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Abstract

We propose InNeRF360, an automatic system that accu-
rately removes text-specified objects from 360�Neural Radi-
ance Fields (NeRF). The challenge is to effectively remove
objects while inpainting perceptually consistent content for
the missing regions, which is particularly demanding for
existing NeRF models due to their implicit volumetric rep-
resentation. Moreover, unbounded scenes are more prone to
floater artifacts in the inpainted region than frontal-facing
scenes, as the change of object appearance and background
across views is more sensitive to inaccurate segmentations
and inconsistent inpainting. With a trained NeRF and a text
description, our method efficiently removes specified ob-
jects and inpaints visually consistent content without arti-
facts. We apply depth-space warping to enforce consistency
across multiview text-encoded segmentations, and then re-
fine the inpainted NeRF model using perceptual priors and
3D diffusion-based geometric priors to ensure visual plau-
sibility. Through extensive experiments in segmentation
and inpainting on 360�and frontal-facing NeRFs, we show
that our approach is effective and enhances NeRF’s ed-
itability. Project page: https://ivrl.github.io/
InNeRF360/.

1. Introduction
Recreating and manipulating real-world scenarios is one

of the main focuses of Virtual and Augmented Reality
(VR/AR) applications. Neural Radiance Field (NeRF) and
its variants [2, 23, 28] can efficiently model 360�real-world
scenes for photorealistic novel view synthesis. Conse-
quently, they have the potential to become widely accessible
tools for representing the 3D world.

A desired feature of such applications is the ability to
modify the content of the created scene, including object
removal. However, direct inpainting in the NeRF frame-
work is intractable due to the implicit representation of the
captured scenes encoded through the weights of multilayer
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“Remove the flowerpot and flowers”

InNeRF360

Figure 1. Given a pre-trained NeRF and a text to remove specific
objects (e.g.“Remove the flowerpot and flowers”), InNeRF360
produces accurate multiview object segmentations, and outputs an
inpainted NeRF with visually consistent content.

perceptrons (MLP), which hinders explicit user control of
scene contents. For explicit NeRF variants, the scene repre-
sentation of radiance fields contains ambiguous surface that
is hard to segment with a bounding region.

Existing works on selecting [35] or removing [18, 26,
43] objects in a trained NeRF tackle the 3D problem by
utilizing 2D input. These methods begin with sparse user
inputs, then use 2D image/video segmentation [7, 10] for
multiview segmentation and inpaint on RGB-D sequence.
They are restricted to frontal-facing viewing angles, as the
input scribbles or masks cannot extrapolate across differ-
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ent viewpoints in 360� scenes where the shape of the object
can change drastically. Moreover, in the case of object oc-
clusions on 360� scenes, inpainting 2D depth maps is inad-
equate for geometric supervision as it leads to inconsisten-
cies in scene geometry.

In contrast, InNeRF360 is an inpainting pipeline with
a depth-guided segmentation method dedicated to accurate
object-level editing on 360� scenes. Instead of extrapolating
sparse 2D input to 3D, InNeRF360 encodes text input into a
promptable segmentation model, Segment Anything Model
(SAM) [15], leveraging its accurate semantic segmentation.
Our method is driven by the intuition that an object’s seman-
tic identity is more consistent over different viewpoints than
its geometry. However, text-based 2D semantic segmenta-
tions may not always maintain consistency across views. To
overcome this, we refine object masks using inverse depth
space warping in 3D space across viewpoints, utilizing the
consistent 3D positioning of objects.

Using view-consistent masks, we train a NeRF from
scratch on the multiview inpainting from a 2D image in-
painter [36]. The multiview training images slightly differ
in the inpainted regions, accumulating into cloudy artifacts,
i.e. floaters [42], in the new NeRF. To eliminate floaters, we
finetune the scene guided by 3D diffusion priors trained on
extensive geometric shapes [6] to determine whether den-
sity should be removed or incremented in a local voxel. The
texture for the removed region is optimized by contextual
appearance priors [45] from the surrounding regions of the
segmentation. This creates a perceptually consistent 3D in-
painted region that seamlessly blends into the scene. Exten-
sive experiments show that InNeRF360 can effectively in-
paint both 360� [2] and front-facing [22] real-world scenes,
with the potential to be extended into 3D editing.

