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Abstract

Mesh denoising (MD) is a critical task in geometry pro-
cessing, as meshes from scanning or AIGC techniques are
susceptible to noise contamination. The challenge of MD
lies in the diverse nature of mesh facets in terms of geomet-
ric characteristics and noise distributions. Despite recent
advancements in deep learning-based MD methods, exist-
ing MD networks typically neglect the consideration of geo-
metric characteristics and noise distributions. In this paper,
we propose Hyper-MD, a hyper-network-based approach
that addresses this limitation by dynamically customizing
denoising parameters for each facet based on its noise in-
tensity and geometric characteristics. Specifically, Hyper-
MD is composed of a hyper-network and an MD network.
For each noisy facet, the hyper-network takes two angles as
input to customize parameters for the MD network. These
two angles are specially defined to reveal the noise intensity
and geometric characteristics of the current facet, respec-
tively. The MD network receives a facet patch as input, and
outputs the denoised normal using the customized param-
eters. Experimental results on synthetic and real-scanned
meshes demonstrate that Hyper-MD outperforms state-of-
the-art mesh denoising methods.

1. Introduction

The development of 3D scanning equipment and AIGC al-
gorithms [24, 28, 30] has made the acquisition of meshes
from real-world pretty simple and convenient, but the ac-
quired meshes are inevitably contaminated by noise even
with advanced techniques. Therefore, mesh denoising
(MD) has always been one of the most fundamental re-
search topics in geometry processing [7, 21, 26, 27, 38].
The objective of MD is to remove noise from noisy meshes
while preserving their underlying geometric characteristics.
Early works [6, 14, 34, 39, 42] in this field typically rely on
some assumptions about the geometric characteristics and
noise patterns. However, these assumptions often fail to

(a) Workflow of existing MD networks.

(b) Workflow of Hyper-MD.

Figure 1. Workflows of existing MD networks and Hyper-MD. αn

and αg are two angles.

generalize across various meshes and noise [29], limiting
the performance of conventional methods.

Recently, some deep-learning-based works [8, 15, 16,
23, 31, 35, 41] have been developed to predict noise-free
facet normals for mesh denoising. As shown in Figure 1
(a), these works typically feed a facet patch into a neural
network to predict the denoised normal, which is then used
to update vertex positions. For example, Zhao et al. [41]
represent the patch using voxels and employ 3D convolu-
tions to regress noise-free normals. Li et al. [15] estimate
the denoised normal from a facet patch through a network
similar to PointNet++ [20]. Shen et al. [23] propose to in-
fer denoised normals by graph convolutions which accept a
graph representation of mesh faces as input. Deep-learning-
based methods do not rely on any specific assumptions and
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have shown significant improvement over conventional ap-
proaches. However, none of the existing MD networks take
into account geometric characteristics and noise distribu-
tions, which actually play crucial roles in achieving effec-
tive denoising performance.

In this paper, we propose a hyper-network-based MD
method called Hyper-MD, which effectively denoises
meshes by utilizing customized parameters that are aware of
noise intensity and geometric characteristics of each facet.
As illustrated in Figure 1 (b), Hyper-MD consists of an MD
network and a hyper-network. For each noisy facet, the
hyper-network customizes denoising parameters first, and
then the MD network employs the customized parameters to
infer the denoised normal. The input of the hyper-network
is two specially designed angles (αn and αg) which rep-
resent the noise intensity and geometric characteristics, re-
spectively. On the one hand, the angle αn, reflecting the
noise intensity, is calculated as the angular gap between
paired noisy-filtered normals. The filtered normals are ob-
tained from a filtered mesh, which acts as an agent for the
clean mesh. On the other hand, the angle αg reveals the geo-
metric characteristics and is computed on the filtered mesh
since the geometric characteristics on the noisy mesh are
distorted by noise. Besides, we construct the customized
parameters using a combination of a coarse-grained base
and fine-grained offsets to improve the efficiency and stabil-
ity of parameter customization. The coarse-grained base is
selected from a pool of candidates. The candidates are sev-
eral models that are trained using facets with varying noise
intensities and geometric characteristics, thus carrying ex-
pertise for different types of data. The fine-grained offsets
are predicted by a simple multi-branch fully connected net-
work, serving to refine the parameters based on the coarse-
grained base. Extensive experiments show that Hyper-
MD achieves consistently superior performance to existing
state-of-the-art methods on various types of meshes.

