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Figure 1. Typical method (S2D [22]) based on the encoder-decoder network (ED-Net) and its intermediate features are visualized by
the heatmap [46]. The sparse decoder feature fdi derived from the dense fused encoder-decoder feature fedi tends to complement the
corresponding encoder feature fei, where the “dense⇒sparse” process destroys the completeness of features multiple times.

Abstract

The encoder-decoder network (ED-Net) is a commonly
employed choice for existing depth completion methods, but
its working mechanism is ambiguous. In this paper, we vi-
sualize the internal feature maps to analyze how the net-
work densifies the input sparse depth. We find that the en-
coder feature of ED-Net focus on the areas with input depth
points around. To obtain a dense feature and thus esti-
mate complete depth, the decoder feature tends to comple-
ment and enhance the encoder feature by skip-connection
to make the fused encoder-decoder feature dense, resulting
in the decoder feature also exhibits sparse. However, ED-
Net obtains the sparse decoder feature from the dense fused
feature at the previous stage, where the “dense⇒sparse”
process destroys the completeness of features and loses in-
formation. To address this issue, we present a depth fea-
ture upsampling network (DFU) that explicitly utilizes these
dense features to guide the upsampling of a low-resolution
(LR) depth feature to a high-resolution (HR) one. The
completeness of features is maintained throughout the up-
sampling process, thus avoiding information loss. Fur-
thermore, we propose a confidence-aware guidance module
(CGM), which is confidence-aware and performs guidance

*Corresponding author: daiyuchao@nwpu.edu.cn.

with adaptive receptive fields (GARF), to fully exploit the
potential of these dense features as guidance. Experimental
results show that our DFU, a plug-and-play module, can
significantly improve the performance of existing ED-Net
based methods with limited computational overheads, and
new SOTA results are achieved. Besides, the generalization
capability on sparser depth is also enhanced. Project page:
https://npucvr.github.io/DFU.

1. Introduction
Accurate and dense scene depth is crucial for various ap-
plications [13, 34, 41], such as autonomous navigation [33]
and augmented reality [24]. Existing active depth sensors
have been widely applied because they can obtain accu-
rate depth information. However, the depth acquired by
these sensors is generally highly sparse due to the imag-
ing principles and power limitation. For instance, roughly
4% pixels in the depth provided by 64-line LiDAR have
values [21, 22, 35]. To facilitate the use of the depth data,
we need to address a sparse-to-dense problem in which the
given sparse depth map is densified to the dense depth map,
usually guided by the corresponding RGB image.

Depth completion is a challenging task as the input
depth information is scarce. Existing approaches commonly

1

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21104



consider this task as a pixel-wise regression problem and
utilize an encoder-decoder network with skip-connection
(ED-Net) to address it. For instance, the single-branch
ED-Net [2, 14, 21, 22, 25] uses standard backbone net-
works [6, 19] as the encoder to extract features from the
sparse depth and RGB images. Then, the decoder employs
operations, such as the element-wise addition and transpose
convolution, to fuse the encoder feature and upsampling.
Recently, some multi-branch ED-Nets [4, 31, 32, 44, 47],
including the dual-encoder ED-Net [4, 47] and the dou-
ble encoder-decoder ED-Net[31, 32], etc., have been pro-
posed. These methods employ separate branches to extract
features from the sparse depth and RGB images, and in-
ternal features are fused at multiple scales. Although ex-
isting ED-Nets based methods have achieved considerable
success [39, 48, 51], the ED-Net is often employed as a
black box. how the network recovers a dense depth map
from the input sparse depth has always been ambiguous.

To gain a deeper understanding of the ED-Net employed
by depth completion, Fig. 1 visualizes internal features of
the representative method S2D [22] through the feature
heatmap [46]. The feature heatmap [46] is obtained by
summing the value of the feature along the channel dimen-
sion and normalizing them to a range of (0, 1), which re-
flects the spatial locations that the network focuses on at
different stages and provides valuable insights to infer the
behaviors of the network. We observe that although the
sparse depth map and dense RGB image are both fed to
the network, the shallow feature of the encoder primarily
focuses on few regions where the sparse depth map has val-
ues. Through multiple downsampling and convolution, the
sparse regions of interest continue to expand and aggregate,
the encoder feature gradually becomes more “dense”. As
shown in Fig. 1, the lowest-resolution encoder feature fe4
has rich information at most spatial locations. However, to
obtain a dense feature and thus estimate complete depth,
the decoder tends to obtain a complementary feature for
the corresponding encoder feature, which contains multiple
“dense⇒sparse” processes. For instance, the decoder fea-
ture fd1, which is skip-connected to fe1, tends to comple-
ment and enhance existing fe1 to make the fused encoder-
decoder feature fed1 dense. Therefore, the decoder feature
fd1 also exhibits sparse. However, the sparse fd1 is de-
rived from the dense fed2 at the previous stage, where the
“dense⇒sparse” process destroys the completeness of fea-
tures and loses information. Experiments on multi-branch
networks also validate this observation, which is provided in
the supplemental material. To conclude, existing ED-Nets
have not fully utilized the internal dense features, thereby
restricting the performance of ED-Net based methods.

