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Abstract

Neural Radiance Fields (NeRF) exhibit remarkable per-
formance for Novel View Synthesis (NVS) given a set of 2D
images. However, NeRF training requires accurate camera
pose for each input view, typically obtained by Structure-
from-Motion (SfM) pipelines. Recent works have attempted
to relax this constraint, but they still often rely on decent ini-
tial poses which they can refine. Here we aim at removing
the requirement for pose initialization. We present Incre-
mental CONfidence (ICON), an optimization procedure for
training NeRFs from 2D video frames. ICON only assumes
smooth camera motion to estimate initial guess for poses.
Further, ICON introduces “confidence”: an adaptive mea-
sure of model quality used to dynamically reweight gradi-
ents. ICON relies on high-confidence poses to learn NeRF,
and high-confidence 3D structure (as encoded by NeRF) to
learn poses. We show that ICON, without prior pose initial-
ization, achieves superior performance in both CO3D and
HO3D versus methods which use SfM pose.

1. Introduction
Robustly lifting objects into 3D from 2D videos is a chal-
lenging problem with wide-ranging applications. For exam-
ple, advances in virtual, mixed, and augmented reality [28]
are unlocking new interactions with virtual 3D objects; 3D
object understanding is important for robotics as well (e.g.
manipulation [18, 42, 64] and learning-by-doing [7, 65]).

Bringing objects to 3D requires both extracting 3D struc-
ture and tracking 6DoF pose, but existing approaches have
limitations. Many [1, 63, 66] rely on depth, which is a
powerful signal for 3D reasoning. However, accurate depth
typically requires additional sensors (e.g. stereo, LiDAR),
which add cost, weight, and power consumption to a de-
vice, and is thus often not widely available. Without this
depth signal, these methods often fail. Solving only half the
problem is also common: 3D object reconstruction meth-
ods often assume pose [34, 36, 39, 43, 53, 61, 71], and

*Equal contribution.

(a) BARF pose predictions (b) ICON pose predictions

(c) BARF novel-view synthesis (d) ICON novel-view synthesis

Figure 1. Novel view and pose visualizations of ICON and
BARF when no initial pose is available. We train on a flyaround
video of a book from CO3D [43]. BARF [23] trajectories exhibit
fragmentation: camera poses split into two forward-facing clusters
and create two books. ICON provides high-quality view synthesis
and precisely recovers poses. The colored triangle meshes repre-
sent ICON predicted poses, and grey ones represent groundtruth.

object pose estimation methods often assume a 3D model
(e.g. CAD) [21, 41, 68]. This chicken-and-egg problem of-
ten limits the applicability of these approaches.

Here we aim to tackle both problems jointly, learning
both an implicit 3D representation and per-frame camera
poses from a single monocular RGB video. We supervise
both 6DoF poses and reconstruction with a dense photo-
metric loss, projecting the 3D representation onto the 2D
input frames. Specifically, we represent objects/scenes as a
Neural Radiance Field (NeRF) [34] to obtain 2D rendering.

While recent works [17, 23, 24, 57, 62, 72] have shown
that poses can to some extent be (jointly) learned in this set-
ting, they are most effective when used to refine initial poses
with moderate noise. For example, [62] shows they begin
to fail when pose noise exceeds approximately 20 degrees
of rotation error; more complex trajectories are unrecover-
able. Indeed, these methods also fail on even moderately-
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Neural Confidence Field:
(𝑥, 𝑦, 𝑧) → 𝜁

Aggregate along ray	𝑟
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Learn Pose from higher 
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Learn NeRF from higher 
confidence poses

Figure 2. ICON overview. ICON constructs a Neural Confidence
field on top of NeRF to encode confidence ζ for each 3D location.
The confidence is then used to guide the optimization process.

complex trajectories, for example a full 360-degree fly-
around of an object (Sec. 4). This means SfM preprocessing
remains a prerequisite for constructing a radiance field.

One approach may be to focus on the large-noise setting,
aiming to resolve larger pose changes. This can be promis-
ing [30], but we choose to focus on the incremental case.
This arises naturally in real-world settings where video is
input, e.g. embodied AI. We take inspiration from incre-
mental SfM [49] and SLAM [9], training pose and NeRF
jointly in an incremental setting. In this setup, the model
takes a stream of video frames, one at a time. Leverag-
ing a motion-smoothness prior, we initialize an incoming
frame with the previous frame’s pose. Information between
frames is exchanged through view synthesis from NeRF.

However, the interdependence between 3D structure and
pose presents a major challenge: high photometric error
may be attributable to a poor 3D model or a large error
in pose. We observe and analyze several interesting fail-
ure modes, including fragmentation, a generalization of the
classical Bas-Relief ambiguity [2], and overlapping regis-
tration (see Fig. 3). To address these difficulties, we pro-
pose ICON (Incremental CONfidence). The intuition is
simple (Fig. 2): “When pose is good, learn the NeRF;
when the NeRF is good, learn pose.” ICON interpolates
between these two regimes, using a measure of confidence
obtained from photometric error, and maintaining a NeRF-
style “Neural Confidence Field” to store confidence in 3-
space. Confidence is also used as a signal to guide optimiza-
tion, helping to identify (and escape from) local minima.

