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Abstract

Online Continual Learning (CL) solves the problem of
learning the ever-emerging new classification tasks from a
continuous data stream. Unlike its offline counterpart, in
online CL, the training data can only be seen once. Most
existing online CL research regards catastrophic forgetting
(i.e., model stability) as almost the only challenge. In this
paper, we argue that the model’s capability to acquire new
knowledge (i.e., model plasticity) is another challenge in
online CL. While replay-based strategies have been shown
to be effective in alleviating catastrophic forgetting, there is
a notable gap in research attention toward improving model
plasticity. To this end, we propose Collaborative Contin-
ual Learning (CCL), a collaborative learning based strat-
egy to improve the model’s capability in acquiring new con-
cepts. Additionally, we introduce Distillation Chain (DC),
a collaborative learning scheme to boost the training of the
models. We adapt CCL-DC to existing representative online
CL works. Extensive experiments demonstrate that even if
the learners are well-trained with state-of-the-art online CL
methods, our strategy can still improve model plasticity dra-
matically, and thereby improve the overall performance by
a large margin. The source code of our work is available at
https://github.com/maorong-wang/CCL-DC.

1. Introduction

Continual Learning (CL) [10, 13, 32, 43] aims to incremen-
tally learn a sequence of tasks and enhance the neural net-
work’s performance on the current tasks, without forgetting
previously learned knowledge. CL can be done in two dif-
ferent manners [4, 43]: offline and online. In offline CL, the
learner can have infinite access to all the training data of the
current task that it trains on and may go through the data
for any epoch. Contrary to offline CL, in online CL, the
training data for each task also comes continually in a data
stream, and the learner can only see the training data once.
Apart from the learning approach, there are also three dif-
ferent CL scenarios [23, 29, 42]: Task-Incremental Learn-
ing (TIL), Domain-Incremental Learning (DIL), and Class-

Incremental learning (CIL). In this paper, we focus on the
CIL setting in online CL.

Various online CL methods [6, 7, 19, 20, 31, 35, 44]
have been proposed to help the models learn continually on
one-epoch data stream, with alleviated forgetting. Among
them, replay-based methods have shown remarkable suc-
cess, and current state-of-the-art methods rely heavily on
memory replay to mitigate catastrophic forgetting [17, 30].
However, while most existing online CL research primarily
only focuses on improving model stability (i.e., alleviating
catastrophic forgetting) to achieve better overall accuracy,
the importance of model plasticity (i.e., the capability to ac-
quire new knowledge) is often overlooked. While in offline
CL, it is possible to gain high plasticity by iterating several
epochs on the current task before proceeding to the sub-
sequent task, acquiring plasticity in online CL tends to be
more challenging because the training data is only available
once. As shown in Fig. 1, compared to learning without
memory replay, the replay-based methods implicitly alle-
viate the low plasticity issue to some extent. Also, plas-
ticity can be improved by employing a technique involving
multiple updates on incoming samples [3]. However, the
combination of memory replay and multiple updates fails
to bridge the existing plasticity gap between online and of-
fline CL, and the use of multiple updates can lead to in-
creased catastrophic forgetting. Overall, the plasticity gap
adversely affects the performance of online CL methods.

In this paper, we argue that plasticity is particularly cru-
cial and challenging to acquire in online CL, and even more
so than in offline CL. Thus, we shed light on how model
plasticity and stability will impact the overall performance.
Furthermore, we propose a quantitative link between plas-
ticity, stability, and final accuracy, showing that the plas-
ticity gap between offline and online must be reduced to
improve overall performance.

Guided by the quantitative relationship, we focus our-
selves on the previously overlooked plasticity perspective.
Inspired by the ability of collaborative learning to accel-
erate the convergence in non-continual scenarios [5], we
have incorporated collaborative learning in online CL and
observed a similar phenomenon. Consequently, we pro-
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Figure 1. The comparison of plasticity (learning accuracy) and sta-
bility (relative forgetting, our metric proposed in Sec. 3) of Experi-
ence Replay (ER) [35] under varisous settings on CIFAR-100. For
experiments with memory replay, the size of the memory buffer is
set to 2,000. We can witness a plasticity gap between offline CL
and online CL, even with memory replay and multiple update trick
(memory iteration > 1).

pose the Collaborative Continual Learning with Distilla-
tion Chain (CCL-DC), a collaborative learning scheme that
can be adapted to existing online CL methods. CCL-DC
consists of two key components: Collaborative Continual
Learning (CCL) and Distillation Chain (DC).

