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Abstract

Dual-camera compressive hyperspectral imaging (DC-

CHI) offers the capability to reconstruct 3D hyperspec-

tral image (HSI) by fusing compressive and panchromatic

(PAN) image, which has shown great potential for snap-

shot hyperspectral imaging in practice. In this paper, we in-

troduce a novel DCCHI reconstruction network, intra-inter

similarity exploiting Transformer (In2SET). Our key insight

is to make full use of the PAN image to assist the recon-

struction. To this end, we propose to use the intra-similarity

within the PAN image as a proxy for approximating the

intra-similarity in the original HSI, thereby offering an en-

hanced content prior for more accurate HSI reconstruction.

Furthermore, we propose to use the inter-similarity to align

the features between HSI and PAN images, thereby main-

taining semantic consistency between the two modalities

during the reconstruction process. By integrating In2SET

into a PAN-guided deep unrolling (PGDU) framework, our

method substantially enhances the spatial-spectral fidelity

and detail of the reconstructed images, providing a more

comprehensive and accurate depiction of the scene. Ex-

periments conducted on both real and simulated datasets

demonstrate that our approach consistently outperforms ex-

isting state-of-the-art methods in terms of reconstruction

quality and computational complexity. The code is avail-

able at https://github.com/2JONAS/In2SET.

1. Introduction

Hyperspectral imaging collects and processes scene infor-

mation by dividing the whole spectrum into tens or hun-

dreds of bands [15, 29, 57]. Owing to the capability of de-

tailed scene representation, this technique has been widely

adopted in many fields, e.g., medical diagnosis, health

care, remote sensing [5, 11, 28, 37], and various com-

puter vision tasks, e.g., recognition, classification, segmen-

tation [26, 35, 49].

The hyperspectral image (HSI) inherently possesses a
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Figure 1. Illustration of the proposed In2SET method for hyper-

spectral image reconstruction. (a) Intra-Similarity: extraction and

application of spatial attention maps from the PAN image to en-

hance the spatial resolution of the reconstructed HSI. (b) Inter-

Similarity: utilization of semantic features from the HSI and PAN

image, scored by their consistency, to inform and refine the recon-

struction of HSI.

three-dimensional (3D) structure, comprising two dimen-

sions of spatial information and one dimension of spec-

tral information. Consequently, existing 2D imaging sen-

sors lack the capability to directly capture this complete

3D signal. With the rapid progress in computational pho-

tography, snapshot spectral imagers have been developed

to enable hyperspectral imaging in dynamic scenes [12,

25, 53]. The coded aperture snapshot spectral imaging

(CASSI) [2, 19, 38], serving as a representative prototype

of snapshot spectral imagers, captures one compressive im-

age that encodes the spectral information by leveraging a

decorated optical system. Inspired by multi-modal image

fusion techniques, dual-camera compressive hyperspectral

imaging (DCCHI) [39, 40, 43] upgrades the original CASSI

by adding a panchromatic (PAN) camera to supply spatial

information lost in CASSI. As a result, DCCHI can achieve

more accurate reconstructions of HSI by fusing the com-

pressive and PAN images compared to CASSI, which has

shown great potential for snapshot hyperspectral imaging

in practice.

The significant challenge of DCCHI lies in the HSI re-

construction method, where the key factor that determines
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the reconstruction performance is the ability to model HSI

priors. Early methods mainly rely on general image priors

such as smoothness[4, 39, 51], sparsity[17, 41, 52], low-

rank[18, 30, 56], and non-local similarity[20, 42], which

ignore the continuous and complete spatial characteristics

of PAN images, a feature that could provide stronger image

priors.

In recent years, some PAN-guided methods like

ANSR [42, 45], PFusion [21], and PIDS [13] have utilized

PAN image as prior information to guide the reconstruc-

tion of HSI. While these approaches have demonstrated

merit, their performance is limited by the following two

reasons: firstly, current PAN-guided methods rely on hand-

crafted prior constraints, which lack a precise depiction of

the intrinsic structures of HSI and often require manual

parameter tuning. Consequently, when dealing with com-

plex scenes, these methods tend to produce degraded recon-

struction quality. Secondly, current PAN-guided methods

typically model inter-modality correlations between PAN

and HSI images from a single perspective, such as using

edge information from the PAN images to constrain the

HSI edges [13] or employing PAN image content to en-

rich HSI spatial detail [21]. However, HSI exhibits multi-

faceted consistency with PAN images across various aspects

such as structure, texture, luminance, contrast, and seman-

tic content. Relying on one constraint may not fully ex-

ploit the comprehensive spatial-semantic guidance offered

by the PAN image. In summary, accurately leveraging PAN

image-guided prior modeling for HSI reconstruction is the

key to further improving reconstruction quality.

