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Abstract

We present a novel semantic segmentation approach for
incremental nuclei segmentation from histopathological im-
ages, which is a very challenging task as we have to in-
crementally optimize existing models to make them perform
well in both old and new classes without using training sam-
ples of old classes. Yet, it is an indispensable component of
computer-aided diagnosis systems. The proposed approach
has two key techniques. First, we propose a new future-class
awareness mechanism by separating some potential regions
for future classes from background based on their similari-
ties to both old and new classes in the representation space.
With this mechanism, we can not only reserve more param-
eter space for future updates but also enhance the repre-
sentation capability of learned features. We further propose
an innovative compatibility-inspired distillation scheme to
make our model take full advantage of the knowledge
learned by the old model. We conducted extensive exper-
iments on two famous histopathological datasets and the
results demonstrate the proposed approach achieves much
better performance than state-of-the-art approaches. The
code is available at https://github.com/why19991/InSeg.

1. Introduction
Cellular nuclei segmentation aims to accurately delineate
various cell nuclei from histopathological images, which
is of great importance for cancer diagnosis, treatment,
and prognosis prediction [37]. Recent years, deep learn-
ing models have achieved remarkable performance in this
task [8, 20, 32, 34, 40], significantly promoting the devel-
opment of computer-aided diagnosis systems. Despite these
progresses, most existing models are incapable of maintain-
ing the performance on previously learned classes when it is
required to incrementally learn new classes, which is com-
mon in clinical practice [35]. This phenomenon is called
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Figure 1. Pathological images typically contain numerous objects
from different categories that have very similar appearances. For
instance, epithelia (represented by red objects) and lymphocytes
(represented by yellow objects) look quite alike. However, in the
1-1 setting at step 0, epithelia are labeled as new classes, whereas
lymphocytes are seen as background. Our approach aims to mine
such future classes in an unsupervised way and learn them in ad-
vance.

catastrophic forgetting [24], which is a long-standing chal-
lenge and prohibits these models from being deployed in
clinical settings. A common solution is to rebuild the train-
ing dataset containing annotations of all classes and retrain
the model. However, the cost of collecting histopathologi-
cal images with pixel-level annotations for segmentation is
extremely laborious and time-consuming. Besides, access
to previous data is usually limited by patient privacy. In this
regard, we often have to incrementally optimize existing
models to make them perform well in both old classes and
new classes without using training samples of old classes.

Incremental learning is proposed to solve the problem
of catastrophic forgetting, and semantic segmentation based
on incremental learning is known as incremental semantic
segmentation (ISS). In scenarios where previous data can
be reused, some studies [22, 45] select samples to help the
model review and reinforce knowledge, greatly alleviating
catastrophic forgetting. However, when privacy or stor-
age issues make old data unavailable, which is common
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in clinical scenarios, most studies turn to employ distilla-
tion techniques [4, 13, 23, 25, 26, 30, 36] to constrain the
model updating. These methods, while keeping the per-
formance of old classes (stability) well, limit the model’s
capability in learning new classes (plasticity). In order to
improve both stability and plasticity, a few studies [5, 39]
propose to learn future classes in advance to prepare for
learning new classes. Specifically, SSUL-M [5] applies
a salient object detector to detect potential future classes
while MicroSeg [39] utilizes mask proposals generated by
Mask2Former [9] to detect future classes. Unfortunately,
both the salient detector and mask proposals still heavily
depend on a number of annotated data, which is, as men-
tioned, difficult to acquire in clinical practice due to privacy
and cost. To the end, it is necessary to aware future classes
in an unsupervised manner on the given data.

In this work, we present a novel ISS method for incre-
mental nuclei segmentation from histopathological images,
which has two key components: a new future-class aware-
ness mechanism and an innovative compatibility-inspired
distillation scheme. Histopathological images often con-
tain numerous objects belonging to different categories with
great similarity in appearance. As illustrated in Figure 1,
some nuclei are learned as new classes or old classes, while
others (future classes) are treated as background. Thus, we
propose to separate some potential regions of future classes
from background by calculating their similarities to both
old and new classes in the representation space, and then
we train the new model with both new and old classes, as
well as with the separated regions. To the end, we cannot
only reserve more parameter space for future updates but
also enhance the representation capability of learned fea-
tures. Furthermore, we design a compatibility-inspired dis-
tillation scheme to further improve both stability and plas-
ticity. As the number of targeting classes of the updated
model is always more than that of the old model, directly
aligning them poses conflicts and background shifts [4]. In
this regard, we propose to expand the old model’s predic-
tion range to match that of the new model by harnessing the
representation space of the future classes. This scheme not
only resolves alignment conflicts and background shifts but
also enables the new model to effectively utilize the knowl-
edge of the old model. Our contributions can be summa-
rized as follows.