To address the issue, we present a depth feature upsam-
pling network (DFU) that explicitly utilizes these dense
features to guide the upsampling of a low-resolution (LR)

depth feature to a high-resolution (HR) one. The com-
pleteness of features is maintained throughout the upsam-
pling process, thus avoiding information loss. The multi-
scale dense features that cover comprehensive scene depth
information can progressively resolve ambiguity in super-
resolving the feature of uneven depth distribution areas.
Meanwhile, the upsampling process can also effectively in-
tegrate these dense features into the HR depth feature to
predict the dense depth. To further improve the effective-
ness of the DFU, we propose a confidence-aware guidance
module (CGM) to fully exploit the potential of these dense
features as guidance. Specifically, we first filter out unreli-
able values of the depth feature by predicting its confidence
map, and then perform the guidance operation with adap-
tive receptive fields. In addition, the proposed network can
be extended to multi-layer to achieve better results.

Our main contributions are summarized as:

• We analyze the working mechanism of popular ED-Nets
by visualizing the internal feature maps and reveal that
multiple “dense⇒sparse” processes exist in the decoder
network, which destroy the completeness of features and
lose information.

• We propose a depth feature upsampling network with
confidence-aware guidance module, which is a plug-and-
play module, to significantly improve the performance of
existing ED-Net based methods and enhance the gener-
alization ability on sparser depth with limited computa-
tional overheads.

• Extensive experiments on popular datasets prove the ef-
fectiveness of our method on existing popular ED-Nets,
including single-branch, multi-branch, and SPN-based
networks, and new SOTA results are achieved.

2. Related Work

Single-branch ED-Nets. The single-branch ED-Net con-
tains one encoder and one decoder. The pioneer ap-
proaches [21, 26] concatenates the sparse depth and RGB
image directly, and feeds them into a standard encoder-
decoder network to predict the dense depth. Unlike using
convolution in the last layer, [28] proposes to use the least
squares to fit the relationship between the extracted features
and depth values. Considering the gap between the RGB
and depth information, subsequent methods [10, 20, 42]
generally use two separate convolutional layers to extract
features from the sparse depth and RGB image, respec-
tively. Then, the multi-modal features are concatenated and
fed into the network. This type of approach is simple and
straightforward, but its performance is generally limited.
Multi-branch ED-Nets. Recently, some multi-branch ED-
Nets [31, 32, 40, 44, 47] have been proposed for bet-
ter extraction and fusion of the RGB and depth infor-
mation. For example, the dual-encoder ED-Net [4, 47]
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Figure 2. The proposed depth feature upsampling network (DFU). It explicitly employs the internal dense features of ED-Nets that are not
fully utilized by existing methods to guide the upsampling of a low-resolution (LR) depth feature to a high-resolution (HR) one.

commonly employs two separate encoders to extract fea-
tures from RGB images and sparse depth, respectively.
Then, the extracted RGB and depth features are fused at
single-scale or multi-scale by the channel-wise concatena-
tion, element-wise summation, or other sophisticated fusion
modules [32, 37, 44, 47]. GuideNet [32] proposes a dou-
ble encoder-decoder network, which extracts the RGB and
depth feature by a whole encoder-decoder network. The
decoder feature of the RGB branch and the encoder feature
of the depth branch are fused by the guided convolutional
network at multiple scales. The multiple encoder-decoder
network is proposed by RigNet [44], which uses repetitive
hourglass networks to extract discriminative RGB features,
and the fusion of RGB and depth information is also per-
formed in a repetitive manner.
SPN-based Networks. The spatial propagation network
(SPN) [2, 3, 14, 18, 25, 43] is a hot topic, which iteratively
refines the predicted depth by aggregating the reference and
neighbor pixels. The initial SPN [17] updates each pixel
by three adjacent pixels from the previous row or column.
CSPN [2] improves it by updating all pixels simultaneously
by fixed-local neighbors, and CSPN++ [3] assembles the
results predicted by using the neighbors in different ranges.
To obtain non-local neighbors, DSPN [43] and NLSPN [25]
learn the offsets to the regular grid. DySPN [14] gives vari-
able weights to neighbors with different distances to make
the kernel weights change dynamically during the update
process. GraphCSPN [18] integrates 3D information into
the update process. LRRU [36] proposes to employ multi-
scale guidance features to guide the prediction of neighbors
and weights, which makes them change adaptively through-
out the update process.

3. Methodology

In this section, we present a depth feature upsampling net-
work (DFU) that effectively utilizes internal dense features
of ED-Net to guide the upsampling of a low-resolution (LR)
depth feature to a high-resolution (HR) one. The DFU is
introduced in three parts: (1) feature extraction, includ-
ing extracting the LR depth feature and multi-scale dense
features from ED-Net as guidance, (2) depth feature up-
sampling guided by the proposed confidence-aware mod-
ule, (3) going deeper, where DFU is extended to multi-layer
to obtain better results. For descriptive convenience, the
feature is marked as fi, where i = {1, 2, 3, 4, 5} de-
notes the feature of different resolutions, namely fi ∈
RH/n×W/n×Di , n = 2i−1.