In this paper, we propose an intra-inter similarity ex-

ploiting Transformer (In2SET) for DCCHI. The proposed

In2SET module is integrated into a PAN-guided deep un-

rolling (PGDU) framework for reconstruction. The PGDU

makes use of a multi-scale feature pyramid extracted from

the PAN image as guidance. This feature pyramid provides

hierarchical representations of the PAN at different resolu-

tions, allowing the network to capture both global context

and fine details, resulting in improved spatial fidelity and

detail in the reconstructed images.

Our key insight is to make full use of the PAN image to

assist the reconstruction. The In2SET is based on two ob-

servations: (1) given the large redundancy in both the spa-

tial and the spectral dimensions, intra-similarity exist ubiq-

uitously within HSI. Since the original HSI is not available

in practice, intra-similarity needs to be computed based on

intermediate reconstruction results. However, relying on

these intermediate results for intra-similarity calculations

introduces unreliability. Fortunately, the PAN image can

be regarded as the integral of all spectral bands and pro-

vides a natural reference for estimating the intra-similarity

in the original HSI. Thus, we propose to employ the intra-

similarity in the PAN image as an approximation proxy for

the intra-similarity in the original HSI, which provides an

enhanced content prior for HSI reconstruction. (2) Since

the HSI and the PAN image describe the same scenes, inter-

similarity should exist between the HSI and the PAN image,

considering semantic information. Inter-similarity, serving

as a scorer, assigns higher weights to features in areas of

the HSI that are more similar to the corresponding areas in

the PAN image, thereby improving feature representation

in those areas and minimizing uncertainty and risk in the

reconstruction process. This capability enables the recon-

struction of the highly ill-posed inverse problem in a more

confidently supervised manner, providing new contextual

information for HSI reconstruction.

In a nutshell, this work integrates intra-similarity and

inter-similarity with the advanced Transformer mechanism,

specifically for DCCHI, resulting in high-fidelity HSI re-

construction. The main contributions of this work are as

follows:

• We propose the PGDU, which employs the feature

pyramid from the PAN image to guide the reconstruc-

tion of the HSI.

• We propose the In2SET, which employs a novel at-

tention mechanism, specifically designed to concur-

rently capture both intra-similarity and inter-similarity

between spectral and PAN images.

• Experiments on real and simulated data demonstrate

that our method consistently outperforms state-of-the-

art approaches.

2. Related Work

This section provides an overview of the advancements in

HSI reconstruction, focusing on three pivotal areas: hand-

crafted HSI priors modeling, data-driven HSI priors model-

ing, and PAN-guided HSI reconstruction.

2.1. Hand­Crafted HSI Priors Modeling

Early HSI reconstruction relied heavily on hand-crafted pri-

ors. Total Variation (TV) regularization [39, 54, 55] utilized

the piecewise smoothness of images to constrain TV, albeit

at the risk of suppressing important high-frequency struc-

tural details. Sparse representation techniques [3, 41, 52]

have been employed, focusing on constructing dictionaries

to model image sparsity. Low-rank priors [30, 47, 56] have

been applied, designed to capture contextual information in

high-dimensional data. However, these hand-crafted meth-

ods often required extensive manual parameter tuning and

struggled to represent complex data scenarios effectively.

2.2. Data­Driven HSI Priors Modeling

The advent of deep learning has revolutionized the field of

HSI reconstruction. Models such as HyperReconNet [44],

λ-net [33], TSA-Net [31], DNU [46], DGSMP [23] and
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PnP-DIP-HSI [32] have markedly improved reconstruction

quality by modeling HSI data prior knowledge. Further-

more, the introduction of Transformer-based methods like

MST [7], CST [6], DAU [9], RDLUF [16], and PADUT [27]

has led to even more significant advances in reconstruction

performance. Benefiting from the attention mechanism,

Transformers can efficiently model both spatial and spec-

tral similarities within HSI data, enabling a more flexible

handling of input data and providing a richer feature repre-

sentation for HSI reconstruction.