To summarize, our contributions are as follows:
• InNeRF360 is the first work to achieve text-guided ob-

ject inpainting in 360� NeRF scenes, ensuring visually
consistent inpainted regions.

• Our approach efficiently generates multiview consis-
tent 2D segmentation for 3D object inpainting through
depth-warping refinement on initialized masks.

• We incorporate a 3D diffusion network as local geomet-
ric priors to remove artifacts in the inpainted region.

2. Related Works
Image Inpainting. Recent advancements in image inpaint-
ing focus on filling in masked regions to create visually con-
sistent images. This primarily involves generative models
like Generative Adversarial Networks (GANs) [13, 31, 46]
and denoising diffusion models (DDPMs) [29, 36, 37].
These models generate photorealistic predictions for the
missing pixels. However, when applied to inpainting multi-
view renderings of 3D scenes [25, 26], they often generate
different inpainted regions for nearby views. This is due to

their lack of 3D understanding, presenting a challenge for
inpainting 2D observations of 3D scenes. InNeRF360 lever-
ages image inpainting to address inpainting 360� scenes,
ensuring view consistency across viewpoints.
Inpainting Neural Radiance Fields. Using neural ra-
diance fields [23] to represent 3D scenes has achieved
high-quality, photo-realistic novel view synthesis. NeR-
Facto [39] is an architecture designed to optimize NeRF’s
performance on real-world data. It incorporates various re-
cent advances in NeRF, including hash encoding [28] and
per-image appearance encoding [19], among others.

However, object removal presents a challenge in NeRF
due to the implicit scene representation by the underlying
neural networks. Previous works [24, 40] utilize the super-
vision of Contrastive Text-Image Pre-Training (CLIP) [34].
They focus on inpainting a single object and cannot gen-
eralize to real-world scenes. Methods utilizing depth-based
approaches [18, 25, 26, 43] remove objects with user-drawn
masks and depth sequences, and inpaint missing regions
naively with 2D image inpainter on the training images of
NeRF. These approaches are limited to front-facing scenes
for two reasons. First, their segmentation relies on the qual-
ity of initialize masks by supervised video object segmenta-
tion methods [4, 5, 7, 30], which struggle on temporal con-
sistency across frames for challenging cases such as trans-
parent objects. These methods cannot output accurate ob-
ject masks in 360� scenes, where object shapes change dras-
tically across views. Secondly, the chosen 2D inpainting
methods output different inpainting across views. Such in-
consistency results in floaters in the trained NeRF, and is
much more pronounced on 360� scenes than on frontal-
facing ones. In contrast, InNeRF360 enhances the con-
sistency of multiview segmentation by utilizing semantical
identity and object 3D location consistency, thereby pro-
ducing accurate masks for desired objects. Moreover, In-
NeRF360 is designed for 360� NeRF inpainting by remov-
ing floaters (Fig. 4) from the inpainted NeRF with geomet-
ric priors, and inpaint with contextual perception guidance.
Text-Guided 3D Editing. Given the popularity of text-
conditioned image generative models, many works focus on
generating 3D content with text instructions. Some rely on
joint embeddings of CLIP to synthesize 3D meshes [21, 27]
or neural radiance fields [14, 16]. Others distill a pre-
trained diffusion model to optimize NeRF scenes in the la-
tent space [20, 33]. These methods all suffer from having to
map the inconsistent 2D diffusion model outputs to a 3D-
consistent scene. Instruct-NeRF2NeRF [9] edits renderings
of a pre-trained NeRF model to preserve 3D consistency.
However, it cannot remove scene objects or perform object-
level editing as it operates in latent space for image edit-
ing. Our InNeRF360 operates in image space to accurately
pinpoint and crop objects and allows removing an arbitrary
number of objects from the scene through text instructions,
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Figure 2. Overview of InNeRF360 framework. 1. Multiview Consistent Segmentation. We initialize masks using bounding boxes from
the object detector, which encodes both the source image and text. With rendered depth from the input NeRF, we apply depth-warping
prompt refinement to iteratively update points for the Segment Anything Model (SAM) to output view-consistent 2D segmentations. 2.
Inpainting 360� NeRF. We obtain edited images through image inpainter with the masks and source images to retrain the inpainted NeRF.
We then finetune the new NeRF model using a geometric prior trained from a 3D diffusion model and a masked perceptual prior.

while using 3D diffusion priors for local geometry finetun-
ing to avoid the global inconsistency prior works exhibit.