3.1. Features Extraction

The LR depth feature fdd4 ∈ RH/8×W/8×Ddd4 is extracted
from the sparse input depth using a convolutional network,
where Ddd4 is set to 64 in this paper. The network consists
of 8 residual blocks, 2 at full-resolution, 2 at 1/2-resolution,
2 at 1/4-resolution, and 2 at 1/8-resolution. Although the
input depth is sparse, the depth information continues to
expand and aggregate by multiple downsampling and con-
volutional layers, making the LR feature fdd4 dense (most
spatial positions of the feature contain rich information).

As shown in Fig. 2 (b) and (c), the guidance feature
can be obtained from any ED-Net, including single-branch
ED-Net, multi-branch ED-Net, etc. In this paper, we gen-
erally extract five encoder features {fe1, fe2, fe3, fe4, fe5}
at different resolution. Then, the decoder features
{fd4, fd3, fd2, fd1} and fused encoder-decoder features
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{fed4, fed3, fed2, fed1} are obtained in the decoder. We se-
lect the features {fed4, fed3, fed2, fed1} to guide the upsam-
pling of the LR depth feature. These features are gener-
ally dense and cover comprehensive scene depth informa-
tion, which can progressively resolve ambiguity in super-
resolving the feature of uneven depth distribution areas.
Furthermore, the upsampling process effectively integrates
these dense features that are underutilized in existing ED-
Nets, thus improving the accuracy of depth completion.

To reduce computational complexity, we reduce the
channel number of these features {fed4, fed3, fed2, fed1} to
the same as the LR depth feature by

fgi = Conv1×1(fedi), (1)

where Conv1×1 is a 1 × 1 convolutional layer, and the
feature fgi is employed as the guidance feature in the DFU.

3.2. Depth Feature Upsampling

As shown in Fig. 2 (a), the LR depth feature is upsampled
to HR through four stages, which are guided by the features
{fg4, fg3, fg2, fg1}, respectively. To fully exploit the po-
tential of the guidance feature, we propose a Confidence-
aware Guidance Module (CGM), which first filters out
unreliable values of the depth feature by predicting its con-
fidence map, and performs the the guidance operation with
adaptive receptive fields to handle uneven depth distribu-
tion. The first stage of the DFU consists of a CGM, while
other stages adopt the “upsampling + CGM”. As shown in
Fig. 3, for the depth feature fddi, we denote the output fea-
ture of the CGM as f ′

ddi. In this paper, the upsampling is
implemented by using a deconvolutional layer of stride 2,
and the details of the CGM are introduced as follows:
Confidence-aware. The LR depth feature is extracted from
the input depth that is highly sparse and noisy. Besides, am-
biguity in super-resolving the feature of uneven depth distri-
bution areas often exists. Therefore, we predict an element-
wise attention map to filter out unreliable feature values.
Specifically, we concatenate the depth feature fddi and the
guidance feature fgi. The confidence map ci is predicted by
a 3× 3 convolutional layer as:

ci = σ(Conv3×3(conc.(fddi, fgi))), (2)

here σ denotes the sigmoid function to compress the confi-
dence value to 0− 1.
Guidance with Adaptive Receptive Fields (GARF). In
the field of depth completion, guided convolutional net-
works have been studied widely for multi-modal feature
fusion. For example, the pioneering GuideNet [32] pre-
dicts spatially-variant depthwise convolutional kernels [30]
W ∈ Rhw×k2×c from the RGB feature, and then applies
them to extract the depth feature. Here, h, w, and c are
the height, weight, and channel number of the feature map,

Conc.
1-

+

GARF

Confidence
Map

Conc. ... x
Multi-scale 
Fourier-Bessel bases

Adaptors with adaptive
Receptive Fieldsx

Weight

Per-pixel 
Depthwise Kernel

Depth feature

Guidance feature

Output

...

Conc.Concatenation

Convolution

Sigmoid

Spatially-variant 
Convolution

Component

Guidance with Adaptive  Receptive Fields

Figure 3. The Confidence-aware Guidance Module (CGM)
and k is the kernel size. To reduce computational complex-
ity, [37] decomposes the depthwise kernel Wpi

∈ Rk2×c

at each spatial location pi into content-adaptive adaptors
A ∈ Rk2×m multiplied by the spatially-shared component
D ∈ Rm×c. The guided convolutional network has been
proven to be effective since it can transfer structural infor-
mation from the guidance feature to the target feature [12].
Therefore, in our method, we adopt this strategy to fully
utilize the guidance feature. However, the kernel size of ex-
isting guided convolutional networks is usually fixed, which
cannot handle the areas with uneven depth distribution well.
To address this issue, we propose a guidance module with
adaptive receptive fields.