CCL involves two peer continual learners to learn from
the data stream simultaneously in a peer teaching man-
ner, enhancing optimization parallelism and offering greater
flexibility to the continual learners. To the best of our
knowledge, CCL is the first method to incorporate collabo-
rative learning techniques in online CL research. Moreover,
to fully exploit the potential of collaborative learning in on-
line CL scenarios, we propose DC, an entropy regulariza-
tion based optimization strategy, specifically designed for
online CL.

The main contribution of this paper can be summarized
as follows.

1. We establish a quantitative link between plasticity, sta-
bility, and final performance. Based on this, we demon-
strate that plasticity is an important obstacle in online
CL, which was greatly overlooked in the previous re-
search;

2. To overcome the plasticity issue, we introduce CCL-DC,
a collaborative learning based strategy that can be seam-
lessly integrated into the existing methods, significantly
improving their performance by boosting plasticity;

3. Comprehensive experiments show that CCL-DC en-
hances the performance of existing methods by a large
margin.

2. Related Work

Continual Learning. Continual learning can be clas-
sified into three different categories: regularization-

based, parameter-isolation-based, and replay-based.
Regularization-based methods [2, 8, 24, 27, 46] add
extra regularization terms to balance the old and new
tasks. Parameter-isolation-based methods [1, 16, 36-38]
solve the problem explicitly by dynamically allocat-
ing task-specific parameters. Replay-based meth-
ods [6, 7, 9, 14, 19, 20, 31, 35, 44] maintain a small
memory buffer that stores a few old training samples.

Among these methods, replay-based strategies have
gained huge success due to their impressive performance
and simplicity. ER [35] is the fundamental replay-based
method that leverages Cross-Entropy loss for classification
and a random replay buffer. DER++ [6] stores the logits in
the memory buffer and extends ER with the distillation of
old stored logits. ER-ACE [7] extends ER with Asymmet-
ric Cross-Entropy loss for classification to suppress the drift
of old class representations. OCM [19] leverages a replay-
based strategy by maximizing the mutual information be-
tween old and new class representations. GSA [20] solves
cross-task class discrimination with replay-based strategy
and Gradient Self Adaption. OnPro [44] uses online pro-
totype learning to address shortcut learning and alleviate
catastrophic forgetting.

These replay-based methods propose different strategies
for alleviating catastrophic forgetting and improving the
model stability. However, the importance of the model plas-
ticity is greatly neglected in their research, despite their suc-
cess in terms of final performance. In our work, these meth-
ods serve as the baselines and we adapted our strategy to
these baselines to show the effectiveness of our proposed
approach.

Collaborative Learning. Collaborative learning [5, 18,
39, 47, 48] originates from online knowledge distillation
(KD). Different from the conventional KD methods, on-
line KD involves training a cohort of deep networks from
scratch in a peer-teaching manner. During the training pro-
cess, the models imitate their peers and guides the train-
ing of other models simultaneously. Deep Mutual Learning
(DML) [47] suggests peer student models learn from each
other through the logit distillation between the probability
distributions. Codistillation [5] is similar to DML and sug-
gests the ensemble of peer networks can further improve
the performance. More importantly, Codistillation shows
that online KD can help the model converge faster on non-
continual scenarios.

Despite the success of collaborative learning in non-
continual scenarios, due to the lack of focus on plasticity,
the research on collaborative learning in CL is still limited.
To the best of our knowledge, there is no existing research
using the collaborative learning technique to boost the train-
ing of online CL. Moreover, in our work, we introduce the
DC, an entropy regularization based optimization strategy,
specifically tailored to fully leverage the potential of collab-
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Figure 2. Overview of the proposed CCL-DC framework applied to a baseline online CL method. The proposed CCL-DC framework has
two main components. The first one is CCL, which involves two peer continual learners that simultaneously learn from the data stream
in a peer teaching manner. The second component, DC, generates a chain of samples with varying levels of difficulty and feeds them into
models to produce a chain of logit distribution of different confidence levels. Then, in a collaborative learning approach, DC conducts
distillation from less confident predictions to more confident predictions, to serve as a form of learned entropy regularization.

orative learning in online CL scenarios.

3. Plasticity and Stability in online CL.

In this section, we revise the metric for model plasticity and
propose a novel metric for model stability. In addition, we
quantitatively analyze the impact of model plasticity and
stability on the final performance.