In summary, the main contributions of this paper are
summarized as follows:
• We develop a mesh denoising method called Hyper-MD,

which leverages a hyper-network to effectively address
the challenges posed by various geometric characteristics
and noise distributions.

• Using a filtered mesh as the agent of the clean mesh, we
produce two angles (αn and αg) to capture the noise in-
tensity and geometric characteristics of each facet. These
angles are then passed into the hyper-network for param-
eter customization.

• We construct the customized parameters using a combina-
tion of a coarse-grained base and fine-grained offsets. The
coarse-grained base carries expertise for different types of
data, while the fine-grained offsets are dynamically pre-
dicted by a multi-branch fully connected network to refine
the parameters.

2. Related Works
In this section, we review the related works of mesh denois-
ing and hyper-network, respectively.

2.1. Mesh Denoising

Existing mesh denoising methods can be broadly cat-
egorized into conventional methods and deep-learning-
based methods. Conventional methods mainly include
optimization-based methods and filter-based methods.
Optimization-based methods formulate the denoising task
as an optimization problem based on some assumptions
about the geometric characteristics and noise patterns, and
then solve the optimization problems via techniques like
Bayesian [4], L0 minimization [9], compressed sensing
[32], or low-rank recovery [14, 34] to estimate denoised
meshes. Filter-based methods conduct mesh denoising
using well-designed coefficients. Pioneering filter-based
methods [1, 2, 5, 6, 11, 22] directly act on vertices, until Lee
et al. [12] report that facet normals are more effective in re-
vealing local geometry than vertices. As a result, a series of
methods [13, 39, 40, 42] that denoise normals first and then
update vertex positions are developed and achieve improved
denoising performance. Conventional methods heavily rely
on assumptions about geometric characteristics and noise
patterns. They perform well when these assumptions hold
true for the given meshes. However, the assumptions often
fail to generalize across different meshes and noise, thus
limiting the performance of optimization-based and filter-
based denoising methods.

Recently, deep-learning-based approaches have been in-
troduced for predicting noise-free facet normals in mesh de-
noising. Unlike 2D images, 3D meshes are irregular and
general convolutional neural networks not directly appli-
cable [15, 16, 23]. Therefore, the focus of deep-learning-
based MD works has been on developing suitable networks
for meshes. Early works represent meshes in regular forms,
such as hand-crafted features or voxels, which are adapted
to convolutional operations. For example, Wang et al. [31]
introduce a filtered face normal descriptor and use simple
multi-layer perceptrons for noise-free normal regression. Li
et al. [16] learn low-rank non-local patch-group normal ma-
trices (NPNMs) and then adopt a 2D convolutional network
to predict noise-free normals. Zhao et al. [41] develop a
voxel-based representation for local mesh patches and apply
3D convolutions to regress noise-free normals. Regrettably,
these methods with hand-crafted features or voxel represen-
tations inevitably suffer from insufficient or redundant in-
formation. Subsequent methods start directly acting on the
facet normals. For example, Li et al. [15] apply a network
like PointNet++ [20] to estimate the denoised normal from
a patch of face normals. To the best of our knowledge, this
is the first end-to-end network for mesh denoising. Shen et
al. [23] represent mesh patches in a graph form and uti-
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Figure 2. The architecture of Hyper-MD.

lize a graph convolution network to infer denoised normals.
As graphs are capable of naturally capturing the geomet-
ric features, this method is not only end-to-end, but also
preserves complete geometric information. Existing deep-
learning-based methods have demonstrated superior perfor-
mance compared to conventional methods. However, none
of existing mesh denoising (MD) networks consider the di-
verse geometric characteristics and noise distributions ex-
hibited by mesh facets, which are crucial factors for achiev-
ing effective denoising results. In contrast, the proposed
Hyper-MD leverages a hyper-network to effectively address
the challenges posed by various geometric characteristics
and noise distributions.