Recently, some novel dynamic convolution net-
works [27, 38] have shown that the convolutional kernel
can be equivalently represented as a combination of
pre-fixed bases, such as Fourier-Bessel(FB) bases [1].
Inspired by these works [27, 38], we further decompose the
adaptors over multi-scale FB bases to selectively choose
a receptive field at each spatial position. Specifically, we
pre-generate n FB bases of different sizes, such as 3 × 3,
5 × 5, and 7 × 7, and then unify them to the same size by
zero padding. Unlike [37] directly predicts the adaptors, we
predict the weight of the multi-scale FB bases. As shown
in Fig. 3, the adaptors with adaptive receptive fields can be
obtained by multiplying the predicted weight with the FB
bases. Then, we preform the guidance operation similar as
[37] and obtain the refined depth feature fgdi by:

fgdi = GARF (ci ⊙ fddi, fgi) (3)

Feature Updating. The confidence map ci assigns low con-
fidence to the unreliable depth features, which are exactly
the areas we want the guidance module to prioritize. There-
fore, we obtain the output of CGM f ′

ddi by:

f ′
ddi = ci ⊙ fddi + (1− ci)⊙ fgdi (4)

3.3. Going Deeper

To further enhance the performance of the proposed
method, we extend the depth feature upsampling network
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Table 1. The performance comparison between the baseline models and their improved model by using the multi-layer DFU.

KITTI Validate Dataset [5] NYUv2 Depth Dataset [23]

Params. [M] FLOPs [G]
RMSE ↓

[mm]
MAE ↓
[mm]

iRMSE ↓
[1/km]

iMAE ↓
[1/km]

RMSE ↓
[mm]

REL ↓
(×1000)

δ1.25 ↑
[%]

δ1.252 ↑
[%]

δ1.253 ↑
[%]

Our single-branch ED-Net 11.95 291.24 772.87 210.26 2.28 0.95 111.94 16.62 99.32 99.88 99.98
Improving by One-layer DFU + 1.67 + 43.79 750.58 205.32 2.14 0.93 100.67 13.92 99.46 99.91 99.98
Improving by Two-layer DFU + 2.41 + 65.65 745.27 202.34 2.18 0.93 98.99 13.63 99.48 99.91 99.98

Improving by Three-layer DFU + 3.14 + 87.52 746.98 201.08 2.09 0.89 97.78 13.59 99.49 99.91 99.98

Our Dual-branch ED-Net 22.28 498.84 753.81 204.39 2.12 0.92 101.12 14.40 99.46 99.91 99.98
Improving by One-layer DFU + 1.65 + 38.34 741.39 199.65 2.00 0.88 98.63 14.21 99.49 99.92 99.98
Improving by Two-layer DFU + 2.38 + 57.24 738.20 198.85 2.03 0.87 97.62 13.70 99.50 99.92 99.98

Improving by Three-layer DFU + 3.10 + 76.15 736.60 198.61 2.01 0.87 96.27 12.92 99.50 99.92 99.98

to multi-layer. In this subsection, the feature is marked as
f j
i , where the superscript j denotes the feature in the j-th

layer DFU. As shown in Fig. 2, we deepen the depth of
each stage of the network. Specifically, we employ the fea-
ture f j

ddi of the j-th layer DFU as the guidance feature f j+1
gi

of the corresponding module of the j+1-th layer DFU.

4. Experiments

4.1. Implementation Details

We employ PyTorch to implement our model, and conduct
experiments with GeForce RTX 3090 GPUs. Our train-
ing process is divided into two stages, which both em-
ploy the L1 + L2 loss to train 35 epochs. The initial learn-
ing rate is 10−3, and it is reduced by 50% every 5 epochs.
We employ the AdamW optimizer with a batch size of 8,
and set β1 = 0.9, β2 = 0.999, weight decay is 10−6. In
the first stage, we first train the ED-Net to obtain the in-
ternal dense features that cover comprehensive scene depth
information. Then, we train the depth feature upsampling
network (DFU), in which these dense features are explic-
itly employed as the guidance features. For the multi-layer
DFU, we only supervise the output of the last-layer DFU.

4.2. Datasets and Metrics

KITTI Dataset [5] consists of sparse depth maps projected
from raw LiDAR scans and corresponding RGB images,
which is a popular real-world autonomous driving dataset.
The dataset contains 86k frames for training, 1k selected
frames for validation, and 1k frames without ground truth
that need to be tested on the online benchmark.
NYUv2 Dataset [23] is a popular indoor RGBD dataset.
Following existing works [16, 36, 45, 51], our model is
trained with 50K images sampled from the training set, and
tested on 654 officially labeled images. The images of size
640×480 are downsampled to half and then center-cropped
to 304× 228 for both training and inference.
Evaluation Metrics. Following exiting methods [25, 36,
52], we employ Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE), inverse RMSE (iRMSE), inverse
MAE (iMAE), mean absolute relative error (REL), and per-
centage of pixels satisfying δτ for quantitative evaluation.

4.3. Improving Single-branch ED-Net

Following most methods [10, 20, 22, 42], the single-branch
ED-Net used in this paper first extracts the depth and RGB
features by two independent convolutional layers, and the
features are concatenated and fed into an encoder-decoder
network. The encoder consists of five stages, and each
stage contains 2 residual blocks. The encoder feature is
extracted at full-resolution in the first stage and is progres-
sively halved in the next four stages. The feature channels
of the five stages are 64, 128, 256, 256 and 256. We use the
deconvolutional layer with stride 2 to upsample features,
and fuse the encoder and decoder feature by the concate-
nate. As shown in Fig. 2 (b), the fused encoder-decoder
features fed4, fed3, fed2, fed1 are employed as the guidance
features in the proposed DFU.