We perform quantitative evaluation of ICON on
CO3D [43], HO3D [15], and LLFF [33]. While joint
pose-and-3D baselines often fail catastrophically, ICON
achieves strong performance on CO3D, comparable to
NeRFs trained on COLMAP [49] pose and surpassing a
wide selection of baselines, such as DROID-SLAM [56]
and PoseDiffusion [60]. In addition, we evaluate on CO3D
videos with background removed; this significantly in-
creases the difficulty since background texture makes cam-
era pose extraction easier. We note that this case (a single
masked object in isolation) is quite valuable: success here
means a method will work whether the camera is moving,

the object is moving, or both. ICON achieves superior per-
formance to NeRF+COLMAP pose and a wide selection of
baselines. Finally, ICON outperforms RGB baselines and
is comparable to SOTA RGB-D method BundleSDF [66]
on dynamic hand-held objects in HO3D.

To summarize, we make the following contributions:
1. We propose an incremental registration for joint pose

and NeRF optimization. This setup removes the require-
ment for pose initialization in common video settings.

2. We systematically study this incremental setup and dis-
cover several challenges. Based on the observations, we
propose ICON, an optimization protocol based on confi-
dence in spatial locations and poses.

3. We evaluate ICON with a focus on object-centric
datasets. ICON is SOTA among RGB-only methods, and
is even competitive with SOTA RGB-D methods.

2. Related Work
Neural Radiance Field (NeRF) [34] is a powerful tech-
nique to represent 3D from posed 2D images for novel view
synthesis. One major limitation of NeRF resides in its re-
quirement for accurate camera poses. Recent works, includ-
ing NeRF-- [62], BARF [23], SCNeRF [17], SiNeRF [67],
NeuROIC [20], IDR [70], GARF [8] and SPARF [57] have
attempted to relax this requirement by jointly optimizing
poses and NeRF. Despite the promising direction, they work
the best when refining noisy initial poses and are limited
by the robustness of initial pose estimation methods. One
direction the community takes to further reduce the de-
pendency on pose is by adding additional components or
signals for initial pose estimations, such as GANs [30],
SLAM [44], shape priors [73], depth [4, 32], correspon-
dence [6, 32], and coarse annotations [5]. We tackle this
problem from a different angle, where we propose an in-
cremental setup of joint NeRF and pose optimization. Our
proposed method ICON does not use additional signals and
achieve strong performance on challenging scenarios when
camera poses are difficult to obtain.
Pose estimation (Object) aims to infer the 6 Degrees-of-
Freedom (DoF) pose of an object from image frames. The
line of work can be classified into two main categories: im-
age pose estimation [21, 68, 74] and video pose tracking
[35, 52, 55], where the former mostly focuses on inferring
pose from sparse frames and the latter takes the temporal
information into consideration. However, many methods in
video or image pose estimation assume known instance- or
category-level object representations, including object CAD
models [21, 22, 35, 52, 54, 59, 68] or pre-captured refer-
ence views with known poses [25, 40]. Recently, Bundle-
Tracks [63] removes the need for such object priors, thus
generalizing to pose tracking for unseen novel objects, and
BundleSDF [66] improves pose tracking by constructing a
neural representation for the object. However, both require
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depth information, limiting their applications.
SLAM (Simultaneous Localization and Mapping) builds
a map of the environment while simultaneously determin-
ing its location within that map [10, 12, 13, 19, 37, 38, 77].
While most SLAM methods focus on understanding cam-
era pose movement in a static environment, object-centric
SLAM [29, 31, 45, 46, 50] focus on learning object pose
in a dynamic environment. However, most of those meth-
ods require depth signal [29, 31, 45] and struggle with large
occlusion or abrupt motion [66].

3. Method
ICON takes streaming RGB video frames as input and pro-
duces 3D reconstructions and camera pose estimates. ICON
incrementally registers each input frame to optimize 3D re-
construction guided by confidence: the 3D reconstruction is
learned more from frames with high confidence pose, and
pose relies on 3D-2D reprojection from higher confidence
areas of the 3D reconstruction.