2.3. PAN­Guided HSI Reconstruction

The integration of PAN guidance in HSI reconstruction rep-

resents a significant stride in addressing the inherent lim-

itations of traditional CASSI. ANSR[42, 45] proposed an

adaptive non-local sparse representation model, guided by

the PAN image. PFusion[21] leveraged RGB measurements

for spatial coefficient estimation and CASSI measurements

for spectral basis acquisition. It features a patch process-

ing strategy to enhance the spectral low-rank property, op-

timizing the model efficiently without iterative methods or

a spectral sensing matrix. PIDS[13] utilized the RGB mea-

surement as a prior image to enhance semantic correspon-

dence between HSI and the PAN image. These methods

have marked significant advancements in the field. How-

ever, they often require manual parameter tuning and fail to

leverage the rich spatial context and detailed features em-

bedded within the PAN image, suggesting potential areas

for further improvements in reconstruction.

Our motivation is to utilize the spatial semantic infor-

mation provided by the PAN image to improve the HSI re-

construction result in DCCHI. We aim to develop a method

that combines the strengths of PAN guidance to model the

intra-inter similarity for more accurate reconstruction.

3. PGDU

3.1. DCCHI Forward Model

DCCHI consists of a beam splitter, a CASSI branch, and

a PAN camera branch, as shown in Figure 2. The beam

splitter divides the incident light from the scene into two

equal-intensity parts. One part of the light is captured by

CASSI, which undergoes spatial modulation and spectral

modulation to form the CASSI measurement. The other part

of the light is directly captured by the PAN camera.

Let X ∈ R
H×W×C represent the spectral image of the

target scene, where H , W , and C are the height, width,

and number of spectral bands, respectively. The spatial and

spectral modulation in CASSI is given by

Yc =

C
∑

c=1

shift(φ⊙X [:, :, c]) +Vc, (1)

Scene

PAN 

Measurement

CASSI

Measurement

Objective

Lens

Coded
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Sensor
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Figure 2. The dual-camera compressive hyperspectral imaging

system.

where φ is the transmission intensity of the coded aperture,

represented as φ ∈ R
H×W , shift(·) indicates the spectral

modulation caused by the dispersion prism, Yc is the im-

age captured by the CASSI branch, and Vc is regarded as

Gaussian noise in CASSI.

To simplify to a matrix-vector form, the imaging model

of the CASSI branch is represented as

yc = Φcx+ vc, (2)

where Φc denotes the imaging model of the CASSI branch

sensing matrix, yc is the vector form of Yc, x is the vector

form of X , and vc is the vector form of Vc.

Correspondingly, the imaging model of the PAN camera

branch is described by

yp = Φpx+ vp, (3)

where Φp denotes the imaging model of the PAN camera

branch sensing matrix, determined by the spectral response

of the sensor, yc is the vector form of PAN measurement,

and vp is regarded as Gaussian noise in the PAN measure-

ment. To connect the imaging models to the subsequent

discussion, we define y, Φ, and v as

y =

[

yc

yp

]

, Φ =

[

Φc

Φp

]

, v =

[

vc

vp

]

. (4)

Using the above definitions, the imaging model can be

expressed as

y = Φx+ v, (5)

where Φ is a sensing matrix in R
M×N that encodes the sys-

tem mapping from the original scene x to the measurements

y. y ∈ R
M×1, x ∈ R

N×1, and Φ ∈ R
M×N , The dimen-

sions M and N are defined as follows: M is calculated as

H(W + d(C − 1)) +HW and N is calculated as HWC,

where d represents the dispersion step size. It is important

to note that in the context of HSI reconstruction, M is typi-

cally much smaller than N , highlighting that the HSI recon-

struction task in DCCHI is an ill-posed problem.
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Figure 3. Overview of PGDU. The InitialNet initiates the process with compressive measurements and sensing matrix, followed by a

series of stages each containing a conjugate gradient (CG) block and an In2SET denoiser.

3.2. Reconstruction Framework

Compared to learn a brute-force mapping between HSI x

and measurement y, model-based methods have potential in

compressive imaging due to fully considering the imaging

model. Model-based methods usually fomulate HSI recon-

struction as a Bayesian inference challenge, solving Eq. (5)

under a unified Maximum A Posteriori (MAP) framework.