3. Method
InNeRF360 takes as input a trained NeRF with source

images which the model trained on, and an instructive text.
It outputs the inpainted 3D scene with the desired object(s)
removed and filled with a visually consistent background
without artifacts. Our pipeline is shown in Fig. 2.

3.1. Background: Neural Radiance Fields
A Neural Radiance Field (NeRF) encodes a 3D scene

as a function f✓ parametrized by an MLP with learnable
parameters ✓, which maps a 3D viewing position x and its
2D direction d to the density � and a viewing-dependent
color c: f✓ : (x,d) ! (�, c). Rendering a NeRF from a
posed camera is done by sampling batches of rays for the
camera pose, and rendering corresponding pixel colors for
each ray. For each ray r = (o,d), we sample an array of
3D points (xi, ti), i = 1, 2, · · · ,K, where xi 2 R2 and ti
is the depth. We query the MLP with these points along the
ray for {�i}Ki=1 and {ci}Ki=1.

The estimated RGB of ray Ĉ(r) is obtained by alpha
compositing [23] the densities and colors along the ray:

Ĉ(r) =
KX

i=1

↵iTici, (1)

where Ti = 1 � exp(��i kti � ti�1k) is the ray transmit-
tance between xi and xi+1, and ↵i =

Q
i�1
j=1 Ti is the atten-

uation from ray origin to xi. The MLP is optimized through
pixel loss for the distance between the estimated pixel value
and the ground truth color.

3.2. Multiview Consistent Segmentation

The first stage is to obtain refined multiview segmenta-
tion masks for the objects to remove/edit given by the text
input. We take as input a pre-trained NeRF model and N
source images given by the set of N source camera poses.

We initialize segmentations through the Segment-
Anything Model (SAM) [15] with the bounding boxes
given by Grounded Language-Image Pre-training (GLIP)
from a large-scale dataset of image-text pairs [17]. GLIP:
D(I, s) = {(Bq, pq)}Qq=1 takes in an RGB image I 2
RH⇥W⇥3 and a text s, and encodes each through respective
image and language encoders. Q is the number of bounding
boxes. We then take these bounding boxes {Bq}Qq=1 from
the model output in which Bq = (lq, rq, uq, dq) 2 R4 with
corresponding probability pq . These boxes are sometimes
inaccurate and fail to enclose the desired region, see Fig. 3
(b). Hence, we propose our depth-based prompt refinement
for consistent segmentation.
Depth-Warping Prompt Refinement. “Depth Warp” op-
erates on the sampled points to enhance segmentation ac-
curacy. It leverages the depth information inherited from
the input NeRF and projects these points back into the
pixel space to align them with other 2D observations within
the scene. We thereby establish a cohesive depth con-
straint across different views. The depth for a sampled ray
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r = o+ td with origin o and direction d in a trained NeRF
scene can be estimated via a modification of Eq. (1):

D(r) =
IX

i=1

↵iTi · ti, (2)

For each training view, we randomly select m other
training views. From each selected view, we sample a fixed
number p of rays that correspond to pixels within the mask
region. Given a ray r and its estimated depth from Eq. (2),
we compute the 3D location of the selected point prompt.
This information is then mapped back to the current training
view. Rays and their corresponding point prompts whose
depth is above a certain threshold are discarded, as they may
represent background objects misclassified as foreground
sections to be removed. If the corresponding pixel on the
current view falls outside the masked region in the current
view, we add this point prompt to the current view. Sub-
sequently, we pass this view with the new sets of point
prompts to SAM for refined segmentation.