3.1. Preliminaries: Neural Radiance Fields

ICON relies on Neural Radiance Fields (NeRF) to represent
a 3D reconstruction: NeRF encodes a 3D scene as a contin-
uous 3D function through a multilayer perceptron (MLP) f
parameterized by Θ: 3D point x and viewing direction d
form the input (x,d) ∈ R5 → (c, σ) ∈ R4, where c ∈ R3

is the color and σ is the opacity. To generate a 2D rendering
of a scene at each pixel p = (u, v) in image Îi from cam-
era pose Pi, NeRF uses a rendering function R to aggregate
the radiance along a ray shooting from the camera center oi
position through the pixel p into the volume:

Îi(p) = R(p, Pi|Θ) =

∫ zfar

znear

T (z)σ(r(z))c(r(z), d)dz

(1)
where T (z) = exp(−

∫ z

znear
σ(r(z))dz) is the accumulated

transmittance along the ray, and r(z) = oi + zd is the cam-
era ray from origin oi through p, as determined by camera
pose Pi. NeRF implements R by approximating the inte-
gral via sampled points along the ray, and is trained through
a photometric loss between the groundtruth views Ii and the
rendered view Îi for all images i = 1, ..., N :

Θ∗ = argminΘLp(Î|I, P ),where Lp(I, Î) =
∑

∥Ii−Îi∥2

(2)

3.2. Incremental frame registrations

A major limitation for these joint pose and NeRF optimiza-
tion methods is a requirement for good initial poses. If {Pi}
contain a diverse set of viewpoints and are initialized all
from identity, these methods often collapse. For example,
a simple but common collapsing solution is fragmentation:
each frame creates its own fragmented 3D representation,

Bas Relief

Overlapping 
Registration

Fragmentation

A tube of stacked toytrucks
that the camera flies through 
like a flipbook

Pose Est. vs. GT Original View Reconstruction

A concave apple inside the table

Vacant voxels from 
missing parts of true 
camera trajectory

Blurry rendering 
on overlapped 
trajectory

Figure 3. Three major failure modes of joint pose and NeRF
optimization: fragmentation, Bas Relief, and overlapping reg-
istration. Predicted (colored) and GT (grey) poses are shown.
Fragmentation: Pose and NeRF break apart, producing sepa-
rate, mutually invisible radiance fields. Here a tube of toy trucks
is created, each occluding the next, which the poses fly through
flipbook-style, each seeing a single toy truck. See also Fig. 1,
where independent reconstructions occur in different regions of
3-space. Bas Relief: Due to an inherent ambiguity in RGB re-
construction, the model constructs a “relief” by creating a concave
apple inside the table, resulting in camera trajectories inverted by
180 degrees. Overlapping Registration: Two subsets of the pose
trajectory are trapped in a local minimum, incorrectly observing
the same part of the radiance field, leading to blurry rendering and
empty voxels. Here, one side of the toaster is blurry due to over-
lapping views, while the other has no views and is vacant.

all mutually invisible to the other views (Fragmentation
fig. 3). Indeed, BARF [23] collapses on all sequences of the
CO3D dataset when the poses {Pi} consist of a closed-loop
flyaround (see Tab. 1). As discussed in [62], when no pose
prior is provided, a breaking point of 20 degree rotation dif-
ference for the whole trajectory is observed.

To tackle this problem, we rely on a simple yet effective
intuition: camera motions in videos are smooth. Therefore,
given a frame Ii in a video, its camera pose Pi is likely to be
close to Pi−1. We leverage this observation and propose to
register frames incrementally following the temporal order.
Implementation. At the start of training, we jointly opti-
mize NeRF parameters Θ and poses {P1, P2} from the first
two frames {I1, I2}. After every k iterations, we add a new
frame Ii and initialize its pose Pi by Pi−1. We freeze the
learning rate on poses {Pi}Ni=1 and NeRF Θ until all frames
are registered. A learning rate decay schedule may be ap-
plied after all N images are added.

3.3. Confidence-Based Optimization

The incremental registration process aims at providing good
initialization for the camera poses. However, optimizing
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poses and NeRF using photometric losses is highly non-
convex and contains many local minima [24, 72]. In ad-
dition, an incorrectly optimized pose may provide mislead-
ing learning signals towards NeRF, increasing the possibil-
ity for poses to re-register incorrectly on already registered
viewpoints (Overlapping Registration fig. 3).

To tackle these, we propose a confidence-guided opti-
mization schema. The intuition is simple: when a pose Pi is
confident, it should be trusted more to improve the learned
NeRF f(Θ); when a ray sampled from Pi contains locations
that are confident, it should be weighted more to adjust the
poses. When pose confidence drops dramatically for a new
frame, it is likely that the pose got stuck in a local minima,
so we perform a restart to re-register this pose. This is simi-
lar to the trial and error strategy of COLMAP [49]. We next
describe how we measure confidence for each pose Pi and
each point/viewing direction (x,d) in 3D.
Encoding confidence in 3D. We construct a Neural Confi-
dence Field on top of NeRF: given an input 3D location and
direction (x,d), NeRF f also predicts confidence ζ(x,d).
We add one fully-connected layer on top of the features,
followed by a sigmoid, similar to the color prediction head.