2.2. Hyper-network

In hyper-network approaches, the parameters of a network
are dynamically customized by another network, known as
the hyper-network or meta-network, instead of being trained
using the training data. For example, Cai et al. [3] propose
a memory matching network for the one-shot image recog-
nition task. They utilize the memory of support sets to pre-
dict the parameters of a classifier, enabling it to be directly
adapted to new categories without the need for back prop-
agation. Yang et al. [36] propose MetaAnchor, a flexible
anchor mechanism that dynamically generates anchor func-
tions using arbitrary customized prior boxes. MetaAnchor
is more robust to anchor settings and bounding box distri-
butions compared to predefined anchor mechanisms. Liu
et al. [17] present PruningNet, a hyper-network that au-
tomatically prunes channels for very deep neural networks.
PruningNet is trained to generate parameters for any pruned
structure, allowing for the search of various pruned net-
works under different constraints with little human involve-

ment. Hu et al. [10] leverage a hyper-network to solve
super-resolution tasks of arbitrary scale factors (including
non-integer scale factors) using a single model. They pro-
pose a meta upscale module that dynamically predicts the
weights of upscale filters based on the scale factor, en-
abling the generation of high-resolution images of arbitrary
sizes. Ye et al. [37] introduce Meta-PU, a method for point
cloud upsampling with arbitrary scale factors using a single
model. Meta-PU utilizes a meta-subnetwork to adjust the
weights of the upsampling blocks and incorporates a far-
thest sampling block to sample different numbers of points.
Meta-PU even outperforms previous methods trained for
specific scale factors, as training on multiple scales simul-
taneously benefits each other.

While the hyper-network technique has received exten-
sive study in a variety of works, this is the first work to
extend it to mesh denoising. For successful extension, we
calculate two angles based on the agent of clean meshes
to reveal the geometric characteristics and noise intensity.
Moreover, existing methods typically use a hyper-network
to directly output customized parameters. In this paper,
we elaborately construct the customized parameters with a
coarse-grained base and fine-grained offsets. In this way,
only fine-grained offsets need to be predicted while cus-
tomizing parameters, improving the efficiency and stability
of parameter customization.

3. Methodology

This section provides detailed explanations of the proposed
Hyper-MD. Like previous works [15, 16, 23, 31, 35, 41],
Hyper-MD predicts the denoised normal. The vertex updat-
ing is performed using the commonly adopted approach in
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[23, 41, 42]. This section starts with an introduction of the
denoising network (denoted as ND), and then elaborates on
the hyper-network (NM ). Afterwards, we outline the train-
ing strategy and finally describe the process of vertex up-
dating.

3.1. Denoising Network

Input & Output. We express a mesh as {V,F}, where
V = {vi}Nv

1 is the set of vertices while F = {fi}
Nf

1 is the
set of facets. For each facet fi ∈ F, its normal is denoted
as ni. The denoising network takes the r-ring patch of fi as
input and outputs the denoised normal:

n′
i = ND(Pr

i ). (1)

Here, Pr
i is the r-ring patch of fi. It is initialized to {fi},

and obtained by iteratively adding facets that share at least
one vertex with the facets in Pr

i for r times. To remove un-
necessary degrees of freedom, all input patches are trans-
lated to the origin, scaled into a unit bounding box, and
rotated to the direction where the mean normal of Pr

i is
[0, 0, 1]. n′

i is the predicted denoised normal, which needs
to undergo rotation opposite to Pr

i .
Architecture. The applied denoising network in this pa-

per is greatly inspired by GCN-Denoiser [23]. As shown in
Figure 2, ND contains a feature extraction module (MFE)
and a normal inference module (MNI ). MFE is composed
of three static EdgeConv layers [25, 33], three dynamic
EdgeConv layers [25, 33], a linear layer [19], and a pool-
ing layer. The static EdgeConv layers capture local shallow
features. The dynamic EdgeConv layers enriches the re-
ceptive field of a graph node. Graph nodes are connected
with neighbors that are dynamically calculated by the K-
nearest neighbor algorithm (K = 8 in our implementation)
based on the Euclidean distance of node features. Then,
the extracted features of EdgeConv layers are concatenated
together and fused through a linear layer. The fused fea-
tures simultaneously flow into an average pooling layer and
a max pooling layer to select features for denoised normal
inference. MNI follows a simple structure of four fully
connected (FC for short) layers. It regresses the extracted
features into a 3D vector, which is exactly the predicted nor-
mal.

Loss. Following GCN-Denoiser [23], we use MSE be-
tween the network output and the ground truth normal as the
loss function. The MSE loss leads to more stable training
than cosine similarity as it imposes hard constraints on the
values to be within the range of (0, 1). Normalized normals
are mapped from (−1, 1) into (0, 1).

3.2. Hyper-network

Input. The input to the hyper-network is two angles,
namely αn and αg , which describe the noise intensity and
geometric characteristics, respectively.

