effectiveness of our
well-designed 4D imitation learning method. The absence
of flow information results in a 9.77% decrease (predicting
without past information adversely affects the model perfor-
mance). The absence of the prediction task leads to a 2.25%
decrease, and the absence of both components results in a
4.39% decrease. The results demonstrate the model obtains
improved performance in leveraging flow information, par-
ticularly when tasked with predicting the future object pose.
More ablations about our demonstration generation and im-
itation learning are detailed in the supplementary material.

4.4. Real World Experiments

Sim-to-Real Transfer In addition to simulation, we deploy
the models trained in GenH2R-Sim on a real robotic plat-
form. Using point cloud input from the wrist-mounted cam-
era, we employ the output 6D egocentric action to update
the end effector’s target position. A user study compares
our method against Handover-Sim2real [11]. The supple-
mentary material provides further details.
User Study We recruited 6 users to compare our method
(based on landmark planning) and Handover-Sim2real
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Ours doesn’t move down because object is moving up Ours moves towards the object and grasps it

(a) Evaluate on s0

Ours

Handover-sim2real

Baseline moves down because object is below Baseline moves up and collides with the object

0 t

Ours moves towards the novel object

(b) Evaluate on t0, 
novel objects

Handover-sim2real

Ours

Baseline hesitates around the novel object and 
collides with the hand

Baseline moves towards the novel object

(c) Real world 
experiments

Human continuously rotates the object

Human continuously rotates the object

Baseline fails to rotate together and the object drops

Ours rotates together and successfully grasps the object

Ours

GA-DDPG

Ours successfully grasps the novel object

Figure 4. Qualitative results. We in detail compare different methods in simulators and deploy them in the real-world platform.

Methods Simple Setting Complex Setting
Handover-Sim2real 56.7% 33.3%

Ours 90.0% 70.0%

Table 3. Sim-to-Real Experiments. We report the success rate of
our method and HandoverSim2real in 2 different settings.

across 5 objects in 2 different settings. In the simple set-
ting, users hand each object to the gripper without quick
movements. In the complex setting, users execute a rela-
tively long and quick trajectory. The results are reported
in Table 3. We observe that our model gets better perfor-
mance in completing the handover process across various
objects and scenarios. Figure 4(c) shows examples of the
real-world handover trials.

5. Conclusion

In this work, we present a novel framework GenH2R
for scaling up the learning of human-to-robot handover.
We introduce a new simulator GenH2R-Sim and gen-
erate a million human handover animations to facilitate
generalizable H2R handover learning. We then pro-
pose a distillation-friendly demonstration generation
method that automatically produces a million high-quality
demonstrations suitable for learning. We further intro-
duce a forecast-aided 4D imitation learning method for
effective demonstration distillation. Our experiments
demonstrate that scaling-up efforts result in substantial
improvement of generalizability to novel geometry and
complex motion, both in the simulator and the real world.
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review for robotics. IEEE Transactions on Robotics, 37(6):
1855–1873, 2021. 2

[34] Dean A Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. Advances in neural information processing
systems, 1, 1988. 3

[35] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 5, 14

[36] Patrick Rosenberger, Akansel Cosgun, Rhys Newbury, Jun
Kwan, Valerio Ortenzi, Peter Corke, and Manfred Grafin-
ger. Object-independent human-to-robot handovers using
real time robotic vision. IEEE Robotics and Automation Let-
ters, 6(1):17–23, 2020. 2

[37] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of
the icp algorithm. In Proceedings third international confer-
ence on 3-D digital imaging and modeling, pages 145–152.
IEEE, 2001. 5, 14

[38] Thomas B Sheridan. Human–robot interaction: status and
challenges. Human factors, 58(4):525–532, 2016. 2

[39] Shuran Song, Andy Zeng, Johnny Lee, and Thomas
Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. IEEE Robotics
and Automation Letters, 5(3):4978–4985, 2020. 3

[40] Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-
motion embeddings. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
8375–8384, 2021. 5

[41] Lirui Wang, Yu Xiang, and Dieter Fox. Manipulation trajec-
tory optimization with online grasp synthesis and selection.
In Robotics: Science and Systems (RSS), 2020. 4

[42] Lirui Wang, Yu Xiang, and Dieter Fox. Manipulation tra-
jectory optimization with online grasp synthesis and selec-
tion. In Proceedings of Robotics: Science and Systems (RSS),
2020. 5, 7, 13, 14

[43] Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and
Dieter Fox. Goal-auxiliary actor-critic for 6d robotic grasp-
ing with point clouds. In Conference on Robot Learning,
pages 70–80. PMLR, 2022. 5, 7, 14, 16, 17

[44] Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar,
Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe Xu, and Xiao-
long Wang. Gensim: Generating robotic simulation tasks via
large language models. arXiv preprint arXiv:2310.01361,
2023. 3

[45] Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu,
Puhao Li, Tengyu Liu, and He Wang. Dexgraspnet: A
large-scale robotic dexterous grasp dataset for general ob-
jects based on simulation. arXiv preprint arXiv:2210.02697,
2022. 3

[46] Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu,
Puhao Li, Tengyu Liu, and He Wang. Dexgraspnet: A
large-scale robotic dexterous grasp dataset for general ob-
jects based on simulation. In 2023 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 11359–
11366. IEEE, 2023. 2

[47] Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang,
Yian Wang, Katerina Fragkiadaki, Zackory Erickson, David
Held, and Chuang Gan. Robogen: Towards unleashing infi-
nite data for automated robot learning via generative simula-
tion. arXiv preprint arXiv:2311.01455, 2023. 3

[48] Hao Wen, Yunze Liu, Jingwei Huang, Bo Duan, and Li
Yi. Point primitive transformer for long-term 4d point cloud
video understanding. In European Conference on Computer
Vision, pages 19–35. Springer, 2022. 5

[49] Wei Yang, Chris Paxton, Arsalan Mousavian, Yu-Wei Chao,
Maya Cakmak, and Dieter Fox. Reactive human-to-robot
handovers of arbitrary objects. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages
3118–3124. IEEE, 2021. 2

[50] Ruolin Ye, Wenqiang Xu, Zhendong Xue, Tutian Tang, Yan-
feng Wang, and Cewu Lu. H2o: A benchmark for visual

16371



human-human object handover analysis. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 15762–15771, 2021. 2

[51] Gu Zhang, Hao-Shu Fang, Hongjie Fang, and Cewu Lu.
Flexible handover with real-time robust dynamic grasp tra-
jectory generation. arXiv preprint arXiv:2308.15622, 2023.
2

[52] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,
Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained trans-
former language models. arXiv preprint arXiv:2205.01068,
2022. 1

[53] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi
Chen, Ken Goldberg, and Pieter Abbeel. Deep imitation
learning for complex manipulation tasks from virtual real-
ity teleoperation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 5628–5635. IEEE,
2018. 3

16372