The confidence for a ray r, is then aggregated through
volumetric aggregation similar to opacity rendering:

ζr = (

∫ zfar

znear

P(z)dz)(

∫ zfar

znear

P(z)ζ(r(z), d)dz)

+ (1−
∫ zfar

znear

P(z)dz)(

∫ zfar

znear

ζ(r(z), d)dz) (3)

where P(z) = T (z)σ(r(z)). We note that the first term is
more prominent when the pixel is opaque whereas the latter
is more prominent for transparent pixels.
Measuring confidence. We measure confidence by how
well a pixel reprojects in 2D through photometric error.
Given a ray and its confidence ζr, we minimize Lconf =
∥e−E/τ − ζr∥2, where E is the photometric error used to
train NeRF and τ is a temperature parameter. Lconf is only
used to train the confidence head; the gradient is stopped
before NeRF parameters Θ or poses.
Pose confidence. We compute pose confidence ζPi

for pose
Pi by aggregating confidence over rays sampled from Pi.
At the start, P1 has confidence 1 and others have confidence
0. During training, we use a momentum schedule to update
pose confidence: at training iteration t, we sample B rays
{rij}Bj=1 from pose Pi, and update confidence ζtPi

as

ζtPi
= βζt−1

Pi
+ (1− β)

1

B

B∑
j=1

ζri
j

(4)

The momentum β is 0.9 in our experiments.
Calibrating loss by confidence. We use confidence to cal-
ibrate L. Intuitively:

• When we compute gradients for NeRF parameters Θ, the
loss is weighted by {ζPi}, the pose confidence.

• When we compute gradients for pose {Pi}, the per-ray
loss is weighted by {ζr}, the ray confidence.

At each step, we sample ray {rij}Bj=1 from Pi. The loss is:

LNeRF(Θ|P̂ , I) =
∑
i

(
∑
j

L(rij))ζPi
)/(

∑
i,j

ζPi
) (5)

LPose(P̂ |Θ, I) =
∑
i,j

L(rij)ζri
j
/(
∑
i,j

ζri
j
) (6)

Lall(Θ, P̂ |I) = LNeRF + LPose + Lconf (7)

Pose re-init. Inspired by trial-and-error registration mech-
anisms in incremental SfM [49], we do a re-initialization
from the previous pose if a new image fails to register. We
declare failure if we see an abrupt drop in confidence for
a newly registered image: after we register (Ii, Pi), we
restart if new pose confidence ζPi is less than λ standard
deviations of the mean of the K previous pose confidences:
ζPi

≤ mean({ζPj
}i−1
j=i−K)−λ · std({ζPj

}i−1
j=i−K). We use

λ = 2 and K = 10 throughout our experiments.

3.4. Bas-Relief Ambiguity and Confidence-based
Restart

Bas-relief ambiguity [2], and the related “hollow-face” op-
tical illusion, are examples of fundamental ambiguity in re-
covering an object’s 3D structure when objects that differ
in shape produce identical images, perhaps under differing
photometric conditions like lighting or shadow. For exam-
ple, a surface with a round convex bump lit from the left
may appear identical to the same surface with an concavity
lit from the right. We refer generically to such situations as
”Bas-Relief” solutions. Human visual systems are known
to employ strong priors (e.g. favoring convexity) to select a
particular solution among multiple possibilities.

We observe this phenomenon when jointly optimizing
camera poses and NeRF, especially early in optimization
when total camera motion is small. The model becomes
stuck in a local minimum and cannot escape. For exam-
ple, a concave version of the scene may be reconstructed
when the groundtruth is a convex scene (see Bas Relief in
Fig. 3). In this example, the camera movement is off by 180
degrees and moves in opposite directions compared to the
groundtruth trajectory. We believe that simple priors, using
cues like coarse depth, could help produce more human-like
interpretations of natural scenes. However, for this study we
avoid crafting priors, and remark that our confidence-based
calibration of losses helps reduce this issue (16% to 9%).

We also observe that incorrect Bas Relief solutions gen-
erally have higher error and lower confidence; Relief so-
lutions tend to be valid for a limited set of viewpoints and
wider viewpoints become inconsistent. Hence we propose a
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generic solution by adopting the restart strategy from incre-
mental SfM. For example, COLMAP restarts to identify dif-
ferent initial pairs if the final reconstruction does not meet
certain criteria (e.g. ratio of registered images). For us, we
launch K runs independently and measure the confidence
after a fixed number of iterations. We pick the one with
the highest confidence. In practice, we launch 3 runs and
measure the confidence at 10% of the training.