• We propose a novel ISS method for incremental nuclei
segmentation from histopathological images, which is
able to incrementally optimize existing models to make
them perform well in both old and new classes without
using training samples of old classes.

• We propose a new future-class awareness mechanism
to reserve more parameter space for incremental learn-
ing, and an innovative compatibility-inspired distillation
scheme to make our model take full advantage of the

knowledge learned by the old model.
• We demonstrate the proposed method achieve a better

balance between stability and plasticity than state-of-the-
art methods via extensive experiments on two famous
public histopathological datasets, MoNuSAC [33] and
CoNSeP [14].

2. Related Work
2.1. Nuclei Segmentation

There have been some preliminary works for nuclei seg-
mentation based on traditional techniques and deep learn-
ing methods. Traditional techniques based on background
subtraction and color threshold [27, 29] fail to general-
ize to complex scenarios such as overlap and occlusion in
histopathology images. With the development of CNN,
deep networks have been widely used in nuclei segmen-
tation [31, 32, 34, 42], significantly improving the seg-
mentation performance in the supervised setting. However,
most of these networks are not incrementally designed and
tend to forget previously learned classes when learning new
types of cell nuclei continually.

2.2. Class Incremental Learning

Class incremental learning (CIL) aims to address the prob-
lem of catastrophic forgetting when learning knowledge for
new classes. Existing CIL techniques can be summarized
into regularization-based, replay-based, and architecture-
based approaches. Regularization-based approaches utilize
consistency constraints between new and old models to pre-
vent significant changes to the knowledge associated with
previously learned classes. The constraints can be applied
on features [10, 12, 18], the output logits [4, 11, 21], the
weights [1, 2, 19], or the gradients [6, 15]. Architecture-
based approaches [16, 38, 44] dynamically grow the net-
work to extend model capacity for new tasks. To better
retain knowledge of old classes, replay-based approaches
store and re-use a subset of previous training data, includ-
ing raw images [3, 22, 45], features [17, 43] or generated
data [7, 28].

2.3. Class Incremental Semantic Segmentation

Recently, several works have extended and combined ex-
isting incremental learning methods to semantic segmenta-
tion. MiB [4] proposes a novel unbiased function to model
background shift. PLOP [13] adopts pseudo label to solve
background shift and retain spatial dependencies by local
pooling operation. CoNuSeg [35] maintains the relation-
ships between the prototypes of old classes to preserve the
semantic information of old classes. EWF [36] propose a
weight fusion strategy to fuse parameters from new and old
models. SSUL-M [5] and MicroSeg [39] further propose
pre-learning future classes to prepare for the future.
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Figure 2. The overall framework. The old (t − 1) and new models (t) consist of the same feature extractor F and segmentation head H .
During training, we freeze the old model and update the new model by minimizing the weighted sum of Lce,Lpod,Lbkd and Lfkd.

3. Method
3.1. Problem Formulation

Class incremental semantic segmentation involves conduct-
ing semantic segmentation in a series of steps, with the un-
derlying assumption that there are a total of T steps. In
step t, we have training set Dt = {(x, y)} and label set
Ct, where x is an RGB image ∈ RC×H×W and y ∈ Ct is
the corresponding annotation. The label set Ct only contains
newly added classes at step t, while previous learned classes
C0∪C1∪ ...∪Ct−1 and future classes Ct+1:T are considered
as background, which can lead to catastrophic forgetting of
the previously learned classes. Given a dataset Dt, our goal
is to achieve a model M with parameter θt that can perform
well on all seen classes C0:t. Without loss of generality, M
consists of a feature extractor F and a segmentation head
H , which makes M = F ◦ H , where ◦ denotes function
composition.