3.1. Model Plasticity

The model plasticity quantifies the learner’s ability to learn
new knowledge when a new task arrives. Several different
metrics have been proposed to measure the model plastic-
ity [8, 28, 34, 43]. In our work, we evaluate the model plas-
ticity with Learning Accuracy (LA) [34]. Formally, the LA
for the j-th task is defined as:

I =ad (1)

VR
where az- is the accuracy evaluated on the test set of task
7 after training the network from task 1 to task ¢. For an
overall metric normalized against all tasks, the averaged LA
is written as LA = % Z;‘.le l;, and T'is the number of tasks
in total.

3.2. Model Stability

The stability assesses the extent of knowledge retention or
loss within a model in its present state. The most commonly
used metric in previous CL research is the Forgetting Mea-
sure (FM) [8]. Intuitively, FM for the j-th task, denoted as
f m?, quantifies the decline in performance on a given task
7, after the model is trained on task k, relative to its highest
past performance on task j:

fm¥ = max

i€{1’~~,k—1}(a] aj), Vj <k )

a; T T2 T3 Ta Ts ‘ FMj, RF

T 30/15 - - - - - -

T | 25/125 25/125 - : ; 5/2.5  8.33/3.33
T3 | 20/10  20/10  20/10 - - | 75/3.75  17.78/17.78
Tl 15/75  15/75 15/75 15/75 10/5  28.75/28.75
T | 105 10/5  10/5  10/5  10/5 | 12.5/6.25 12/42

Table 1. Forgetting Measure (%) and Relative Forgetting (%) of
two example learners (Learner 1 in teal and Learner 2 in brown)
in a continual setting of five tasks with two classes per task. Each
element a§~ atrow j and column ¢ is the per task accuracy evaluated
on the test set of task j after training the network from task 1 to
task i.

For the overall metric obtained across all tasks, FM can
be expressed as:

FM:LmeJT. 3)

In our work, we propose a novel stability metric, termed
Relative Forgetting (RF), as an alternative to the traditional
Forgetting Measure (FM). RF measures how much propor-
tion of performance the model forgets. Specifically, RF for
the j-th task after training on task k is defined as:

k a? .
fi = max 1—5 , Vi <k “)

ie{l,....k} j

The overall metric averaged across all tasks can be writ-
ten as:

1 T
RF:T;f}‘. 5)

There are two advantages for shifting from absolute for-
getting to relative forgetting:

23462



1. RF is fairer for methods with higher plasticity. As
shown in Table 1, when comparing two continual learn-
ers, one with high plasticity and the other with low, using
both forgetting metrics, it is observed that despite hav-
ing identical RF values, the model with lower plasticity
shows a lower FM. This indicates that the FM metric
might unfairly favor models with poorer initial perfor-
mance, even when the relative decline in performance is
equivalent across models;

2. RF facilitates a quantitative analysis of the relationship
between model stability and final performance. This
enables a more nuanced understanding of how stability
influences overall model efficacy, thereby guiding im-
provements in continual learning strategies.

3.3. Impact on the Overall Performance

For online CL, the model’s final average accuracy (AA) is
the most vital metric. In this subsection, we try to show
how the model plasticity and stability will impact the final
performance quantitatively.

The model’s final average accuracy can be calculated as:

1 T
Ad = af. (6)
j=1

With the establishment of our plasticity metric (LA) and
stability metric (RF), we can easily find the relationship be-
tween learning accuracy, relative forgetting, and accuracy:

ab > 1 x (1= f}), (@)

assuming equality when a‘; = maX;c(1,....j} a;'». When ex-
tending the class-specific final accuracy aJT to the final AA,
we consider the dot product of the LA vector [ly,...,I7]
with the RF vector [f], ..., f-], which simplifies the cal-
culation. More practically, this relationship can be approxi-

mated with:

AAZ LA x (1- RF). )

As indicated by Eq. 8, the lower bound of the final per-
formance is proportional to LA and 1 — RF', which suggests
that both plasticity (LA) and stability (RF) play a crucial
role in the final accuracy. Our findings reveal the impor-
tance of the model plasticity which was neglected in the
past. And it can serve as a good guide for future online CL
research.

4. Proposed Method

In this section, we first justify our motivations. Then, we
introduce our proposed strategy: Collaborative Continual
Learning and Distillation Chain. Finally, we show how to
adapt our proposed strategy to the existing online CL meth-
ods and boost their plasticity.

Labels

*&Q ¢
o Network 61
&
o\\
¥
Untrained
Network 6?2

Probability =~ — > Baseline Loss

Distribution Distillation Loss

Figure 3. Conceptual diagram of the training framework, when
distilling from an untrained network 62 to suppress the confidence
of network 0.