3.5. Confidence-based geometric constraint

Following recent works [17, 57], we add a geometric con-
straint to the optimization. Different from the ray-distance
loss [17] and depth consistency loss [57], we adopt samp-
son distance [16], similar to [60]. We extract correspon-
dence between a frame and its neighbors. We use SIFT [27]
features, primarily for fair comparison with COLMAP. At
training time, for each pose Pi, we sample a pose Pj in its
neighborhood, then compute Sampson distance:

LSampson =
|xiFxj |

|(xiF )1 + (xiF )2 + (Fxj)1 + (Fxj)2|
(8)

where F is the fundamental matrix between Pi and Pj and
(xiF )k indicates the kth element.
Loss calibration by confidence. Although geometric cues
help constrain the early optimization landscape, the corre-
spondence pairs can be incorrect and/or not pixel-accurate,
especially for objects with little texture. This causes the ge-
ometric constraint to be detrimental to ICON for obtaining
precise poses and reconstructions. We rely on pose con-
fidence ζPi to weight the Sampson distance: for a pair of
pose Pi and Pz , weight by 1−min(ζPi , ζPj ).

4. Experiments
Datasets. We focus our study on Common Objects in 3D
v2 (CO3D) dataset [43], a large-scale dataset consisting of
turn-table style videos of objects. Ground truth poses are
obtained through COLMAP. We train on two versions of
the dataset: full-scene, which uses the unmodified image
frames (both object and background visible), and object-
only, which removes the background leaving only fore-
ground object pixels. We believe the object-only version is
a more challenging yet meaningful evaluation set; in full-
scene, objects are often placed on textured backgrounds
where COLMAP can successfully extract poses. This im-
plicitly equates object pose and camera pose, and this as-
sumption breaks in dynamic scenes where both object and
camera are moving. We use 18 categories specified by the
dev set, with “vase” and “donut” removed due to symme-
try (indistinguishable in the object-only setting). We se-
lect scenes with high COLMAP pose confidence for cam-
era pose evaluation. We clean the masks using TrackAny-
thing [69]; results on original masks are present in the sup-

plementary. To demonstrate performance on dynamic ob-
jects, we additionally re-purpose HO3D [15] v2 to eval-
uate the camera pose tracking and view synthesis quality.
HO3D consists of static camera RGBD videos capturing dy-
namic objects manipulated by human hands. We only use
the RGB frames for ICON and select 8 clips (each around
200 frames) from 8 videos, each covering a different object.
Finally, we show results on LLFF [33], a dataset with 8
forward-facing scenes commonly used for scene-level novel
view synthesis, especially for NeRFs.
Architectures and Losses Our architecture follows
NeRF [34] (no hierarchical sampling) and set the image’s
longer edge to 640. We use the standard MSE loss of NeRF.
When using Sampson distance, it is weighted by 10−4. For
the object-only settings in CO3D and HO3D, where object
masks are available, we use MSE loss to supervise the opac-
ity. For HO3D, we use hand masks when provided (7 out of
8 clips) to avoid sampling rays from occluded regions.
Training. We use BARF [23] settings and train for 200k it-
erations. For CO3D and HO3D, we skip every other frame
to reduce training time, producing sequences around 100
frames. For ICON and its variants, we add a new frame
every 1k iterations (CO3D/HO3D) / 500 iterations (LLFF)
and freeze the learning rate (100k iterations for HO3D and
CO3D, 30k for LLFF). Following BARF, we do not use po-
sitional encodings during registration and apply coarse-to-
fine positional encoding after registration.
Evaluation. Following [23], we evaluate on the last part
(typically 10%) of each sequence. We measure camera
pose quality with Absolute Trajectory Error (ATE) [76],
performing Umeyama alignment [58] of predicted cam-
era centers with ground truth. ATE consists of a transla-
tion (ATE) and rotation (ATErot) component, evaluating l2-
distance between camera centers and angular distance be-
tween aligned cameras, respectively. For novel view syn-
thesis, we run an additional test-time pose refinement, fol-
lowing standard practices in previous works [23, 57, 62, 72].
We use PSNR, LPIPS [75], and SSIM as metrics.
Baselines. We build ICON on top of BARF [23], and
compare against BARF for joint pose and NeRF optimiza-
tion. We additionally consider NoPe-NeRF [4], which uses
additional monocular depth estimation, L2G-NeRF [6],
which applies a local-global alignment module, and Lo-
calRF [32], which leverages additional monocular depth
and optical estimation and progressively registers multiple
radiance fields. For novel-view synthesis, we train NeRF
with ground truth poses. For pose, we compare against
a wide selection of baselines: PoseDiff [60] models SfM
within a probabilistic pose diffusion framework; concur-
rent work FlowCam [51] solves pose from estimated 3D
scene flow; DROID-SLAM [56] is a SOTA end-to-end
learning-based SLAM system. We also use their predicted
poses to initialize and train NeRF. In addition, on object-
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GT

NeRF

ICON

Figure 4. Novel view synthesis visualization of ICON without
poses and NeRF trained with GT poses. Despite having no pose
priors, ICON renders novel views at comparable or higher quality.
Results are taken from LLFF and CO3D.