By generating these “out-of-the-box” point-based
prompts for the segmentation model with our NeRF-
based depth prior, we ensure that the object is accurately
segmented even in cases where the initial bounding box
information is insufficient or incomplete from certain view-
points. This approach greatly increases the segmentation
masks’ accuracy for desired objects in the scene, see Fig. 3.

“Remove the flowerpot and flowers”

(a) (b) (c)
Figure 3. Inconsistent bounding box across different views.
(a) and (b) are from the same dataset under the same instruction.
However, the generated bounding boxes are different. After ap-
plying depth warping refinement (point prompts as red dots), (c)
generates accurate segmentation.

Promptable Segmentation After obtaining the refined
point-based prompts, we employ SAM to identify and seg-
ment all the rendered observations {In}Nn=1 for refined
masks {Mn}Nn=1. Specifically, SAM takes as input an im-
age I and a prompt in the form of j points pinpointing the
object oq , and produces an accurate segmentation mask Mq

of the same size as I: Mq = SAM(I, oq). For each image
Ii 2 {In}Nn=1, we get a union binary mask for all the ob-
jects to be removed:

Mi =
Q[

q=1

Mq. (3)

3.3. Inpainting 360� NeRF
Inpainted NeRF Initialization. With the rendered obser-
vations {In}Nn=1 and corresponding masks {Mn}Nn=1, we
adopt a 2D image inpainter [36] to edit each observation
as priors for the optimization. We then initialize the in-
painted scene with Nerfacto [39]. This architecture is de-
signed to optimize the performance of NeRF on real-world
image captures. However, each inpainted image has vary-
ing pixel-level content despite being perceptually plausible
as a standalone image. Therefore, relying solely on RGB
supervision leads to floaters in the NeRF (Fig. 4). To pro-
duce clean and perceptually consistent inpainting, we fine-
tune the initialized NeRF with both geometry and appear-
ance priors.

Figure 4. Examples of artifacts in the initialized NeRF. 2D in-
paintings contain inconsistent inpainted pixels that accumulate in
the 3D inpainted region and appear as floater artifacts.

Hallucinating Density Removal. The density artifacts
produced through inconsistent 2D inpainting can be seen
as floaters. We train a denoising diffusion probabilistic
model (DDPM) [12] on ShapeNet [6] to iteratively denoise
a m3 resolution voxel grid of discretized binary occupancy
x as a local 3D geometry prior: given a NeRF density � at
timestep t, xt = 1 if � > ⇢ else xt = �1, where ⇢ is a
chosen threshold for whether a voxel is empty. For training,
from each ShapeNet mesh we randomly select N cubes that
encompass 3% to 8% of the object bounding volume, and
voxelize them to m3 resolution. The loss function for the
diffusion model is given by the MSE loss between the true
noise ✏ and the predicted noise ✏✓ where ✓ parameterizes the
diffusion model U-Net:
Lddpm(✓) = Et,x0,�[

��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2
2
],
(4)

where t 2 [1, 1000] is the number of timesteps in the nois-
ing diffusion process, and ↵̄t =

Q
t

s=1 ↵s where ↵t is
a function of the timestep t that parameterized transitions
from x0 to x1000 (i.e. a noise schedule).

The Density Score Distillation Sampling (DSDS) [42]
loss is defined to penalize regions with density � > ⇢ that
the trained diffusion model deems as empty, and regions
that are empty where xt = 1 predicted by the model:

LDSDS =
X

i

ui�i + (1� ui)max (w � �i, 0), (5)
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where u = 1{x0 < 0}, and w is a chosen upper limit for
density � in occupied voxels.