Mathematically, the optimization problem for HSI recon-

struction could be expressed as

x̂ = argmin
x

1

2
∥y −Φx∥22 + ηJ(x), (6)

where J(x) represents regularization. The parameter η is a

regularization coefficient, controlling the trade-off between

data fidelity and the regularization term imposed by J(x).
To solve the optimization problem shown in Eq. (6), we

design the PGDU based on the physical structure of DC-

CHI, as shown in Figure 3. Utilizing the half quadratic split-

ting (HQS) method, we decompose the optimization prob-

lem into two sub-problems: the data fidelity term, as shown

in Eq. (7); and the prior term, as shown in Eq. (8).

xk+1 = argmin
x

∥y −Φx∥2
2
+ µk+1

∥

∥zk − x
∥

∥

2

2
, (7)

zk+1 = argmin
z

1

2
µk+1

∥

∥z− xk+1
∥

∥

2

2
+ ηk+1J (z) , (8)

the superscript k indicates the stage index number, and z is

an auxiliary variable introduced to facilitate the optimiza-

tion. The parameter µk+1 is a relaxation parameter that gov-

erns the alignment between the current estimate x and the

auxiliary variable z. The parameter ηk+1 is a stage-specific

parameter for the regularization coefficient η.

The data fidelity term can be directly calculated in closed

form, as demonstrated in Eq. (9).

xk+1 =
(

ΦTΦ+ µI
)

−1 (

ΦTy + µk+1zk
)

, (9)

in the context of HSI reconstruction in CASSI, the matrix

ΦTΦ is strictly diagonal. However, with the addition of the

PAN camera branch in DCCHI, the matrix ΦTΦ becomes

only diagonally dominant, and thus a closed-form solution

cannot be explicitly calculated.

Given the non-diagonal form of ΦTΦ, we employ the

conjugate gradient (CG) method [34] for the efficient res-

olution of the data fidelity term. The CG method is well

suited for this problem due to its effectiveness in solving

large-scale, sparse linear systems.

To fully explore the guidance of the PAN image yp on

prior term, we design a PAN-guided Gaussian denoiser to

estimate zk+1. This is formulated as Eq. (10):

zk+1 = Denoiserk+1

(

xk+1,GFE(yp), σk+1
)

, (10)

where GFE(yp) serves as structural guidance for the de-

noising, which incorporates multi-scale spatial details from

the high-resolution yp data into the denoiser, aiming to re-

fine the fidelity of the reconstructed HSI by adding contex-

tual information. The Gaussian noise level of the denoiser,

denoted as σk+1, is equal to
√

ηk+1/µk+1. The µk+1 and

σk+1 are the elements of vectors µ and σ, which are in-

ferred by the InitialNet of PGDU.

The feature extraction from yp is delineated as follows:

within the unrolling framework, the feature representation

of yp is extracted singularly and iteratively shared across

multiple stages. A stack of convolutional blocks is utilized

to harvest feature maps at varying resolutions, assembling a

guided feature pyramid [G1,G2,G3]. The guided feature

pyramid is integral to the subsequent denoising stage, aid-

ing in the preservation of intricate spatial details during the

denoising.
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Figure 4. Diagram of In2SET architecture. (a) The U-shaped In2SET structure. (b) In2AB, consisting of two normalization layers, an
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mechanism.

4. In2SET

4.1. Overall Architecture

In this section, we introduce the denoiser In2SET within

the PGDU framework. As shown in Figure 4 (a), the pro-

posed In2SET adopts a U-shaped architecture [36], involv-

ing the intra-inter attention block (In2AB) as the founda-

tional units. This architecture employs multi-scale feature

extraction coupled with skip connections between the en-

coder and decoder, enhancing the efficiency in information

processing and feature extraction. To be specific, the de-

noiser initializes feature map X from the spectral image

xk+1 and the noise level σk+1, passing through a convo-

lutional layer with a kernel size of 3× 3. The input fed into

each In2AB consists of guided feature Gi, feature maps

extracted from the PAN image, and HSI feature X. The

denoised image zk+1 is the sum of xk+1 and the output

of the last In2AB, calculated by a convolutional layer with

a kernel size of 3 × 3. The In2AB structure is shown in

Figure 4 (b). Our In2AB module includes two normaliza-

tion layers, one intra-similarity attention module, one inter-

similarity attention module, and one feed-forward fully con-

nected (FFN) layer. In the following, we introduce the detail

of the intra-similarity and inter-similarity.