As shown in Table 1, our single-branch ED-Net contains
11.95 M parameters and requires 291.24 G FLOPs, and the
RMSE and MAE are 772.87 mm and 210.26 mm. Note
that our single-branch ED-Net outperforms S2D [22] built
on the Resnet-34 with fewer parameters since we use the
effective stochastic depth strategy [8] in the residual block
as [14]. We observe that the single-branch ED-Net is sig-
nificantly improved by using one-layer DFU. Specifically,
the improvement in terms of various metrics is 22.29 mm
in RMSE, 4.94 mm in MAE, 0.14 in iRMSE, and 0.02 in
iMAE. Meanwhile, the performance in terms of RMSE and
MAE is further improved when we deepen the DFU to two
layers. However, this improvement is relatively small com-
pared to the previous one. When we extend the DFU to
three layers, the MAE is further reduced, while the results
in the term of RMSE appear saturated. In addition, the ex-
perimental results conducted on the NYUv2 dataset consis-
tently demonstrate that our DFU can effectively improve the
performance of the single-branch ED-Net.
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Table 2. The performance comparison between LRRUs (SPN-based method) and their improved model by using the multi-layer DFU.
LRRU-Mini LRRU-Tiny LRRU-Small LRRU-Base

KITTI [5]
Validate Dataset

RMSE↓
[mm]

MAE↓
[mm]

iRMSE↓
[1/km]

iMAE↓
[1/km]

RMSE
[mm]

MAE
[mm]

iRMSE
[1/km]

iMAE
[1/km]

RMSE
[mm]

MAE
[mm]

iRMSE
[1/km]

iMAE
[1/km]

RMSE
[mm]

MAE
[mm]

iRMSE
[1/km]

iMAE
[1/km]

Baseline 806.27 210.16 2.28 0.89 763.80 198.89 2.12 0.85 745.31 195.69 2.00 0.83 729.49 188.78 1.92 0.80
+ One-layer DFU 787.28 206.56 2.27 0.88 747.39 195.68 2.04 0.83 732.42 192.27 1.96 0.81 718.27 188.05 1.89 0.80
+ Two-layer DFU 775.93 202.71 2.20 0.86 744.92 193.10 2.00 0.82 730.89 190.56 1.94 0.81 716.02 186.69 1.89 0.80

+ Three-layer DFU 767.67 199.48 2.16 0.85 742.83 192.31 1.99 0.81 729.24 189.41 1.93 0.80 713.32 185.55 1.87 0.79

NYUv2 [23]
Depth Dataset

RMSE↓
[mm]

REL↓
(x1000)

δ1.25↑ δ1.252↑
RMSE
[mm]

REL
(x1000)

δ1.25 δ1.252
RMSE
[mm]

REL
(x1000)

δ1.25 δ1.252
RMSE
[mm]

REL
(x1000)

δ1.25 δ1.252

Baseline 100.86 13.34 99.44 99.91 95.36 12.25 99.51 99.92 93.36 11.85 99.53 99.92 91.27 11.21 99.56 99.92
+ One-layer DFU 99.22 12.77 99.46 99.91 92.58 11.76 99.54 99.93 91.57 11.48 99.56 99.93 90.79 11.19 99.57 99.93
+ Two-layer DFU 98.94 12.73 99.47 99.91 92.31 11.63 99.55 99.93 91.15 11.43 99.56 99.98 90.61 11.22 99.57 99.93

+ Three-layer DFU 98.29 12.69 99.47 99.91 92.29 11.59 99.55 99.92 91.08 11.43 99.56 99.98 90.77 11.27 99.57 99.93

4.4. Improving Multi-branch ED-Net

We experimentally found that the performance gap between
dual-branch networks, double encoder-decoder networks,
and multiple encoder-decoder networks is not significant.
Therefore, we select the most cost-effective dual-encoder
network as the baseline model to verify the improvement
effect of our proposed method on the multi-branch ED-Net.
As shown in Fig. 2 (c), the difference between the dual-
encoder ED-Net and single-branch ED-Net is that the dual-
encoder ED-Net utilizes two encoders to extract features
from the sparse depth and corresponding RGB image, re-
spectively. Specifically, the RGB encoder works indepen-
dently, and the extracted RGB features at multiple scales
are gradually injected into the depth encoder to effectively
integrate information from different modalities.

As shown in Table 1, our dual-encoder ED-Net has
nearly double the number of parameters and computational
complexity in comparison to the single-branch ED-Net as
it employs two encoders and the multi-scale fusion strat-
egy. However, the dual-encoder ED-Net also outperforms
the single-branch ED-Net significantly. When we apply
one-layer DFU to the dual-encoder ED-Net, the errors in-
cluding RMSE, MAE, iRMSE, and iMAE are reduced by
12.42 mm, 4.74 mm, 0.12 and 0.04, respectively. The per-
formance of the method is continuously improved as the
DFU deepens, while the magnitude of the performance im-
provement gradually decreases. We observe that the perfor-
mance of the method closes saturation when using the three-
layer DFU. Additionally, similar conclusions can be drawn
from the results on the NYUv2 dataset, which adequately
demonstrate that our proposed method can effectively im-
prove the performance of the dual-branch ED-Net.