The original sampling of the DSDS loss is by sampling
a low-resolution density grid stored through ray bundles.
During training, the grid selects the center of 3D cubes
to be voxelized and enter the diffusion process. The grid
gets updated by a visibility field determining what it sees in
the NeRF scene. Our aim is to focus on removing floaters
within the inpainted region. Therefore, we apply the refined
segmentation mask from the image space to limit the visibil-
ity field to only look at the inpainted regions, and eliminate
sampled rays corresponding to pixels outside the mask:

Lgeom =
X

j

(uj�j + (1� uj)max (w � �j , 0)) · Vj , (6)

where V is an indicator function whose value is 1 for each
voxel cube whose center is located within the current “vis-
ible region” given by the segmentation masks. Conse-
quently, we sample cubes near the inpainted region. The
geometric prior trained on extensive shapes in [6] preserves
the original surface (e.g., the table supporting the removed
flowerpot) while penalizing the floaters in the inpainted re-
gion created through inconsistent 2D inpainting.
Perceptually-Consistent Appearance Inpainting. The
above method removes floaters created by inconsistent 2D
inpainting, however, it does not produce visually consistent
textures to fill in the removed region. Therefore, we utilize
a patch-based loss [45] as an appearance prior to enhancing
the model’s robustness and alleviate blurring effects.

Specifically, we sample all the pixels from the input in-
painted images to get W image patches {Pw}Ww=1 with the
size of �2. These patches, {Pw}Ww=1, can be divided into
two non-overlapping groups of patches Pwi and Pwo de-
pending on whether a patch contains pixels within the in-
painted region. For patches in Pwo , we apply pixel-wise L1.
This pixel loss is obtained by comparing the RGB values of
each pixel p in the inpainted patch, denoted as C̃p, with the
corresponding rendered RGB value, denoted as Ĉp,

Lpix =
1

�2|Pwo |
X

pr2Pwo

���Ĉp � C̃p

���
1
. (7)

For patches in Pwi containing the inpainted region, we
compute the perceptual similarity using LPIPS between the
inpainted image patch P̃I and the corresponding patch P
on the rendered image. We denote CP as the set of pixel
values in patch P , and define Lin as the inpainting loss.

Lin =
1

|Pwi |
X

P2Pwi

LPIPS(CP ,CP̃I
). (8)

The inpainting loss measures the perceptual difference
between the inpainted patch and the target inpainted image,
while the pixel loss quantifies the pixel-level discrepancy
between the inpainted and rendered RGB values. Together,

these losses provide a comprehensive assessment of the re-
construction quality, accounting for both perceptual simi-
larity and pixel-wise accuracy.
Loss Functions. Our optimization is the weighted sum of
the geometric prior Lgeom (Eq. (6)), pixel loss Lpix (Eq. (7)),
appearance prior Lin (Eq. (8)) with �(·) as weight terms:

L = �geom · Lgeom + �in · Lin + Lpix. (9)

4. Experiments
In this section, we evaluate InNeRF360 on various real-

world captured datasets for text-guided inpainting.
Datasets. We take 360-degree datasets from MipNeRF,
MipNeRF-360, and NeRFStudio [1, 2, 39]. In addition, due
to the absence of ground truth data for 360� scene inpaint-
ing, we capture new datasets with and without the object
removed for quantitative evaluation. Segmentation mask
ground truth does not exist for the 360� scenes we evalu-
ate. We also compare with front-facing datasets from SPIn-
NeRF [26] and IBRNet [41] to show that our method pro-
duces better inpainting over baseline methods. Details of
the datasets we used are provided in Tab. 5.
Baseline. We select baselines based on specific tasks. SPIn-
NeRF SPN [26] is the closest work to ours. For segmen-
tation, we compare with the multiview segmentation from
SPN and a recent video segmentation method Dino [5].
For the inpainting task, we compare our inpainting quality
with our implemented version of SPN that works with 360-
degree scenes SPN-360. We also compare with per-frame
image inpainting [36] to show that our method generates
more consistent inpainting across different viewpoints.

4.1. Segmentation Comparison
We qualitatively compare our segmentation results to

SPN and Dino. As input, we give the first frame segmenta-
tion to both SPN and Dino, and give the corresponding text
instructions for InNeRF360. As we are evaluating the ex-
trapolation ability of each segmentation method over dras-
tically different viewpoints, we select the 82nd frame from
vasedeck and the 81st image from room. They represent the
respective frames of the videos created from the dataset.