4.2. Intra­Similarity Attention

Our intra-similarity attention module is grounded on two

key principles: firstly, for exploring intra-spatial similarity,

the comprehensive and continuous spatial data provided by

the PAN image are invaluable. This allows the spatial sim-

ilarity in the PAN image to serve as an effective proxy for

approximating the spatial similarity of the HSI. Secondly,

in addressing intra-spectral similarity, analyzing the recon-

structed HSI becomes significantly more effective, given the

PAN image’s deficiency in spectral color information.

As shown in Figure 4 (b), our intra-similarity attention

module includes two branches: multi-head self-attention in

channel (MHA-C) and multi-head cross-attention in spatial

(MHA-S), representing the exploration of spectral and spa-

tial self-similarity, respectively. The MHA-C is based on

the work in MST [7], which has been demonstrated to ef-

fectively explore spectral self-similarity.

The input features X and G have dimensions RH×W×C

and R
H×W×Ĉ , respectively, where Ĉ = C

2
. After normal-

ization and partitioning, the dimensions become R
B×N×C

and R
B×N×Ĉ . In the first and last layers of HSAB within

In2SET, B = HW
M2 and N = M2 . For the remain-

ing layers, dimensions are recalibrated to B = M2 and

N = HW
M2 . Following linear projection as shown in Eq. (11)

and Eq. (12).

Q1,K1,V1,V2 = LQ1,K1,V1,V2
(X), (11)

Q2,K2 = LQ2,K2
(G), (12)

where X is projected to Q1,K1,V1 ∈ R
B×Ĉ×N and
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Method GFLOPs
Scene

Average
01 02 03 04 05 06 07 08 09 10

PFusion-RGB [21] -
40.09 38.84 38.70 46.65 32.07 37.12 39.74 36.75 34.52 35.53 38.00

0.979 0.968 0.966 0.936 0.980 0.980 0.964 0.965 0.931 0.979 0.965

PIDS-RGB [13] -
42.09 40.08 41.50 48.55 40.05 39.00 36.63 37.02 38.82 38.64 40.24

0.983 0.949 0.968 0.989 0.982 0.974 0.940 0.948 0.953 0.980 0.967

TV-DC [39] -
35.81 33.22 31.07 40.11 33.32 34.62 31.09 32.31 29.36 33.84 33.47

0.947 0.885 0.879 0.947 0.944 0.943 0.885 0.916 0.862 0.953 0.910

PIDS-DC [13] -
39.82 37.07 37.72 46.78 37.45 37.74 32.90 31.66 34.35 38.58 37.41

0.977 0.921 0.950 0.978 0.973 0.963 0.896 0.915 0.902 0.972 0.945

BiSRNet-DC [10] 1.33
35.02 34.13 31.50 35.88 33.70 35.58 32.31 32.73 31.37 34.48 33.67

0.945 0.914 0.883 0.895 0.935 0.925 0.900 0.903 0.899 0.936 0.914

CST-DC [6] 25.40
37.44 38.91 36.79 42.27 36.57 38.91 36.87 35.91 35.87 37.93 37.75

0.975 0.978 0.969 0.983 0.982 0.984 0.967 0.980 0.973 0.990 0.978

HDNet-DC [22] 144.31
38.06 39.79 38.21 42.79 37.22 39.26 37.41 36.51 36.64 37.52 38.34

0.976 0.982 0.973 0.983 0.983 0.986 0.968 0.982 0.976 0.988 0.980

MST-DC [7] 25.77
38.38 40.45 37.63 42.88 37.72 39.66 37.56 37.40 37.86 38.10 38.76

0.976 0.976 0.966 0.975 0.978 0.976 0.965 0.971 0.971 0.981 0.974

MST++-DC [8] 17.69
38.38 40.47 37.70 43.88 37.75 39.42 37.48 37.38 38.82 39.04 39.03

0.977 0.980 0.968 0.984 0.983 0.985 0.964 0.982 0.980 0.989 0.980

DAUHST-DC-2stg [9] 16.79
40.78 43.13 41.73 47.09 39.84 40.90 39.75 38.98 41.29 40.04 40.22