ATE ATErot PSNR SSIM LPIPS
Pose Source + NeRF

DROID 0.431 8.92 17.19 0.526 0.541
FLOW-CAM 2.681 91.28 14.40 0.441 0.689

PoseDiff 1.973 27.25 18.82 0.563 0.520
Groundtruth - - 21.03 0.575 0.629

Joint Pose + NeRF optimization
BARF 6.215 114.63 12.77 0.401 0.871

GT-Pose+BARF 0.417 3.77 19.33 0.558 0.647
NoPe-NeRF 5.555 115.69 10.08 0.325 0.743
L2G-NeRF 6.644 127.74 11.25 0.427 0.865

LocalRF 3.715 63.42 14.60 0.467 0.693
ICON (Ours) 0.138 1.16 22.24 0.654 0.428

Table 1. Comparison on CO3D [43] full image scenes. While
baseline BARF may fail on CO3D due to larger camera motion
overall, ICON can estimate poses very precisely and render novel
views at quality similar or better than NeRF trained with GT poses.

only CO3D evaluation, we evaluate poses from state-of-
the-art SfM pipeline COLMAP [49] and an augment ver-
sion of COLMAP [47] using learning-based features Super-
Point [11]+SuperGlue [48] (COLMAP+SPSG). Though
ICON only uses RGB, we include popular RGB-D methods
on HO3D, including DROID with ground truth depth input,
BundleTrack [63] and state-of-the-art BundleSDF [66].

4.1. Full scene from CO3D

ICON is strong on full-scene CO3D. We compare ICON
and baselines on full CO3D scenes in Table 1. Without prior
knowledge, BARF must initialize all camera poses as iden-
tity. CO3D’s flyaround captures of objects result in camera
pose variation that significantly exceeds the threshold af-
ter which BARF’s performance collapses, with an ATErot

exceeding 100 degrees. In contrast, ICON’s incremental
approach recovers significantly more precise camera poses
(ATE of 0.137 and ATErot of 1.20), while also achieving
better visual fidelity, both qualitatively and quantitatively,
as measured by PSNR, SSIM, and LPIPS. Interestingly,
ICON still outperforms BARF even if BARF is provided
with the ground truth poses at initialization. We originally

ICONGT LocalRFNoPeL2GBARF

GT-
Camera

ATE: 
8.3

ATE: 
5.2

ATE: 
7.4

ATE: 
6.8

ATE: 
7.0

ATE: 
3.9

ATE: 
4.0

ATE: 
6.2

ATE: 
0.0

ATE: 
0.2

Figure 5. Novel view synthesis and trajectories of pose-free
NeRF methods. Predicted camera trajectories (red) are aligned
with GT (blue). Except ICON, others initialize their test poses by
the closest training pose for better quality rendering (see supp).

proposed this setting as an upper bound, but we believe this
result reflects instability in early iterations of BARF train-
ing: CO3D sequences are challenging compared to BARF
benchmark scenes (e.g. synthetic dataset from [34]/forward
facing LLFF). Camera coverage is sparser, with more dras-
tic lighting changes, and motion blur. Among the 18 scenes,
BARF suffers from ≥ 10 degree ATErot in 4, dragging
down the overall performance. ICON significantly outper-
forms other pose-free NeRF methods (NoPe, L2G and Lo-
calRF) as well, despite not using additional depth or flow
estimations, as visualized in Fig. 5. We note these meth-
ods considered easier, unrealistic settings in their experi-
ments; see Supplementary for more details on differences
in datasets and evaluation protocols.

We also make several comparisons with NeRF [34] and
pose prediction methods. We provide NeRF with poses
predicted by DROID-SLAM, FLOW-CAM, and PoseDiff,
which rely on annotated poses to train or additional sig-
nals such as optical flow [55]. However, our joint NeRF
and pose training produces better pose estimates (as mea-
sured by ATE and ATErot), and as a result, NeRF’s novel
view synthesis suffers in comparison. Even given CO3D’s
ground truth poses, ICON can outperform NeRF. While this
may at first seem surprising, we point out that even the
“ground truth” poses in CO3D are not true ground truth;
they are generated with COLMAP, which is not perfect. Ad-
ditionally, in contrast to COLMAP, ICON’s joint learning of
NeRF and poses means that the estimated poses are specifi-
cally optimized to also maximize NeRF quality. We hypoth-
esize that this leads to poses more compatible for learning
a NeRF, as reflected by the better performance we observe.
Similar observations were presented in prior works [17, 30].