Dataset CIFAR-100
Memory Size M M=1000 M=2000 M=5000

ER 2447072 31.89x145 39.41+181
ER + Untrained Distillation  27.07+120 34.84:064 41.15+1.16

Table 2. The performance of network #* when distilling from un-
trained network #2 on CIFAR-100. All numbers are average over
10 runs.

4.1. Motivation Justification

Plasticity matters in Online CL. Online continual learn-
ers are designed to continuously adapt to non-stationary
data streams, efficiently acquiring new knowledge while re-
taining previously learned information. In current online
CL research, the emphasis has predominantly been on miti-
gating catastrophic forgetting. Even among state-of-the-art
methods such as [19, 44], plasticity is often compromised
in the quest for improved stability. However, our finding
in Sec. 3 shows that both plasticity and stability are crucial
for achieving satisfactory final performance, with plasticity
proving particularly difficult to achieve in online CL set-
tings. To this end, we deliberately prioritize the plasticity
aspect.

The potential of collaborative learning to improve con-
vergence in non-continual scenarios [5] positions it as a
promising candidate for enhancing plasticity. With the ap-
parent lack of focus on plasticity, collaborative learning has
yet to be leveraged to boost convergence of online continual
learners. In our research, we propose to exploit collabora-
tive learning convergence properties for improving plastic-
ity. We find that similar to non-continual scenarios, collab-
orative learning strategy can boost convergence by allowing
more parallelism in the training and more maneuverability
of the continual learners.

Overconfidence hurts Online CL. In conventional su-
pervised learning, it is well established that excessive con-
fidence can harm the generalization ability. To tackle this
issue, many methods such as label smoothing [41], knowl-
edge distillation [45], and confidence penalty [33] are pro-
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posed.

In online CL, we find a counter-intuitive, yet similar phe-
nomenon. As shown in Fig. 3, while we train network o1
with the classification loss, we initiate another network 62 at
the beginning of the training. During the continual training,
we stagnate the network 62 (i.e., Kaiming initialize and stay
untrained) and train the network ' with both classification
loss and the distillation loss (Kullback-Leibler divergence
loss) from untrained network §2. The experimental result
in Table 2 shows a decent performance gain compared with
independent training. The distillation from the prediction of
untrained network 62 to network 6! serves as a regulariza-
tion to suppress the overall confidence, and the performance
gain under this condition makes it evident that, in continual
scenarios, overconfidence will also harm the performance.

To tackle the overconfidence problem, we propose Dis-
tillation Chain (DC), an entropy regularizer to suppress the
overall confidence level.

4.2. Collaborative Continual Learning

The introduced Collaborative Continual Learning (CCL)
enables more parallelism and flexibility in training online
continual learners, and it is the key to improving the model
plasticity and the final performance. As shown in Fig. 2,
CCL involves two peer continual learners of the same ar-
chitecture and optimizer setting training in a peer-teaching
manner. In the training phase, networks are supervised with
both the ground truth label and the predictions of their peers.
In the inference phase, models can either make predictions
collaboratively with ensemble methods [5] to get a better
performance or predict independently for the sake of com-
putation efficiency. If we denote two networks in CCL as
01 and 62, we formulate our loss to network 6! as:

ﬁlCCL =\ ~£Cls(91(X),y)

1 2 (9)
+Xa - D (01(X) /7, 6%(X)/7),

where (X, y) is the data-label pair, £.4(+) is the classifica-
tion loss in the baseline method CCL adapts to, Dy, (+) is
the Kullback-Leibler divergence, A\; and A, are the balanc-
ing hyperparameters and 7 is the temperature hyperparame-
ter. Note that the network 62 should be trained with £Z;,
respectively.

4.3. Distillation Chain

To fully take advantage of CCL, we propose Distillation
Chain (DC), an entropy regularizaion based strategy explic-
itly designed for online CL. As illustrated in Fig. 2, DC
comprises two steps: (1) generating a chain of samples with
different levels of difficulty [40] using data augmentation,
and (2) distillation of logit distribution from harder samples
to easier samples in a collaborative learning way.