3.2. Framework Overview

The proposed incremental semantic segmentation frame-
work, depicted in Figure 2, includes an old and new
model. Under the incremental setting, both old and fu-
ture classes are treated as background. To correct pixels of
old classes, we adopt the pseudo-labeling strategy to assign
them pseudo-labels. For pixels of potential future classes,
we propose a new future-class awareness mechanism (de-
tailed in Section. 3.3) to assign them unknown labels. At
the feature level, we apply multi-scale local distillation with
Local POD (described in Section. 3.5) between the corre-
sponding layers of the two models to avoid a large feature
discrepancy. At the output level, we design an innovative

compatibility-inspired distillation (depicted in Section. 3.4)
between the model’s predictions to achieve better stability
and plasticity. After training, we fuse the parameters from
the two models by using the Endpoints Weight Fusion strat-
egy (EWF) [36]. Specific details about EWF can be found
in the supplementary materials.

3.3. Future-class Awareness

Our future-class awareness mechanism corrects the back-
ground pixels that are considered potential future classes,
i.e., pixels that are visually similar to a new or old class. We
propose to measure the similarity S by utilizing the class-
centroids V in the representation space of the old model.
Subsequently, we assign unknown labels to these pixels for
joint learning with both new and old classes. This approach
enhances the representation capability of learned features
and better prepares the model for the future.

Image-wise Centroids Aggregation. Class-centroids
(prototypes) are representatives of each class in the repre-
sentation space and serve as an effective tool to measure
similarities between classes [30]. Given an image as input,
we first generate pseudo-labels ŷ(i, c) for old classes in the
background using predictions Ot−1 of the old model and
the ground-truth label y(i, c) at step t :

ŷ(i, c) =

{
1 if y(i, c) = 1

1 if y(i, c) = 0 and c = argmaxOt−1(i, c)

(1)
This strategy can effectively re-assign labels for old classes
in the background but fails to separate potential future
classes hidden in the background. Next, we generate class-
aware mask Mc for class c under the guidance of pseudo
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Figure 3. Illustration of future-class awareness. Centroids representing both old and new categories are aggregated in representation space,
then a class-aware matrix S is computed between all centroids and background features to aware future classes.

label ŷ(i, c):

Mc(i) =

{
1 if ŷ(i, c) = 1

0 otherwise
(2)

Then, for a certain class k, we average the deepest input
feature F t−1

d with the class-aware mask to obtain class-
centroid Vk:

Vk = MAP (Mk,F t−1
d )

=

∑
i F

t−1
d (i)1[Mk(i) = 1]∑
i 1[Mk(i) = 1]

(3)

where MAP represents the masked average pooling opera-
tion. After that, we obtain a centroid set V = {V1, ...,VCt

}
containing old and new class-centeroids, which will be uti-
lized to detect future classes.

Cross Image-wise Centroids Aggregation. Different
cell nuclei are typically distributed across different images,
which suggests that potential future classes may not coexist
in the same image as their similar cell nuclei. Therefore,
aggregating class centroids in an image-wise manner may
not include centroids of classes that are similar to future
classes. To address this issue, we propose to update class
centroids using a running average approach. The final class
centroids are computed as follows:

Vk =
1

N
(V

′

k ·N
′

k +
∑
i

F t−1
d (i)1[Mk(i) = 1]) (4)

N = N
′

k +
∑
i

1[Mk(i) = 1] (5)

where V ′

k and N
′

k represent the accumulated result and total
pixel number of class k from the initial update to the last
update, respectively.

Awareness & Separation. To aware future classes, we
first assemble the background features Fbg ∈ RC×Nb via
the masked multiplication on the deepest feature F t−1

d with
the background mask Mb. We then calculate a pixel-to-
centroid affinity matrix A between pixels of the reshaped
background feature Fbg and class-centroids V via a matrix
multiplication operation Mat:

A = Mat(Norm(Fbg)
T , Norm(V)) (6)

where Norm indicates l2-normalization. The size of A is
RN×P and P = |V| is the cardinality of class-centroid set.
Through the affinity matrix, we construct a semantic graph
for each pixel-centroid pair, where each vertex represents
the semantic structure and the edge represents the similarity
relationship, thus a fine-grained similarity can be measured
by utilizing the information in the representation space.