4.5. Improving SPN-based Model

The SPN is a popular module to refine the predicted depth
map. To validate the effectiveness of our method for SPN-
based methods, we apply the proposed DFU to LRRU [36],
which introduces an effective SPN model and achieves top-

ranking performance on the KITTI benchmark. As de-
scribed in [36], LRRU has already utilized internal dense
features of the guided-feature extraction network to guide
the SPN model. However, these features are employed in-
dividually, and the features at different scales can not be ag-
gregated to improve the robustness and effectiveness of the
SPN model. To address this issue, we add the DFU between
the guided-feature extraction network and the recurrent up-
date process of the LRRU to integrate the information from
the multi-scale guidance features (more details in the sup-
plementary materials).

As shown in Table 2, we conduct comprehensive ex-
periments on four variants of LRRU with varying network
scales. On the KITTI dataset, the performance of all four
variants of LRRU is significantly improved by using the
DFU, especially for the mini model. Specifically, by us-
ing one-layer DFU, the RMSE of LRRU-Mini is reduced
by 18.99 mm, and the RMSE of LRRU-Base is reduced by
11.22 mm. Furthermore, the performance of LRRUs con-
tinues to enhance at a gradually decreasing rate when uti-
lizing the multi-layer DFU. The experimental results on the
NYUv2 dataset consistently demonstrate the effectiveness
of our method. Noted that, due to the limited number of
samples of the NYUv2 dataset, when we continue to add
our method to the LRRU-Base model with a large network
size, the network appears to be overfitting. Therefore, on
the NYUv2 dataset, our method only has a limited perfor-
mance improvement effect on the LRRU-Base model.

4.6. Comparison with state-of-the-arts

To evaluate our methods against state-of-the-art (SOTA)
methods, we compare their experimental results on the
KITTI benchmark (outdoor) and NYUv2 (indoor). As
shown in Table 3, we report the results of our baseline
methods and the improved methods by using three-layer
DFU. Meanwhile, we select some representative methods
from the last three years for comparison. Since most SOTA
methods employ the multi-branch ED-Net structure, the
performance of our single-branch ED-Net is slightly worse
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Table 3. Quantitative evaluation on the KITTI online leaderboard and NYUv2. The results of improved methods by using the three-layer
DFU are highlighted with a gray background and the best and second-best results are highlighted in red and blue colors, respectively.

KITTI Online Benchmark [5] NYUv2 Depth Dataset [23]
Publication

RMSE[mm]↓ MAE[mm]↓ iRMSE[1/km]↓ iMAE[1/km]↓ RMSE[m]↓ REL↓ δ1.25↑ δ1.252↑ δ1.252↑

TWISE [11] 840.20 195.58 2.08 0.82 0.097 0.013 99.6 99.9 100.0 CVPR 2021
FCFRNet [15] 735.81 217.15 2.20 0.98 0.106 0.015 99.5 99.9 100.0 AAAI 2021

PENet [7] 730.08 210.55 2.17 0.94 - - - - - ICRA 2021
ACMNet [49] 744.91 206.09 2.08 0.90 0.105 0.015 99.5 99.9 100.0 TIP 2021

PointFusion [9] 741.90 201.10 1.97 0.85 0.090 0.014 99.6 99.9 100.0 ICCV 2021
GFormer [29] 721.48 207.76 2.14 0.97 - - - - - CVPR 2022
DySPN [14] 709.12 192.71 1.88 0.82 0.090 0.012 99.6 99.9 100.0 AAAI 2022

GraphCSPN [18] 738.41 199.31 1.96 0.84 0.090 0.012 99.6 99.9 100.0 ECCV 2022
RigNet [44] 712.66 203.25 2.08 0.90 0.090 0.013 99.6 99.9 100.0 ECCV 2022

CompletionFormer [48] 708.30 203.45 2.01 0.88 0.091 0.012 99.6 99.9 100.0 CVPR 2023
BEV@DC [51] 697.44 189.44 1.83 0.82 0.089 0.012 99.6 99.9 100.0 CVPR 2023
PointDC [45] 736.07 201.87 1.97 0.87 0.089 0.012 99.6 99.9 100.0 ICCV 2023

Our Single-branch ED-Net 745.16 209.86 2.22 0.95 0.112 0.016 99.3 99.9 100.0 -
Improved Single-branch 719.65 201.92 2.06 0.91 0.098 0.014 99.5 99.9 100.0 -
Our Dual-branch ED-Net 720.96 203.73 2.07 0.92 0.101 0.014 99.5 99.9 100.0 -