As shown in Table 2, we observed that overconfidence
will hurt the performance in continual training. To tackle

Algorithm 1 PyTorch-like pseudo-code of CCL-DC to in-
tegrate to other baselines.

it S:
for x, y in dataloader:

# Baseline loss

loss_baseline = criterion_baseline (modell, x, V)

# DC Augmen on

x1 = geometric_distortion (x)
x2 = RandAugment (x1, N, M)
x3 = RandAugment (x2, N, M)

# CCL-DC loss
ls, 1sl, 1s2, 1s3 = modell(x, x1, x2, x3)
1t, 1tl, 1t2, 1t3 = model2(x, x1, x2, x3) # no grad

loss_cls = cls(ls, y) + cls(lsl, y) + cls(ls2, y) +
— cls(1ls3, vy)

loss_ccl = kl_div(ls/t, 1lt/t) # ter
loss_dc = kl_div(ls/t, 1ltl/t) + kl_
— k1l _div(ls2/t, 1t3/t)

t ature t

iv(lsl/t, 1lt2/t) +

loss_ours = lamlxloss_cls + lam2+ (loss_ccl + loss_dc)
loss = loss_baseline + loss_ours

optiml.zero_grad()
loss.backward/()
optiml.step ()

the problem, DC uses data augmentation strategies to gen-
erate samples with different levels of difficulty and produces
logit distribution with different confidence. The distillation
from less confident predictions to more confident predic-
tions weakens the overall confidence of the network and
benefits the performance by improving the generalization
capability.

In our work, we use a geometric distortion comprised of
RandomCrop and RandomHorizontalFlip as the first step of
DC augmentation. After that, we use RandAugment [12]
for the subsequent augmentations and we involve two hy-
perparameters N and M for RandAugment. We take three
augmentation steps and distill the logit distribution from the
teacher with harder samples to the student with easier sam-
ples. We formulate our loss with DC to network 6* as:

3
ElDC :)\1 Z L:cls(e1 (X’L)? y)

. (10)
3

A2 Y Drr (0 (Xio1) /7, 0°(X0)/7),

i=1

where X is the augmentation of input sample X after ¢
augmentation steps.
4.4. Apply CCL-DC to online CL methods

The overall loss to network #' when adapting CCL-DC can
be written as:

£1 = EBaseline + EICCL + ElDC’ (11)
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Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100
Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000
ER [35] 56.68+1.89  62.32+4.13 24.47+072 31.89+145 39.41:181 10.82:079 19.16x1.42 24.71+252 33.30+1.74
ER + Ours 66.43+248 74.10:1.71  33.43:1.06 44.45:1.04 53.81:1.16 16.5621.63 29.39:1.23 37.73:085 43.11+1.49
DER++ [6] 58.04+230 64.02+192 25.09+141  32.33x266 38.31:228  8.73:158  17.95+249  19.40+3.71 34.75+2.23
DER++ + Ours 68.79:+1.42  74.25:+1.10 34.36:089 43.52:135 52.95:086 10.99:1.39 21.68:1.94 28.01:2.46 45.70+1.32
ER-ACE [7] 53.2623.04 59.94s240 28.36£1.99 34.21+153 39.39:131 13.56x100 20.84+043 25.92:1.07 38.37+1.20
ER-ACE + Ours  70.08:1.38 75.56:1.14 37.20+1.15 45.14:1.00 53.92:048 18.32:149 26.22:2.01 32.23:1.70 45.15+1.94
OCM [19] 68.19+175  73.15+105 28.02:074 35.69:136 42.22+106 18.362095 26.74+102 31.94:1.19 23.67+2.36
OCM + Ours 74.14:085 77.66x1.46 35.00:1.15 43.34:151 51.43:1.37  23.36:118  33.17:097 39.25:0.88 43.19:0.98
GSA [20] 60.34+197  66.54+228 27.72+157 35.08+137 41.41+165 12.44+1.17  19.59+130 25.34+1.43 41.0320.99
GSA + Ours 68.91:1.68 75.78+1.16 35.56:139 44.74:132 55.39:1.09 16.70:1.66 28.11:170 37.13:1.75 44.28:+1.16
OnPro [44] 7047+2.12  74.70+151  27.22+077 33.33:093 41.59:138 14.32+140 21.1322.12  26.38+2.18 38.75+1.03
OnPro + Ours 74.49:+2.14 78.64:1.42 34.76:1.12 41.89:082 50.01:085 21.81+1.02 32.00:0.72 38.18:1.02 47.93+1.26