0.983 0.987 0.980 0.990 0.987 0.986 0.976 0.981 0.983 0.988 0.983

DAUHST-DC-3stg [9] 24.70
40.22 43.52 41.74 47.07 38.81 40.16 39.86 38.21 40.63 39.32 40.95

0.983 0.989 0.981 0.993 0.985 0.987 0.978 0.981 0.983 0.990 0.985

DAUHST-DC-5stg [9] 40.51
40.74 44.00 41.58 46.84 39.66 40.89 40.21 38.72 39.98 40.10 41.27

0.984 0.989 0.981 0.991 0.986 0.987 0.979 0.983 0.982 0.989 0.916

DAUHST-DC-9stg [9] 72.11
41.59 45.19 43.47 48.92 40.27 41.17 40.73 40.11 43.50 41.33 42.62

0.985 0.991 0.984 0.993 0.988 0.988 0.979 0.986 0.988 0.990 0.987

40.33 42.30 40.34 47.24 39.42 40.61 39.46 38.42 40.37 39.96 40.84
In2SET-2stg (Ours) 14.35

0.983 0.985 0.977 0.991 0.986 0.986 0.975 0.979 0.981 0.988 0.983

40.78 43.13 41.73 47.09 39.84 40.90 39.75 38.98 41.29 40.04 41.35
In2SET-3stg (Ours) 20.79

0.983 0.987 0.980 0.990 0.987 0.986 0.976 0.981 0.983 0.988 0.984

41.13 44.43 42.74 47.29 40.33 40.95 40.49 39.15 42.07 39.44 41.80
In2SET-5stg (Ours) 33.66

0.985 0.990 0.983 0.993 0.988 0.987 0.979 0.982 0.985 0.987 0.985

42.56 46.42 44.55 50.63 42.01 42.49 41.59 40.53 43.83 42.33 43.69
In2SET-9stg (Ours) 59.40

0.989 0.994 0.986 0.996 0.992 0.991 0.983 0.989 0.990 0.994 0.990

Table 1. Comparison of In2SET with SOTA DCCHI methods across 10 simulated scenes, including FLOPS, PSNR (upper entry), and

SSIM (lower entry). “Method-RGB” indicates the use of RGB observations, while “Method-DC” denotes grayscale observations in PAN

images. It is noted that “Method-DC” is modified from other HSI reconstruction method for the DCCHI reconstruction task.

V2 ∈ R
B×N×Ĉ . G is projected to Q2,K2 ∈ R

B×N×Ĉ .

The computations of MHA-C and MHA-S can be repre-

sented by Eq. (13) and Eq. (14),

X1 = Softmax

(

Q1K
T
1√

dh1
+P1

)

V1, (13)

X2 = Softmax

(

Q2K
T
2√

dh2
+P2

)

V2, (14)

where
√
dh1 and

√
dh2 are scalars as defined in [9], P1 ∈

R
B×Ĉ×Ĉ , and P2 ∈ R

B×N×N denote learnable positional

encodings.

The output of intra-attention Xintra can be obtained by

Eq. (15).

Xintra = Concat (X1,X2) . (15)

4.3. Inter­Similarity Attention

We establish our inter-similarity attention module based on

one principle: the shallow semantic features of the PAN im-

age and the corresponding HSI area are similar, including

consistency in texture, shape features, and low-level image

attributes (brightness and contrast). The credibility of the

reconstructed area is directly proportional to this consis-

tency. Inter-similarity attention explores cross-modal simi-

larity using cosine similarity reweighting (CRW).

After exploiting intra-similarity, the output of the intra-

similarity attention module Xintra is projected to obtain

K3 and V3,

K3,V3 = LK3,V3
(Xintra), (16)

where K3 ∈ R
B×N×Ĉ and V3 ∈ R

B×N×C .

Then, the computations of CRW can be represented as

follows:

Xinter =
Q2 ·K3

∥Q2∥∥K3∥
⊙V3, (17)

where the cosine similarity computed along the last dimen-

sion between Q2 and K3 quantifies the feature alignment

in corresponding areas. A higher similarity score reflects

a stronger feature correspondence, which, in turn, informs

the enhanced weighting of V3, improving the fidelity of the

region being reconstructed.
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5. Experiments

In this section, we begin by introducing detailing the net-

work training process. Subsequently, we evaluate the per-

formance of In2SET on both simulation and real-world DC-

CHI datasets. Then, we validate the effectiveness of the

intra-similarity block using statistical simulation data. Fi-

nally, we perform an ablation study to demonstrate the ef-

fectiveness of our proposed method.