4.2. Object-only on CO3D

6DoF pose is inherently tricky to annotate, so past datasets
often restrict motion to either the object or the camera; in
the latter case, visually distinct backgrounds (e.g. specially
designed patterns, such as QR codes around the object) are
often used to make pose trajectory reconstruction easier.
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ATE ATErot PSNR SSIM LPIPS
Pose Source + NeRF

DROID 5.903 90.25 14.54 0.181 0.818
FLOW-CAM 6.700 120.52 13.08 0.127 0.886

PoseDiff 4.601 64.24 15.42 0.508 0.492
Groundtruth - - 20.77 0.718 0.301

COLMAP variants
COLMAP(11) 1.177 13.62

-COLMAP-SPSG(11) 2.815 38.37
COLMAP-SPSG 3.616 43.74

Joint Pose + NeRF optimization
GT-Pose+BARF 2.055 17.00 15.65 0.802 0.277

BARF 6.522 114.97 8.22 0.772 0.370
NoPe-NeRF 6.355 116.68 5.95 0.186 0.824
L2G-NeRF 6.841 130.57 7.60 0.823 0.339

ICON (Ours) 0.215 1.80 22.45 0.893 0.132

Table 2. Comparison on CO3D [43] object-only scenes without
background. Despite the challenges with background removal
and failure from other methods, ICON can obtain poses at high
precision and render novel views at high-quality. Since COLMAP
only successfully registered more than 50% of frames on 11 ob-
jects, we marked it with “(11)” for comparison. The SPSG version
of COLMAP registers for all scenes, and we include a datapoint
on the 11 scenes subset that vanilla COLMAP succeeds.

These strategies however do not generalize to more in-the-
wild video, especially when both an object and the back-
ground (or camera) are moving. For this reason, we also
perform evaluations on CO3D with the background masked
out; in such a setting, algorithms are forced to only rely on
object-based visual signal for estimating pose (Table 4.2).

In this challenging setting, we again observe that BARF
fails to estimate accurate poses, as the camera trajectory
changes beyond what BARF can correct. Additionally, the
difficulty of this setting produces further deterioration of
BARF’s novel view synthesis. However, we observe that
ICON can still handle such videos, even without signal from
the background. This implies ICON is viable for joint pose
estimation and 3D object reconstruction on more general
videos, when the background cannot be relied on.

As with our full-scene CO3D experiments, we compare
with methods for estimating pose, and how well those poses
work when fed to a NeRF. We observe that without being
able to leverage the background, these methods struggle
mightily. Pose prediction ATE and ATErot from DROID-
SLAM in particular shoot up from 0.431 to 5.903 and 8.92
to 90.25, respectively. With poorer pose, the quality of the
learned NeRFs are also correspondingly worse.

For pose in particular, we additionally evaluate
COLMAP and its variant COLMAP-SPSG, which replaces
SIFT [27] with SuperPoint-SuperGlue [11, 48], on how they
predict pose from just the foreground objects of CO3D.
We observe that COLMAP performs significantly worse
when it cannot rely on background cues, far worse than
ICON. We believe this finding to be especially significant,
as COLMAP is often considered the gold standard for cam-

Input ATE ATErot Trans PSNR
BARF RGB 0.135 122.38 0.580 5.72
ICON 0.033 8.07 0.049 16.24

Baselines
DROID RGB 0.187 114.71 0.548

-DROID
RGB-D

0.105 51.93 0.262
BundleTrack 0.046 29.45 0.158
BundleSDF 0.021 6.82 0.030

Table 3. Comparison on HO3D [15]. ICON works robustly
against faster motion (vs CO3D), hand occlusion and lack of back-
ground information. In fact, despite only using RGB inputs, ICON
can track poses at similar precision as SOTA RGB-D BundleSDF.

era pose alignment, and is often treated as “ground truth”
(as in CO3D). This suggests our incrementally learned joint
pose and NeRF optimization represents a promising new al-
ternative for posing moving foreground objects, even if the
background or camera is also moving.

4.3. Hand-held dynamic objects on HO3D

Understanding handheld objects is of particular importance
to many applications, as the very nature of interaction often
implies importance, and hands are often the source of object
motion. Pose and 3D reconstructions are key components of
understanding objects, so the ability to generate them from
videos of handheld interactions is of high utility.

We show results on HO3D [15] in Table 3. Again, we
primarily compare against BARF for joint object pose esti-
mation and NeRF learning. Similar to the object-only ver-
sion of CO3D, the background is masked out since it moves
differently than object. In addition, HO3D presents chal-
lenges with hand-occlusion and faster pose changes than
CO3D. As with CO3D, we observe that BARF struggles
to properly learn pose, especially with more drastic camera
motion across nearby frames. In contrast, ICON handles
these challenges well: poses are predicted accurately and
textures are rendered properly in novel views (Fig. 6)