Table 3. Average Accuracy (%, higher is better) on four benchmark datasets with difference memory buffer size M, with and without our

proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100
Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000
ER 83.13x160 78.15+360 53.77+151 51.53:166 50.79:071 68.15+147 64.99:122 64.44+1.45 53.95+1.51
ER + Ours 90.60+1.50 89.99:1.50 72.38:0.66 70.86:0.72 68.84:1.05 85.24+053 81.75:083 79.54:0.74 68.73+1.21
DER++ 77.14+206  78.00x2.16 56.132375 55.33#326 56.32:344 70.01:1.83 66.87+130 70.28+2.42 60.65+2.97
DER++ + Ours 88.85+1.88  89.00:1.67 72.85:1.37 71.54:1.99 69.52:237 82.83+1.27 78.80:1.62 77.79:0.86 70.16+1.03
ER-ACE 57.66x4.16 61.59+335 38.53:161 39.95:200 41.56x1.44  5.60:1.45 4.83+0.78 4.92+0.95 49.82+1.05
ER-ACE + Ours  88.37:1.39 88.40:1.15 69.47:088 68.39:+132 66.63:090 21.91:516 21.88:430 18.88:3.12 68.52:0.82
OCM 78. 71366 81.332206 40.87+160 42.00+148 42.43+180 18.562287 15.86+201 15.03+2.02 20.77+1.88
OCM + Ours 82.39:+2.23 84.53:1.63 48.89:2.04 49.83:201 49.94:2.16 31.69:1.81 29.54:235 28.10:2.28 48.20+1.38
GSA 79.87+326  77.09+455 58.16x158 55.13x181 50.34:1.73  20.46:1.59 15.86x126 14.50+0.63 62.59+1.17
GSA + Ours 91.69+1.11 90.98:1.33  73.73+1.03  72.68:098 70.36:1.07 80.36x1.22 74.77:1.66 70.71:1.19 73. 712112
OnPro 84.23x200 85.60+156 41.34+1.63 42.59:+165 42.92:100 20.84x147 16.73x127 15.82x1.04 39.60+0.86
OnPro + Ours 90.39:1.59  90.18:1.58 46.30:1.10 47.13:1.01 47.27:1.81  25.87:101 21.40:152  19.75:1.22 52.55+2.18

Table 4. Learning Accuracy (%, higher is better) on four benchmark datasets with difference memory buffer size M, with and without our
proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

where LBqseline 18 the loss function of the baseline model
CCL-DC adapts to. Note that the model 62 should be
trained similarly. In Algorithm 1, we provide a Pytorch-
like pseudo-code demonstrating how to incorporate CCL-
DC into a given baseline. For simplicity, we only show the
loss function for model #'. Also, we omitted the memory
buffer in the pseudo-code. However, the training should
be consistent with the baseline, using both streaming and
memory data.

5. Experiments

5.1. Experimental Setup

Datasets. We use four image classification benchmark
datasets to evaluate the effectiveness of our method, includ-
ing CIFAR-10 [25], CIFAR-100 [25], TinylmageNet [26],
and ImageNet-100 [11, 15, 22]. More detailed information

about the dataset split and task allocation is given in the
supplementary material.

Baselines. To show the effectiveness of our strategy, we
applied CCL-DC to six typical and state-of-the-art online
CL methods, including ER [35], DER++ [6], ER-ACE [7],
OCM [19], GSA [20], and OnPro [44].

Implementation details. We use full ResNet-18 [21] (not
pre-trained) as the backbone for every method. For each
baseline method, we perform a hyperparameter search on
CIFAR-100, M =2k, and apply the hyperparameter to all
of the settings. For fair comparison, we use the same opti-
mizer and hyperparameter setting when adapting CCL-DC
to the baselines. For hyperparameters unique to CCL-DC,
we conduct another hyperparameter search as stated in the
supplementary material. We set the streaming batch size to
10 and the memory batch size to 64. We do not use the
multiple update trick as described in [3]. More detailed in-
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Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100
Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000
ER 31.63+381  20.63x832 55.71x224 39.11:387 23.05s369 85.00x130 71.62+218 62.43+3.83 39.26+3.21
ER + Ours 26.7423.99 17.58:271 54.34+222 37.67:216 21.98:259 81.13+1.93 64.79:1.32 53.18:0.99 37.78+2.18
DER++ 23.60+3.64 17712218 55.65+436 41.27+493 31.72+395 87.79+235 73.28+388 72.51+553 42.97+5.89
DER++ + Ours 22.62+3.03 16.43:336 53.45:140 39.39:271  23.71:339 87.16:1.60 73.15:2.15 64.48+3.08 35.3212.80
ER-ACE 12.25:384  9.92:283  25.88:4.10 17.68:1.90 10.62:+2.08 57.41:238 44.48+196 37.8323.12 23.92:2.05
ER-ACE + Ours  20.62:226 14.32+258 46.78+191 34.19:240 19.01:094 56.56:4.16 42.20+3.94 31.13:3.52 34.43+3.60
OCM 13.05+437  11.0023.11  31.16+2690 17.90:3.73  6.85:225  56.66x253 40.59+155 30.80+2.29 4.55+1.60
OCM + Ours 10.75+252 8.45:263  29.65:+4.00 17.02:3.01  6.16:1.35 51.58+2.81 35.58:254 27.24+1.60 15.33+228
GSA 25.02+283  16.56:4.02 53.42+3.12  37.29:260 20.50:4.33 66.87+331 53.42:384 43.44:3381 35.4412.42
GSA + Ours 24961327 16.59+209 52.29:206 38.76+241 21.36x236 80.08+1.97 63.85+1.78 49.73x2.10 40.46+2.54
OnPro 16.47+423 12.93+3.02  35.032445 24.262231 12.04+211  64.69:336 50.47+420 42.81x4.63 14.44+2.08
OnPro + Ours 17.54+415 12902277 27.64:320 17.78:1.39 8.41:262 56.03:296 38.70:1.88 29.24+1.33 15.72+329