Simulation Dataset. Two distinct datasets are used:

CAVE [50] and KAIST [14]. The CAVE dataset is made up

of 32 hyperspectral images with 512 × 512 spatial resolu-

tion. The KAIST dataset contains 30 hyperspectral images,

each with a larger spatial dimension of 2704 × 3376. The

CAVE dataset is used as the training data, while a subset of

10 scenes crop from the KAIST dataset is used for the eval-

uation phase, in accordance with the protocols established

in references [7, 9, 22, 23, 31].

Implementation. Our method is implemented with Py-

torch and trained with Adam [24] optimizer for 300 epochs.

During training, the learning rate is 4× 10−4 using the co-

sine annealing scheduler, and the loss function for network

training is L1 loss. We randomly extract patches from 3D

HSI cubes to serve as training samples. The dimensions of

these patches are 256× 256× 28 for the simulation experi-

ment and 350× 260× 26 for the real-world experiment. In

simulation imaging model, we configure a dispersion shift

step d of 2, directing the dispersion to the right. In real-

word imaging model, the dispersion shift step d is set to 1,

with the dispersion oriented upwards.

5.1. Simulation Data Results

The reconstruction quality of hyperspectral images are as-

sessed using peak signal-to-noise ratio (PSNR) and struc-

tural similarity index (SSIM) [48] metrics.

The Table 1 clearly shows that In2SET excels in all test

scenarios, particularly in In2SET-9stg, achieving the best

performance across all scenes with an average PSNR of

43.69 dB and a SSIM of 0.990. This significantly sur-

passes model optimization methods like TV-DC and PIDS-

DC. Compared to deep learning-based methods, such as

various stages of DAUHST-DC [9], In2SET demonstrates

remarkable superiority. In2SET-3stg achieves performance

comparable to that of DAUHST-DC-5stg [9], but with only

51.3% of the cost, amounting to 20.78 GFLOPs compared

to 40.50 GFLOPs.

To facilitate a direct visual quality assessment, we ana-

lyzed the distinction between Ground Truth (GT) and the

reconstructions produced by various open-source methods.

Figure 5 presents reconstruction results for selected spectral

bands. These results are generated from two model-based

approaches, TV-DC [39] and PIDS-DC [13], five end-to-

end network algorithms, BiSRNet-DC [10], CST-DC [6],

HDNet-DC [22], MST-DC [7], MST++-DC [8], as well as

RMSE Correlation PSNR(dB)

CAVE 0.034 0.999 36.28

KAIST 0.025 0.996 35.74

ICVL 0.076 0.997 31.10

Table 2. Comparison of correlation maps between HSI and PAN

image, including average Root Mean Squared Error (RMSE), av-

erage correlation, and PSNR.

Baseline CRW MHA-C MHA-S PSNR(dB) SSIM GFLOPs

✓ 37.23 0.944 9.87

✓ ✓ 40.05 0.980 11.19

✓ ✓ ✓ 40.46 0.982 14.06

✓ ✓ ✓ ✓ 40.84 0.983 14.35

Table 3. Break-down ablation study on individual components of

the proposed method.

Methods CG-1 CG-2 CG-5 CG-10

PSNR(dB) 40.42 40.66 40.84 41.05

SSIM 0.982 0.983 0.983 0.984

FPS 26.45 22.79 19.16 13.99

Table 4. Ablation study on iterative performance of conjugate gra-

dient descent for data item.

from two deep unfolding methods, namely DAUHST-DC-

9stg [9] and our In2SET-9stg. The comparison underlines

the exceptional ability of our In2SET approach to maintain

spatial and spectral fidelity.

We suggest that the intra similarity in PAN image

can effectively approximates that in HSI. To support this,

we experiment with three public datasets: CAVE [50],

KAIST [14] and ICVL [1]. We compute spatial correla-

tion maps for each scene, comparing the correlation map of

the HSI with that of the corresponding PAN image. The

results of this comparison are displayed in Table 2, indi-

cating a high degree of similarity between the intra-spatial

correlations in PAN images and HSI. More visual results

are presented in the supplementary materials.