Figure 3. Meshes in the first row are color-coded according to αg

as shown in the color bar. Meshes in the second row are color-
coded according to facet categories.

For each facet fi, the noise intensity is related to the an-
gle between its normal and the ground truth normal. How-
ever, ground truth meshes are not available during denois-
ing, so we develop an agent using a simple mean filter. In
particular, a filtered mesh is generated through iterative nor-
mal filtering and vertex updating. For each facet fi, the nor-
mal filtering is conducted as:

nk+1
i =

1

|Pf
i |

∑
fj∈Pf

i

nk
j . (2)

Here, Pf
i is the set of facets that share an edge with fi. k de-

notes the k-th iteration. Subsequently, vertex positions are
updated according to the obtained normals. Taking the fil-
tered mesh as the agent of the ground truth mesh, the noise
intensity of fi is reflected by the angle between its normal
(ni) and the corresponding filtered normal (nM

i ):

αn
i = acos(ni · nM

i ). (3)

According to geometric characteristics, facets can be di-
vided into four categories [23, 41]: smooth facets, curved
facets, small edge facets, and large edge facets. For each
facet, the corresponding category is determined by the max-
imum angle (αg) difference in the 2-ring patch of the facet.
Inspired by this, we take advantage of αg to characterize
the geometric features of facets. However, calculating αg

on noisy meshes is very unstable as geometric characteris-
tics are heavily eroded by noise, and noiseless meshes are
not available during denoising. As a result, we calculate αg

on filtered meshes mentioned in previous paragraph:

αg
i = max

fj∈P2
i

max
fl∈P2

i

acos(nM
j · nM

l ). (4)

Some meshes are color-coded according to αg as shown in
Figure 3. We can see that the αg based on filtered meshes is
capable of reflecting the geometric characteristics of facets
like that based on clean meshes.

Output. As shown in Figure 2, the output of NM is pa-
rameters that are customized for MNI in ND. We construct
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Table 1. The classification of facets based on αn and αg . All
facets are divided into 3 categories based on αn and 4 categories
based on αg , so there are a total of twelve categories.

weakly
noisy

αn ≤ 15◦

moderately
noisy

15◦ < αn ≤ 30◦

strongly
noisy

30◦ < αn

smooth region
αg ≤ 20◦

category 1 category 5 category 9

curved region
20◦ < αg ≤ 50◦

category 2 category 6 category 10

small edge region
50◦ < αg ≤ 80◦

category 3 category 7 category 11

large edge region
80◦ < αg category 4 category 8 category 12

the customized parameters using a coarse-grained base and
fine-grained offsets.

The coarse-grained base is selected from some candi-
dates, which are trained on different facets. We divide facets
into several categories according to their αn and αg , and
train an model for each category. In our implementation,
facets are divided into 3 categories based on αn and 4 cate-
gories based on αg . As a result, there are a total of twelve
categories as shown in Tabel 1. More experiments and anal-
yses on the number of categories are provided in the Sup-
plementary Material. Subsequently, we separately train the
denoising network using each category facets, thus obtain-
ing twelve models. It should be mentioned that the MFE in
these models share the same parameters that are pre-trained
using complete training data. Finally, the parameters of the
MNI in these models make up the coarse-grained candi-
dates. During denoising, each facet is classified based on
its αn and αg , and the corresponding candidate is selected
as the coarse-grained base.

The fine-grained offsets are predicted dynamically us-
ing a straightforward multi-branch fully connected network.
Once αn and αg are inputted into NM , the network employs
two fully connected layers to extract features. Following
this, four branches are utilized to predict the offsets of the
four fully connected layers in MNI . Ultimately, the pre-
dicted offsets are added to the selected coarse-grained base
to obtain the complete customized parameters.

3.3. Training Strategy

The proposed Hyper-MD method is trained in three steps
as illustrated in Figure 4. In the first step, we train the de-
noising network using all the training data, resulting in a
pre-trained model denoted as ND(Pr

i ;M
0
FE ,M

0
NI). Here,

M0
FE represents the parameters of MFE , while M0

NI rep-
resents the parameters of MNI . In the second step, all
the training data are divided into several categories through
the approach introduced in Subsection 3.2. Initializing ND

Figure 4. The schematic diagram of training steps.