Table 5. Relative Forgetting (%, lower is better) on four benchmark datasets with difference memory buffer size M, with and without our
proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

formation about data augmentation, hyperparameter search,
and hardware environments is given in the supplementary
material.

5.2. Results and Analysis

Final average accuracy. Table 3 presents average accu-
racy (AA) at the end of the training on four datasets. As
indicated in Sec. 4, to fully take advantage of collabora-
tive learning, we show the results with the ensemble of two
models, with the independent model performance available
in the supplementary material. Generally, the ensemble
method provides about 1% additional accuracy compared
to independent inference. For all datasets, memory size M,
and baseline methods, applying CCL-DC constantly im-
proves the performance by a large margin. Notably, even
for state-of-the-art methods such as GSA and OnPro, we
can still gain significant performance when incorporating
CCL-DC.

More interestingly, for almost all settings with different
memory buffer sizes M, the performance gain tends to be
a constant on a relative basis. For example, CCL-DC can
boost the performance of ER on Tiny-ImageNet from 10.82
to 16.56 when M =2k, which is a 53.0% performance gain
on a relative basis. The performance gain is 53.4% and
52.7% when M=5k and M=10k, respectively. This indi-
cates that we can achieve a decent performance gain regard-
less of the memory buffer size, and it shows the scalability
of our method to different resource conditions.

Plasticity and stability metric. As mentioned in Sec. 3,
we evaluate the plasticity and stability of different continual
learners with LA and RF, respectively. Table 4 shows the
plasticity metric on four datasets. For all settings, CCL-DC
constantly improves the model plasticity by a large margin.
For model stability, as indicated by RF in Table 5, mod-

Method Acc. T LA T
ER 31.89+145  51.53x1.66
ER + Multivew 38.18+146  64.02+1.12
ER + Ours (CCL only) 41.05+121  68.76+0.79
ER + Ours 44.45+1.04  70.86:0.72
ER-ACE 34.21+153  39.95+2.00
ER-ACE + Multivew 38.61x1.48 47.45+1.88
ER-ACE + Ours (CCL only)  40.90:1.08 50.91x1.63
ER-ACE + Ours 45.14+100  68.39+1.32

Table 6. Ablation studies on CIFAR-100 (M=2k). We report the
ensemble performance for methods incorporating CCL.

els trained with CCL-DC are comparable with the baselines
under most cases. ER-ACE is an exception as its plastic-
ity is unexpectedly low, especially on TinyImagenet. Also,
the stability of ER-ACE is compromised when incorporat-
ing CCL-DC. We will explain the reason for this unexpected
phenomenon in the supplementary material.

5.3. Ablation Studies

Effect of multiview learning. As mentioned in Sec. 4,
CCL-DC benefits from multiview learning with data aug-
mentation in DC. For fair comparison, we explore how mul-
tiview learning will impact the performance of the base-
lines. We apply the classification loss part of CCL-DC to
the baselines. Table 6 demonstrates that multiview learning
can improve both AA and LA of baselines. However, those
performance gains are still inferior to CCL-DC.