5.2. Real Data Results

In this research, we used a real-world DCCHI measurement

Ninja, taken from publicly available data as detailed in ref-

erence [42]. Figure 6 illustrates the reconstruction results

for four spectral bands in this scene, using various DCCHI

reconstruction algorithms. The comparison highlights the

superior image restoration quality of our model over other

methods, validating its effectiveness and reliability in real-

world applications.

5.3. Ablation Study

To verify the effectiveness of our proposed method, we con-

ducted ablation studies for the In2SET method. All evalua-

tions are conducted on simulated datasets.

Break-down Ablation. The break-down study, as de-

lineated in Table 3, offers a detailed examination of how

each component within our proposed method influences re-

construction performance. Starting from a baseline derived

by removing all ablated components from In2SET-2stg, the
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DCCHI Measurement RGB

Spectral Density Curves GT
In2SET-9stg 

(Ours)

DAUHST-

DC-9stg
MST++-DC MST-DC HDNet-DC CST-DC BiSRNet-DC PIDS-DC TV-DC

450 475 500 525 550 575 600 625 650
Wavelength(nm)

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Ground Truth
In2SET-9stg,corr:0.9994
DAUHST-DC-9stg,corr:0.9983
MST++-DC,corr:0.9947
MST-DC,corr:0.9895
HDNet-DC,corr:0.9988
CST-DC,corr:0.9994
BiSRNet-DC,corr:0.9541
PIDS-DC,corr:0.8228
TV-DC,corr:0.9552

Figure 5. Comparative reconstruction results of different reconstruction methods for Scene 3 from the KAIST dataset at spectral bands

476.5nm, 536.5nm, 584.5nm, and 625.0nm. The spectral density curves are plotted from the blue region in the colorchecker.

481.5nm 544.0nm 594.5nm 614.5nm

TV-DC

PIDS-DC

DAUHST

-DC-2

In2SET-2

Figure 6. Visualization of reconstruction performance across dif-

ferent spectral bands on real data. The spectral bands selected for

comparison are 481.5nm, 544.0nm, 594.5nm, and 614.5nm.

model achieves a PSNR of 37.23 dB. The addition of the

CRW component leads to a significant increase in PSNR

by +2.82 dB, albeit at an increased computational cost of

+1.32 GFLOPs. The subsequent integration of MHA-C fur-

ther elevates the PSNR by +0.41 dB. The final inclusion of

MHA-S brings an additional PSNR gain of +0.38 dB. These

step-by-step enhancements highlight the critical role each

component plays in enhancing the overall capability of the

model for HSI reconstruction, demonstrating a progressive

improvement in performance with each added component.

Ablation Study of CG Iterations. Table 4 presents a

comparative analysis of PSNR, SSIM, and Frames Per Sec-

ond (FPS) metrics across varying numbers of CG iterations

for HSI reconstruction. The CG-1, which conducts a single

iteration, essentially operates as a vanilla gradient descent.

These experiments are conducted on a system equipped

with a TITAN Xp GPU (12GB) and an Intel (R) Xeon (R)

Platinum 8358P CPU @ 2.60GHz.

There is a clear trend of improvement in PSNR as the

number of CG iterations increases from 1 to 10, with val-

ues escalating from 40.42 dB to 41.05 dB. However, an in-

crease in iterations from CG-1 to CG-10 leads to a decrease

in FPS from 26.45 dB to 13.99 dB, indicating a trade-off

between reconstruction quality and computational speed. A

notable observation is that CG-5 offers an optimal balance

between time efficiency and performance, making it the pre-

ferred choice for our In2SET network.

6. Conclusion

In this paper, we propose the In2SET for DCCHI re-

construction. Our method maximizes PAN image utility

for HSI reconstruction by: (1) approximating HSI intra-

similarity using PAN image, addressing the unreliability of

direct computation from intermediate results. (2) Leverag-

ing inter-similarity between HSI and PAN images to accu-

rately reconstruct regions, providing cues for uncertain ar-

eas. Integrating In2SET into a PGDU framework allowed

us to substantially enhance the spatial-spectral fidelity and

detail of reconstructed images. Experiments on real and

simulated datasets show that our method consistently out-

performs the state-of-the-art while maintaining lower com-

putational complexity.
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