Improved Dual-branch 706.23 199.14 1.99 0.89 0.096 0.013 99.5 99.9 100.0 -
LRRU-Base (SPN-based) [36] 696.51 189.96 1.87 0.81 0.091 0.011 99.6 99.9 100.0 ICCV 2023

Improved LRRU-Base 686.46 187.95 1.83 0.81 0.091 0.011 99.6 99.9 100.0 -

in comparison. However, the performance of our single-
branch ED-Net is significantly improved by using one-layer
DFU. Specifically, on the KITTI benchmark, the errors in-
cluding RMSE, MAE, iRMSE, and iMAE are reduced by
25.51 mm, 7.94 mm, 0.16, and 0.04, respectively. Be-
sides, five metrics evaluated on the NYUv2 are also en-
hanced considerably. The experimental results demon-
strate that the proposed DFU can effectively improve the
performance of the single-branch ED-Net. Compared to
the single-branch ED-Net, our dual-branch ED-Net shows
better performance, which already outperforms the latest
PointDC [45], GraphCSPN [18], GFormer [29], etc. in the
term of RMSE. However, the proposed DFU still greatly
improves the performance of the dual-branch ED-Net on
two benchmarks. Note that our method is effective for
the LRRU-Base (SPN-based method) as well, which is the
current SOTA method on the KITTI benchmark. Specifi-
cally, the improved LRRU-Base by using three-layer DFU
achieves new SOTA results, which ranks Top-1 on the
KITTI benchmark.

The results on the NYUv2 show that the methods [9, 18,
51, 51] that fuse 3D information generally achieve better
results, such as BEV@DC [51] and PointDC [51]. Our
method can also greatly improve the performance of the
single-branch ED-Net and dual-branch ED-Net on NYUv2,
while the performance improvement on LRRU-Base is neg-
ligible due to overfitting. Fig. 4 and Fig. 5 show the qualita-
tive results of the baseline models and improved models by
using three-layer DFU. Since our DFU effectively uses in-
ternal dense features of ED-Nets that cover comprehensive
scene depth information, the improved method has more ac-
curate results in fine and small structures, such as the gap
area between two adjacent objects.
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Figure 4. Qualitative results on the NYUv2 depth dataset.

4.7. Ablation Studies

In this section, we conduct experiments on the KITTI
dataset to verify the effectiveness of the confidence-aware
guidance module, which consists of the confidence-aware
model and the guidance model with adaptive receptive
fields. As shown in Table 4 (a) and (e), we choose our
single-branch ED-Net as the baseline, and its results are sig-
nificantly improved by using standard one-layer DFU.
Confidence-aware. In this paper, the LR depth feature is
extracted from a highly sparse and noisy depth map, and
ambiguity in super-resolving the feature of uneven depth
distribution areas often exists. Therefore, some values of
the depth feature are unreliable. To filter out the unreliable
depth feature values before the guidance module, we pro-
pose to predict an element-wise confidence map, which as-
signs these unreliable values a lower weight. Besides, we
also employ the confidence map in the feature updating,
which makes the guidance module focus on the unreliable
values of the depth features. As shown in Table 4 (d) and
(e), removing the confidence map increases the RMSE and
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A.1 RGB Image A.2 RGB Image A.3 RGB Image

B.1 Our Single-branch Result B.2 Our Dual-branch Result B.2 The LRRU-Base Result

C.1 Improved Single-branch Result C.2 Improved Dual-branch Result C.3 Improved LRRU-Base Result
Figure 5. Qualitative results on the KITTI online leaderboard, including the baseline and improved models by using three-layer DFU.

Table 4. Ablation studies on the KITTI validation dataset.
Confidence

aware
GARF

RMSE
[mm]

MAE
[mm]

(a) Our Single-branch ED-Net - - 772.87 210.26

(b) Improving by one-layer DFU - - 761.24 209.04
(c) Improving by one-layer DFU ✓ - 758.67 207.51
(d) Improving by one-layer DFU - ✓ 756.31 206.82
(e) Improving by one-layer DFU ✓ ✓ 751.76 203.09

MAE of the improved method by 4.55 mm and 3.73 mm.
Guidance with Adaptive Receptive Fields. Traditional
guided convolutional networks [32, 37, 44] generally pre-
dict spatially-variant convolutional kernels from the guid-
ance feature, and then employ the predicted kernels to ex-
tract the target feature. These networks have been proven
effective since they can transfer the structural information
from the guidance feature to the target feature. However,
the predicted per-pixel kernel has a fixed size, which can-
not be suitable for the areas with different depth distribu-
tions. To address this issue, we propose the guidance mod-
ule with adaptive receptive fields (GARF). The results in
Table 4 (c) and (e) show that the performance of the im-
proved method without GARF is significantly decreased,
which demonstrates the effectiveness of GARF.

4.8. Experiments on fewer points

It is crucial to analyze the generalization ability for sparser
depth maps, which are usually provided in many practi-
cal applications. We train our baseline methods and their
improved methods by using three-layer DFU on the stan-
dard KITTI (64-line LiDAR depth) and test the performance
(MAE[mm]) on the depth map with fewer lines. The sparser
depth map is obtained by the method provided by [50]. As
shown in Fig. 6, the performance improvement by using the
proposed DFU is more significant on sparser depth maps.
The experimental results demonstrate that our approach not
only improves the performance of the method, but also en-
hances the generalization ability for sparser depth maps.