Effect of CCL. We evaluate how CCL alone can improve
the baselines. In the experiments, we remove multiview
learning and DC, and we train the continual learner pair
with the loss illustrated in Eq. 9. Table 6 shows the per-
formance gain for ER and ER-ACE. We can see that CCL
alone can provide significant gains in both final accuracy
and plasticity. Also, when combining CCL with DC, the
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Method  Distillation scheme Acc. 7 LA 7T

ER Easy to hard 40.95+097  60.03x0.98
ER Same difficulty 43.64:1.00  69.49:0.78
ER Hard to easy (Ours) 44.45:1.04  70.8610.72

ER-ACE Easy to hard 38.46:151  39.00:1.03
ER-ACE Same difficulty 43.81x128  55.37x1.54
ER-ACE Hard to easy (Ours) 45.14:1.00 68.39:1.32

Table 7. Comparison of different distillation schemes in DC on
CIFAR-100 (M=2k).

Method Distillation scheme Acc. T LA 7T
ER + SDC Easy to hard 35.00+131  56.67=0.84
ER + SDC Hard to easy 41.31x1.25  68.62+0.60

ER + CCL-DC  Easy to hard 40.95+097  60.03+0.98
ER + CCL-DC Hard to easy (Ours) 44.45:1.04 70.86+0.72

Table 8. Final average accuracy when conducting multiview dis-
tillation within the same model on CIFAR-100 (M=2k). All values
are averaged over 10 runs.

performance can be further improved.

Distillation scheme of DC. We also evaluate the effec-
tiveness of DC’s strategy of distilling from harder sam-
ples to easier samples in collaborative learning manner. As
shown in Table 7, we compared it with other distillation
strategies. The result shows that the distillation scheme of
DC constantly outperforms other schemes.

Self-Distillation Chain in an independent model. While
DC was originally designed to incorporate CCL, it is possi-
ble to conduct DC'’s strategy within an independent model.
We name such a strategy as the Self-Distillation Chain
(SDC). Similar to different schemes of DC, SDC can be
implemented in two ways: distillation from easier samples
to harder samples, and distillation from harder samples to
easier samples. As shown in Table 8, both strategy gives
extra final performance and plasticity, while the latter strat-
egy benefits the performance more. Moreover, incorporat-
ing DC with CCL (i.e., ours) further improves the accuracy.

6. Discussions
In this section, we analyze some properties of CCL-DC.

Improving plasticity. One of the important advantages
of CCL-DC is that it can improve the plasticity of con-
tinual learners. This can be evident by plasticity metrics
like LA. Moreover, we have observed that the plasticity of
CCL-DC facilitates the model to converge faster and de-
scend to a deeper loss. Figure 4 illustrates the classification
loss (cross-entropy) curve of the model. To obtain the loss
curve, we take a snapshot of the model every 10 iterations
and compute the cross-entropy over all the training samples
on the current task. We plot the curve on the logarithm scale
so that it is easy to observe that CCL-DC helps the model
descend deeper at the end of each task.

10!

— ER
- ER+Ours

0 1000 2000 3000 4000 5000
Iteration

Figure 4. Classification loss curve of ER on CIFAR-100 (M=2k).
The curve is calculated on all training samples of the current task.
Since there are 10 tasks in total, the curve has 10 peaks.
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Figure 5. The entropy of prediction produced by ER with and
without CCL-DC on CIFAR-100 (M=2k). X represents the sam-
ple after i-th augmentation in Eq. 10. The value is calculated at
the end of the training and is averaged over all training samples.

Alleviating overconfidence. To show the effect of DC in
alleviating overconfidence, we compared the confidence of
models trained with and without CCL-DC. We measure the
confidence with the entropy of predictions. Fig. 5 shows the
entropy of prediction produced by the ER (baseline) with
and without CCL-DC on CIFAR-100 (M=2k). The entropy
is calculated at the end of training and averaged across all
samples in the training set. Moreover, we also calculate
the entropy of models trained with CCL-DC, by forwarding
images of different difficulties (from X to X3 in Eq. 10) in
the augmentation chain. The experimental results show the
effect of DC in suppressing overall confidence.

7. Conclusion

In this paper, we highlighted the significance of plasticity
in online CL, which has been overlooked in prior research
when compared to stability. We also established the
quantitative link between plasticity, stability, and final
accuracy. The quantitative relationship shed light on the
future direction of online CL research. Based on this, we
introduced collaborative learning into online CL and pro-
posed CCL-DC, a strategy that can be seamlessly integrated
into existing online CL methods. Extensive experiments
showed the effectiveness of CCL-DC in boosting plas-
ticity and subsequently improving the final performance.
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