As shown in Fig. 5, Dino produces incomplete segmen-
tation for unseen views in challenging scenes, such as the
vasedeck featuring a transparent vase. In such cases, SPN
struggles to generate complete segmentation when initial-
ized with Dino’s output. While we also initialize with a 2D
segmentation model (SAM), it facilitates flexible, prompt-
able input. This can be utilized by our depth-warping re-
finement to output point prompts specifically in the vase
section of the image. These prompts guide SAM towards
accurate segmentation, as elaborated in Sec. 3.2. For room,
where only a part of the slippers is present in the image,
Dino and SPN once again yield incomplete segmentations.
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Figure 5. Qualitative comparison on 3D object segmentation.
InNeRF360 outputs accurate masks for complex cases containing
transparent (vase) or incomplete objects (partial slippers).

InNeRF360 is able to output complete object segmentation.

4.2. Inpainting Evaluation

Results on 360-degree scenes. InNeRF360 can handle a
wide range of scenarios for object inpainting in 3D scenes,
as depicted in Fig. 7. We encourage the readers to view
supplementary videos to inspect the quality of our results.

InNeRF360 can remove large scene objects against com-
plex backgrounds. In Bear, the background of the bear con-
tains varying trees and branches, and the 2D inpainted im-
ages are therefore very noisy, as shown in Fig. 16. However,
with our floater removal and appearance prior, InNeRF360
produces a clean stone surface in the final edited NeRF.

Occlusion and geometry deformation across varying
viewpoints are major causes of 3D inconsistency in inpaint-
ing, and the datasets we use contain both scenarios. In
Room, the window, wall, and the piano behind the score
can lead to inconsistency. However, we generate view-
consistent content to seamlessly fill the missing region.

Moreover, InNeRF360 is capable of inpainting multiple
objects located anywhere in the 3D scenes without intro-
ducing blurry artifacts in the resulting NeRF scene. When
given a text input containing multiple objects (Room: “slip-
pers” and “piano sheet”; Bulldozer: multiple “cones”), In-

Input Scene SPN-360 Ours

Figure 6. Qualitative comparison with SPN-360. Text: Remove
the vase and the flowers. InNeRF360 inpaints clean and visually
plausible regions while better preserving surrounding scenes.

Cup Starbucks

Methods LPIPS # FID # LPIPS # FID #
Per-Frame 0.6149 201.70 0.5981 260.93
SPN-360 0.6421 252.34 0.6278 215.28

NeRFacto 0.7328 271.56 0.6832 258.39
+Lin 0.7137 210.57 0.6658 223.82
+Lgeom 0.6197 189.57 0.5795 166.45
+Lin + Lgeom (Ours) 0.5377 159.76 0.4523 153.46

Table 1. Quantitative evaluation on the inpainting quality. Our
method achieves better results than baseline methods and our ab-
lated settings on captured datasets.

NeRF360 produces inpainted regions that seamlessly blend
with the surrounding context, yielding visually coherent and
high-quality inpainting results.

Fig. 6 shows qualitative comparison to SPN-360. Our
method not only synthesizes a perceptually-consistent in-
painted region, but also preserves the surrounding back-
ground closer to the input NeRF scene. We speculate the
reason for the background-preserving inpainting to be that
SPN inpaints on depth maps with segmentation masks gen-
erated from RGB images. We elaborate on our choice not
to use 2D depth map inpainting in the supplementary.
Ablation studies on our design choices. Our depth-
warping method produces refined point-based prompts for
the segmentation model, and outputs complete and consis-
tent multi-view segmentation, as shown in Fig. 3.

Fig. 8 qualitatively ablates our choice of loss functions.
In Fig. 8a (ii), the vanilla NeRFacto model outputs a con-
centrated artifact in the inpainted region along with noisy
texture in nearby regions which we suspect is due to per-
image appearance encoding on inconsistent 2D inpainted
images. Fig. 8a (iii) shows NeRFacto +Lin which im-
proves inpainted texture, but cannot reduce the floater arti-
fact. These artifacts have view-dependent appearances from
individual views and are therefore difficult to remove from
appearance priors. In Fig. 8a (iv) for InNeRF360, we can
see a clean and perceptually consistent surface in the edited
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Figure 7. Qualitative inpainting results on 360 scenes. Our method works with various types of NeRF scenes. We can also remove
arbitrary numbers of objects given the text input, independent of the complexity of the scene content.

scene. In Fig. 8b shows InNeRF360 versus trained with-
out Lin. We can see that the LPIPS loss can improve blurry
background output due to inconsistent 2D inpainting. The
lower part of Tab. 1 shows quantitative ablation on each loss
term in InNeRF360. Our complete architecture performs
better than without each of the loss terms.