LRRU-Base (SPN)

16-lines 64-lines

Dual-branch ED-NetSingle-branch ED-Net
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32-lines16-lines 64-lines32-lines16-lines 64-lines32-lines

Figure 6. The performance (MAE [mm]) on fewer points.

4.9. Computational Cost

We report the parameters and FLOPs of the method in Ta-
ble 1. Since we pre-reduce the channel number of the fea-
ture, our method improves the performance of existing ED-
Nets with limited computational overheads. Specifically,
using one-layer DFU approximately requires extra 1.7 M
parameters and 40 G FLOPs, which are small compared to
those of the ED-Net itself.

5. Conclusion
In this paper, we have proposed the depth feature up-
sampling network (DFU), a plug-and-play module to im-
prove existing ED-Net based methods. By the proposed
confidence-aware guidance module, DFU effectively uti-
lizes internal dense features of ED-Net to guide the depth
feature upsampling, the completeness of these dense fea-
tures is maintained in DFU. Furthermore, DFU can be ex-
tended to multi-layer to achieve better results. Experi-
mental results show that our method can significantly im-
prove existing ED-Nets, including single-branch ED-Nets,
multi-branch ED-Nets, and SPN-based methods, with lim-
ited computational overheads. Meanwhile, the generaliza-
tion ability for sparser depth is also enhanced.
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Janne Heikkilä. Boosting monocular depth estimation with
lightweight 3d point fusion. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), 2021.
7

[10] Saif Imran, Yunfei Long, Xiaoming Liu, and Daniel Mor-
ris. Depth coefficients for depth completion. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2, 5

[11] Saif Imran, Xiaoming Liu, and Daniel Morris. Depth com-
pletion with twin surface extrapolation at occlusion bound-
aries. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 7

[12] Beomjun Kim, Jean Ponce, and Bumsub Ham. Deformable
kernel networks for joint image filtering. International Jour-
nal of Computer Vision (IJCV), 2021. 4

[13] Bo Li, Chunhua Shen, Yuchao Dai, Anton Van Den Hengel,
and Mingyi He. Depth and surface normal estimation from
monocular images using regression on deep features and hi-
erarchical crfs. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015. 1

[14] Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and Hua
Yang. Dynamic spatial propagation network for depth com-

pletion. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2022. 2, 3, 5, 7

[15] Lina Liu, Xibin Song, Xiaoyang Lyu, Junwei Diao, Meng-
meng Wang, Yong Liu, and Liangjun Zhang. Fcfr-net: Fea-
ture fusion based coarse-to-fine residual learning for depth
completion. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence (AAAI), 2021. 7

[16] Lina Liu, Xibin Song, Jiadai Sun, Xiaoyang Lyu, Lin Li,
Yong Liu, and Liangjun Zhang. Mff-net: Towards efficient
monocular depth completion with multi-modal feature fu-
sion. IEEE Robotics and Automation Letters (RAL), 2023.
5

[17] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong,
Ming-Hsuan Yang, and Jan Kautz. Learning affinity via spa-
tial propagation networks. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS), 2017.
3

[18] Xin Liu, Xiaofei Shao, Bo Wang, Yali Li, and Shengjin
Wang. Graphcspn: Geometry-aware depth completion via
dynamic gcns. In Proceedings of the European Conference
on Computer Vision (ECCV), 2022. 3, 7

[19] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 2

[20] Yangqi Long, Huimin Yu, and Biyang Liu. Depth comple-
tion towards different sensor configurations via relative depth
map estimation and scale recovery. Journal of Visual Com-
munication and Image Representation (JVCIR), 2021. 2, 5

[21] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth
prediction from sparse depth samples and a single image.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2018. 1, 2

[22] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac
Karaman. Self-supervised sparse-to-dense: Self-supervised
depth completion from lidar and monocular camera. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2019. 1, 2, 5

[23] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In Proceedings of the European Conference
on Computer Vision (ECCV), 2012. 5, 6, 7

[24] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew W.
Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), 2011. 1

[25] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In
So Kweon. Non-local spatial propagation network for depth
completion. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 2, 3, 5

[26] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang,
Shuaicheng Liu, Bing Zeng, and Marc Pollefeys. Deepli-
dar: Deep surface normal guided depth prediction for out-
door scene from sparse lidar data and single color image.

921112



In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 2

[27] Qiang Qiu, Xiuyuan Cheng, Guillermo Sapiro, et al. Dcfnet:
Deep neural network with decomposed convolutional filters.
In International Conference on Machine Learning (ICML),
2018. 4

[28] Chao Qu, Ty Nguyen, and Camillo Taylor. Depth completion
via deep basis fitting. In Proceedings of the Winter Confer-
ence on Applications of Computer Vision (WACV), 2020. 2

[29] Kyeongha Rho, Jinsung Ha, and Youngjung Kim. Guide-
former: Transformers for image guided depth completion.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2022. 7

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 4
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