Figure 5. The meshes that are contained in SynData.

with (M0
FE ,M

0
NI) and freezing MFE , we fine-tune MNI

on each category separately to generate candidate models.
The parameters of MNI in these models form the coarse-
grained candidates: [M1

NI ,M
2
NI , ...,M

12
NI ]. In the third

step, initializing MFE with M0
FE , based on the coarse-

grained candidates, we freeze ND and train NM using all
training data.

3.4. Vertex Updating

The applied vertex updating scheme in our method is the
same as [23, 42]. For a facet fi, its normal is denoted as ni,
and its centroid is denoted as ci. The denoised normal is n′

i.
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For each vertex vi, the updated position v′i is calculated as:

v′i = vi +
1

|Pf
vi |

∑
fj∈Pf

vi

n′
j(n

′
j · (cj − vi)). (5)

Here, Pf
vi is the set of facets that contain vi as a vertex.

4. Experiments
This section introduces the datasets and metrics, experimen-
tal results, ablation studies, as well as studies on method
efficiency in the following. Besides, additional analyzes
on implementation details, hyperparameter selection, and
method rationality can be found in the Supplementary Ma-
terial.

4.1. Datasets and Metrics

Dataset. The applied synthetic dataset (denoted as Syn-
Data) contains 24 3D triangle meshes from [23], [18], and
an online 3D model repository (3dmag.org). As shown in
Figure 5, 14 meshes are used for training, and the rest are
test meshes. The test data are divided into simple geometric
meshes and complex object meshes, allowing us to observe
the performance of methods on different types of data. We
produce noisy meshes for training by adding Gaussian noise
and and impulsive noise to clean meshes. The standard de-
viations of Gaussian noise are 0.1, 0.2, and 0.3 of the mesh
average edge length, while the numbers of impulsive ver-
tices are 10%, 20%, and 30% of the mesh vertex numbers.
The test set only covers Gaussian noise like previous works
[15, 16, 23, 41].

The real-scanned datasets include Kinect series datasets
[31] and models collected from Internet. The Kinect se-
ries datasets are generated by scanning six objects (big girl,
cone, girl, boy, David, and pyramid) using Microsoft Kinect
v1 and v2. There are a total of three datasets denoted as
Kv1Data, Kv2Data, and K-FData, respectively. The models
collected from Internet include angel, gargoyle 1, gargoyle
2, rabbit, Lucy, and eagle.

Metrics. Two commonly adopted metrics are used in
our experiments. Ea measures the average normal angular
difference between a denoised mesh and the ground truth
noise-free mesh:

Ea =
1

Nf

∑
fi∈F

acos(n′
i · n̂i). (6)

Here, F is the set of faces, while Nf is the number of faces
in F. n′

i and n̂i are the denoised normal and ground truth
normal of fi. Ev is the normalized average Hausdorff dis-
tance from the denoised mesh to the corresponding ground-
truth mesh [31]:

Ev =
1

Nv

∑
v′i∈V′

min
v̂i∈V̂

||v′
i − v̂i||. (7)

Here, V′ and V̂ are the sets of denoised vertices and ground
truth vertices. The smaller the Ea and Ev , the better the
performance.

4.2. Comparison Study

We compare Hyper-MD with state-of-the-art MD meth-
ods including bilateral mesh filtering (BMF) [6], bilat-
eral normal filtering (BNF) [42], guided normal filtering
(GNF) [39], mesh total generalized variation (TGV) [18],
and GCN-Denoiser (GCN) [23]. The results of BMF, BNF,
GNF, and TGV are obtained with fine-tuned parameters on
each mesh, while the results of GCN are generated with
models that are trained by ourselves using the same train-
ing data as Hyper-MD. Here we provide some key compar-
isons, additional results are presented in the Supplementary
Material.

Synthetic dataset. The experimental results on SynData
are collected in Table 2. In order to make the Ev of dif-
ferent 3D meshes comparable, all meshes in SynData are
scale-normalized to make their diagonals of shape bound-
ing boxes be equal to 1. From Table 2, Hyper-MD achieves
the best performance on complex meshes, and is competi-
tive with TGV on simple meshes. In specific, the average
Ea and Ev of Hyper-MD on complex meshes are smallest.
As for simple meshes, Ea of TGV is the best, while our
method performs better in Ev . The detailed results at dif-
ferent noise levels (0.1, 0.2, and 0.3) show the consistent
results.