Inpainting quality. Due to the lack of baseline and ground
truth datasets on inpainting 360� NeRF scenes, we cap-
tured real-world datasets for quantitative comparison on the
quality of inpainted renderings. Since InNeRF360 gener-
ates consistent and complete 3D segmentation over baseline

Datasets Garden Room Vasedeck Bulldozer Bear

Ours 89% 71% 81% 83% 92%
Per-frame 11% 29% 19% 17% 8%

Table 2. User study comparing with per-frame inpainting on
visual consistency between consecutive frames. In each of the
scenes, our inpainted NeRF renders higher view consistency than
per-frame inpainting. Per-frame editing lacks a 3D understanding
of each scene and inpaints each image independently.

methods, the 2D inpainting initialization is naturally much
less noisy than baseline methods.

We evaluate our inpainting quality on each frame of the
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(i) Input Scene (ii) NeRFacto (iii) NeRFacto + Lin (iv) Ours

(a) Qualitative ablation for Lgeom on Bear and Garden.

(ii) Ours(i) NeRFacto + Lgeom

(b) Qualitative ablation for Lin on Garden.
Figure 8. Ablation for losses on geometric and appearance priors. The artifact in the inpainted region is not as pronounced if viewed
from aside as when viewed from the top. Our method is able to optimize an inpainted NeRF without artifacts and with a consistent and
unblurry background.
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“Turn the slippers into red slippers”

Figure 9. Editing comparison with In2n. InNeRF360, com-
bined with appropriate mask-conditioned image editing models,
can generate accurate editing on desired objects. In contrast, In2n
gives the wrong texture to unwanted regions.

renderings with per-frame inpainting and SPN-360. We re-
port LPIPS [44] and Frechet Inception Distance (FID) [11]
metric in Tab. 1 by comparing with the output of the cap-
tured empty scene rendered under the same camera trajec-
tory which we use as ground truth. Our method outper-
forms each baseline method and outputs visually consistent
inpainting without visual artifacts.

A quantitative baseline comparison to SPN on frontal
scenes is also in the supplementary materials.
3D consistency over per-frame inpainting. A naive ap-
proach for 3D scene inpainting is to independently inpaint
every rendered image of the scene with a 2D image in-
painter. In contrast, InNeRF360 produces inpaintings with
higher view consistency across all viewpoints.

We verify such a claim with a user study where partici-

pants were presented with two video clips of each inpainted
scene, rendered with sequential camera trajectories. They
were then asked to identify which clip appeared more con-
sistent. Additional details about the user study can be found
in the supplementary material. The results, presented in
Tab. 2, clearly show that our rendered inpaintings exhibit
superior temporal consistency compared to per-frame edits.
4.3. Editing Accuracy

As shown by Fig. 9, our segmentation module can
be connected with a mask-conditioned image editor [8]
to generate view-consistent editing with object-level con-
trol through text instructions, which InstructNeRF2NeRF
(In2n) [9] cannot. However, note that editing is not the fo-
cus of our work. We show this result simply to demonstrate
a possible extension to our method. Details are provided in
the supplementary.

5. Limitations and Conclusion
Limitations. Our method inherits certain constraints of
vision-language models. In scenarios where the text in-
struction cannot be accurately localized within the image,
InNeRF360 may struggle in generating segmentation con-
sistently aligned with the views. This issue arises when the
initial masks provided by the 2D object detector are inaccu-
rate or too noisy for effective refinement. Addressing this
challenge is a focus of our future work.
Conclusion. In conclusion, we have presented InNeRF360,
a unified system to accurately segment and inpaint objects
in 360� NeRFs with text instructions. We synthesize per-
ceptually consistent inpainting without artifacts and can ex-
tend to object-level stylization, improving the controllabil-
ity of NeRF.
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