Several existing works [63, 66] addressing this problem
additionally use depth, which provides a powerful signal for
3D object reconstruction and pose. On the other hand, depth
requires additional sensors and is not always available, and
most visual media on the internet is RGB-only. Interest-
ingly, we find that our results with ICON are competitive
with state-of-the-art methods like BundleSDF which do re-
quire depth. In addition, although we don’t design or opti-
mize ICON for mesh generation, we include a comparison
on mesh by running an off-the-shelf MarchingCube [26] al-
gorithm. We follow the evaluation protocol in [66], use
ICP for alignment [3] and report Chamfer distnace. De-
spite not using depth signals, we found ICON provides
competitive mesh quality (0.7 cm) compared to BundleSDF
(0.77 cm). We remark that BundleSDF’s reconstruction per-
formed poorly on one scene (2.39 cm); removing the worst
scene for both methods, BundleSDF and ICON achieved
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CO3D-FullImg CO3D-No Background HO3D
Incre Geo. Calib. Restart ATE ATErot PSNR SSIM LPIPS ATE ATErot PSNR SSIM LPIPS ATE ATErot PSNR SSIM LPIPS
✓ ✓ ✓ ✓ 0.138 1.16 22.24 0.654 0.428 0.215 1.80 22.45 0.893 0.132 0.033 8.07 16.24 0.863 0.164
✓ ✓ ✓ 0.714 25.40 20.48 0.632 0.486 0.224 1.86 22.47 0.892 0.132 0.035 27.32 15.02 0.873 0.670
✓ ✓ ✓ 1.691 28.95 18.66 0.565 0.556 0.340 3.91 21.92 0.887 0.140 0.032 19.19 14.51 0.866 0.184
✓ ✓ 1.283 36.82 19.05 0.567 0.562 0.972 15.94 21.03 0.875 0.163 0.046 30.50 12.86 0.863 0.290
✓ 3.075 78.49 14.38 0.454 0.816 0.890 8.05 20.67 0.850 0.187 0.076 32.26 12.51 0.870 0.189

6.215 114.63 12.77 0.401 0.871 6.522 114.97 8.22 0.772 0.370 0.307 131.16 7.45 0.82 0.29

Table 4. Ablation study by removing components when possible. We remark that all designed component are critical for ICON. In
addition, we didn’t observe Bas Relief on the CO3D Object-Only (No Background) scenes, so the effect of Restart is minimal.

GT ICON Novel View 
Figure 6. Visualization of ICON novel view synthesis on HO3D.
ICON can recover shapes and textures accurately.

0.54 cm and 0.56 cm. We believe that this represents the
potential of monocular RGB-only methods for object pose
estimation and 3D reconstruction.

4.4. Ablation studies

What are the key components in ICON? We perform
ablation studies to gain deeper insight why our proposed
methodology leads to such significant improvements in Ta-
ble 4, examining the impact of incremental frame reg-
istration (“Incre.”), as well as confidence-based geomet-
ric constraint (“Geo.”), loss calibration through confidence
(“Calib.”), and restarts (“Restart”). Note that the top
row, with all options enabled, corresponds to our proposed
ICON, while the bottom row (with none) is equivalent to
BARF. We find all the proposed techniques to be essential.

ICON works on forward-facing scenes with minor cam-
era motion. While we primarily focus on the challenging
setting of object-centric pose estimation and NeRF repre-
sentations, ICON does not enforce any object-specific pri-
ors. Our approach thus also generalizes to the scene im-
ages of LLFF [33], a common benchmark used by the wider
NeRF community. Compared to the type of videos in CO3D
or HO3D, the images in LLFF tend to be forward-facing,
so the camera poses across images have only mild differ-
ences. Though easier, being able to recover camera poses in
such settings is still important for wider applicability. We
find that because the camera poses of LLFF only have lim-
ited variation, BARF initialized at identity is able to recover
good poses and achieve good PSNR, SSIM, and LPIPS (Ta-
ble 5). ICON, however, outperforms both BARF and a stan-
dard NeRF provided with ground truth poses.

ATE ATErot PSNR SSIM LPIPS
GT-Pose+NeRF - - 22.06 0.648 0.294

BARF 0.498 0.896 23.89 0.721 0.240
ICON 0.459 0.806 24.23 0.731 0.221

Table 5. Comparison on LLFF [33]. When camera poses have
minor or mild motion, BARF works well with identity pose initial-
ization and ICON performs slightly better. ATE is scaled by 100.

Figure 7. 3D-fy objects in-the-wild. (left) Videos of hand-
manipulated objects; (right) we run ICON on the masked video to
get poses+NeRF, and then use Marching Cubes to create meshes.

4.5. 3D-fy objects in-the-wild

ICON essentially reduces the need for pose extractions to
train NeRFs. We believe it has the potential to unlock
key capabilities in real-world applications. As a proof-of-
concept, we record several videos of dynamic objects in-
the-wild, including object manipulations and object throw-
ing. We ran ICON and convert the NeRF to meshes using
off-the-shelf Marching Cubes algorithms (Fig. 7).

5. Conclusion
We proposed to study joint pose and NeRF optimization in
an incremental setup and highlighted interesting and impor-
tant challenges in this setting. To tackle them, we have de-
signed ICON, a novel confidence-based optimization pro-
cedure. The strong empirical performance across multi-
ple datasets suggests that ICON essentially removes the re-
quirement for pose initialization in common videos. Al-
though our focus is on object-centric scenarios, there are
no priors or heuristics that rule out other settings. ICON’s
LLFF and full-scene CO3D results are strong and show
promise for more general types of video input, such as scene
reconstruction from moving cameras (e.g. egocentric [14]).
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