Two representative denoised meshes of SynData are
shown in Figure 6. The performance of BMF and BNF is
slightly inferior, which can be seen from the zoomed re-
sults. Besides, GNF and TGV are better at restoring sharp
features such as right angles in the second row. However,
GNF and TGV perform worse than GCN and Hyper-MD
on regions with rich textures (like the braid region in the
forth row). Both GCN and Hyper-MD exhibit robustness in
both simple and complex models, but Hyper-MD’s overall
performance is slightly better.

Real-scanned dataset. The quantitative comparisons on
Kinect series datasets are shown in Figure 7. We can see
that Hyper-MD consistently achieves the minimum metrics
except for Ev on K-FData. Hyper-MD is second only to
GCN in Ev on K-FData. Representative results on Kv2Data
and K-FData are shown in Figure 8, from which we can see
that Hyper-MD restores the boy’s nose better. Both TGV
and Hyper-MD successfully restore smooth regions, but the
edge of Hyper-MD is more sharp and clean.

We further provide the comparison results for models
with different scanners. As illustrated in Figure 9, Hyper-
MD produces better feature recovery results than the com-
pared methods on both two models that contain complex
structures, which further verifies the capability of Hyper-
MD.
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Table 2. The experimental results on SynData. The average values on each subset is marked in blue for ease of observation. The meaning
of ↓ is that the smaller the value, the better the performance.

Methods Simple meshes Complex meshes
Ea ↓ Ev ↓ (×10−3) Ea ↓ Ev ↓ (×10−4)

0.1 0.2 0.3 ave 0.1 0.2 0.3 ave 0.1 0.2 0.3 ave 0.1 0.2 0.3 ave

Noisy 10.32 24.05 39.15 24.51 1.50 3.54 5.84 3.62 10.25 24.40 39.58 24.74 5.27 12.46 20.57 12.77
BMF 3.04 6.09 12.32 7.15 1.52 2.92 4.30 2.91 2.82 6.08 12.80 7.23 5.34 9.86 14.66 9.95
BNF 1.17 3.37 10.28 4.94 0.99 2.28 3.70 2.32 2.08 5.36 13.44 6.96 3.86 8.61 13.61 8.69
GNF 1.89 3.98 8.42 4.76 1.05 2.32 3.65 2.34 3.28 6.39 10.88 6.85 4.28 9.10 14.03 9.14
TGV 1.19 2.80 7.52 3.84 1.47 3.02 4.54 3.01 2.13 4.68 9.48 5.43 5.97 10.91 15.97 10.95
GCN 1.60 3.92 9.07 4.86 1.13 2.37 3.72 2.41 2.22 4.67 8.86 5.25 3.77 8.36 12.53 8.21

Hyper-MD 1.27 3.23 8.45 4.32 0.99 2.20 3.41 2.20 1.63 3.87 8.00 4.50 3.62 7.92 12.02 7.85

Figure 6. Representative denoised meshes on SynData.

4.3. Ablation Studies

A total of five ablation experiments are conducted on the
SynData dataset to demonstrate the impact of each compo-
nent in Hyper-MD. Each experiment contains a variant that
lacks one specific component. The first variant (w/o NM )
is conducted to carried out to confirm the superiority of the
hyper-network. In this variant, the denoising network’s pa-
rameters are learned solely from the training data, without
utilizing the customized parameters from the hyper-network
NM . The second variant (w/o Coarse-grained) and the
third variant (w/o Fine-grained) investigate the roles of the
coarse-grained base and fine-grained offsets, respectively.
The fourth variant (αn) omits αn in the input of NM , while
the fifth variant (αg) omits αg .

All experimental results are provided in Table 3. We can
see that all these variants without specific components per-
form worse compared to Hyper-MD. Notably, the absence

Table 3. The results of ablation experiments.

Variants Simple meshes Complex meshes
Ea Ev(×10−3) Ea Ev(×10−4)

w/o NM 4.91 2.44 5.28 8.24
w/o Coarse-grained 4.84 2.43 4.83 8.11
w/o Fine-grained 4.46 2.31 4.61 7.93

w/o αn 4.38 2.25 4.55 7.88
w/o αg 4.37 2.23 4.57 7.89
Ours 4.32 2.20 4.50 7.85

of NM and the coarse-grained base demonstrate the most
significant decline in performance. These findings strongly
indicate that each component in Hyper-MD plays a positive
and crucial role in achieving better performance.

4657



Figure 7. Results on Kv1Data, Kv2Data, and K-FData.

Figure 8. The representative results of compared methods on real-
scanned datasets.

4.4. Studies on Method Efficiency

This subsection analyzes method efficiency in terms of the
training time and denoising time. On a computer equipped
with an AMD Ryzen 9 5900HX CPU and a NVIDIA
GeForce RTX 3080 Laptop GPU, the total training time on
the SynData dataset is approximately 80 hours. The first
step accounts for 45 hours, the second step takes around 32
hours, and the third step requires approximately 3 hours.
It is evident that training multiple candidate models can be
time-consuming. However, it is worth noting that each can-
didate model only needs to update the four fully connected
layers. This selective update approach helps mitigate the
overall time consumption during training.

The average denoising time of various methods on Syn-
Data is collected in Table 4. As observed, BNF and TGV
are significantly faster, which are non-deep-learning-based

Figure 9. The denoising results of gargoyle 1 and angel.

Table 4. The average denoising time on SynData.

Method BNF TGV GCN Hyper-MD

Time 35s 49s 384s 920s

methods. As for deep-learning-based methods, Hyper-MD
is slower than GCN. This is because Hyper-MD needs more
iterations than GCN. In fact, the time for one iteration of
GCN and Hyper-MD is similar, with an average of 26s and
32s respectively. GCN only needs 15 iterations on average,
while Hyper-MD takes 20 iterations.

5. Conclusion
In this paper, we propose a hyper-network-based MD
method called Hyper-MD, which effectively denoises
meshes by utilizing customized parameters that are aware of
noise intensity and geometric characteristics of each facet.
We produce two angles to capture the noise intensity and ge-
ometric characteristics of each facet, and construct the cus-
tomized parameters using a combination of a coarse-grained
base and fine-grained offsets. Experiments demonstrate that
Hyper-MD achieves consistently superior performance to
existing state-of-the-art methods on various meshes. How-
ever, Hyper-MD has several limitations. Firstly, the special-
ized designs results in a multitude of hyperparameters that
need to be thoroughly studied and optimized. Secondly, the
training process can be laborious and time-consuming due
to the complexity of the models. Thirdly, the facet-wise
and iterative paradigm employed in the denoising process
can lead to significant time overhead, making the overall
denoising process time-consuming.
Acknowledgements: This work was supported by the
National Key R&D Program of China (2021YFF0900500),
and the National Natural Science Foundation of
China (NSFC) under grants U22B2035, 62272128.

4658



References
[1] Andrew Adams, Natasha Gelfand, Jennifer Dolson, and

Marc Levoy. Gaussian kd-trees for fast high-dimensional fil-
tering. ACM Transactions on Graphics (TOG), 28(3):1–12,
2009. 2

[2] Chandrajit L Bajaj and Guoliang Xu. Anisotropic diffusion
of surfaces and functions on surfaces. ACM Transactions on
Graphics (TOG), 22(1):4–32, 2003. 2

[3] Qi Cai, Yingwei Pan, Ting Yao, Chenggang Yan, and Tao
Mei. Memory matching networks for one-shot image recog-
nition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4080–4088, 2018. 3

[4] James R Diebel, Sebastian Thrun, and Michael Brünig. A
bayesian method for probable surface reconstruction and
decimation. ACM Transactions on Graphics (TOG), 25(1):
39–59, 2006. 2

[5] Hanqi Fan, Yizhou Yu, and Qunsheng Peng. Robust feature-
preserving mesh denoising based on consistent subneighbor-
hoods. IEEE Transactions on Visualization and Computer
Graphics, 16(2):312–324, 2009. 2

[6] Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. Bi-
lateral mesh denoising. In ACM SIGGRAPH 2003 Papers,
pages 950–953. 2003. 1, 2, 6

[7] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. MeshCNN: a network
with an edge. ACM Transactions on Graphics (TOG), 38
(4):1–12, 2019. 1

[8] Shota Hattori, Tatsuya Yatagawa, Yutaka Ohtake, and Hiro-
masa Suzuki. Learning self-prior for mesh denoising using
dual graph convolutional networks. In European Conference
on Computer Vision, pages 363–379. Springer, 2022. 1

[9] Lei He and Scott Schaefer. Mesh denoising via l0 mini-
mization. ACM Transactions on Graphics (TOG), 32(4):1–8,
2013. 2

[10] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang,
Tieniu Tan, and Jian Sun. Meta-SR: A magnification-
arbitrary network for super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1575–1584, 2019. 3
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