We obtain the final class-aware matrix S by taking the
average or maximum across the second dimension of affin-
ity matrix A. To effectively pre-learn knowledge of future
classes, only background pixels that are sufficiently similar
are re-assigned unknown labels. The final corrected ground
truth y(i, c) of pixel i is defined as:

y(i, c) =

{
u if Mb(i) = 1 and S(i) < τu

ŷ(i, c) otherwise
(7)

where u represents the unknown label assigned to future
classes, and τu is a threshold controlling the confidence of
future classes. In other words, for background pixels filtered
by Equation 1, we re-label them with an unknown label u
on the guidance of the class-aware matrix S. Otherwise, we
directly copy their pseudo-labels (for old classes) or true
labels (for new classes).
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3.4. Compatibility-inspired Distillation

Considering that the previous model only produces predic-
tions Ot−1 for |C0:t−1| classes, while the new model can
produce predictions Ot for |C0:t| (|C0:t| > |C0:t−1|) classes,
directly aligning the outputs between the two models is con-
tradictory. Treating the model’s predictions as interfaces of
software, we introduce new interfaces into the old model to
be compatible with the new model (i.e., expanding Ot−1 to
match Ot, and padding the additional channels with 0). The
expanded prediction Ot−1 becomes:

Ot−1(i, c) =

{
0 if c ∈ Ct
Ot−1(i, c) otherwise

(8)

Then we enforce constraints to pixels of new class set Un

and background set Ub from the view of backward compat-
ibility and forward compatibility respectively. It is worth
noting that the background here includes old classes, future
classes, and true background pixels.

Forward compatibility. For pixels i from the new
class set, we transfer the old model’s background prediction
Ot−1(i, b) to the prediction corresponding to the ground-
truth to address background shift [4]. Next, with the fu-
ture class-aware mechanism, the old model has pre-learned
knowledge about the new classes (which are future classes
to the old model). Thus we also add the old model’s future
class prediction Ot−1(i, u) to the prediction corresponding
to the ground truth, thereby naturally inheriting the knowl-
edge that the old model has prepared for future learning
(forward compatibility). After that, we reset the predictions
of background and future classes to 0 while keeping other
predictions unchanged. The corrected prediction of the old
model is defined as:

Ot−1(i, c) =


Ot−1(i, u) + Ot−1(i, b) if c ∈ Ct
Ot−1(i, c) if c ∈ C0:t−1

0 otherwise
(9)

where i ∈ Un and u indicates the future class at step t− 1.
Backward compatibility. For pixels i ∈ Ub from the

background set, similar to regular knowledge distillation,
we only need to align the outputs between the two mod-
els to ensure that the new model does not deviate signifi-
cantly from the old model during updates. The complete
compatibility-inspired distillation loss is defined as:

Lcpd = αn · Lfkd(x,Un) + αb · Lbkd(x,Ub) (10)

where αn and αb control the contribution of the new classes
set Un and background set Ub, which are discussed in Sec-
tion. 4.3; L(x,U) is a common knowledge distillation loss:

L(x,U) = − 1

|U|
∑
i∈U

C0:t∑
c

Ot−1
x (i, c) logOt

x(i, c) (11)

We emphasize that our distillation approach supplements
and corrects the contents extended in the interfaces of the
old model, thus addressing alignment conflict and back-
ground shift, as well as facilitating the new model to ef-
fectively leverage the knowledge learned by the old model.

3.5. Feature-based Distillation

To prevent catastrophic forgetting in feature space, we also
utilize multi-scale local distillation with Local POD [13] to
retain knowledge by preserving multi-scale spatial informa-
tion. The Local POD loss is formulated as:

Lpod =
1

L

L∑
l=1

|ϕ(F t
l )− ϕ(F t−1

l )|2 (12)

where F t
l is the feature of the l-th layer and ϕ(.) is a func-

tion that captures multi-scale spatial statistics.
Finally, we train the model with the total loss as follows:

Lall = Lce + Lcpd + λ · Lpod (13)

where λ denotes the weight of LocalPOD, which is set to
0.0001 in our experiments.

4. Experiment
4.1. Datasets, Protocols, and Evaluation

Datasets. We conduct all the experiments on two pub-
licly available nuclei datasets, MoNuSAC and CoNSeP.
MoNuSAC contains H&E stained tissue images of four or-
gans, along with annotations for multiple cell types, includ-
ing epithelial (Epith), lymphocyte (Lymph), macrophage
(Macro), and neutrophil (Neutr). We randomly split 20%
of the training set for validation. Besides, all images in the
training, testing, and validation sets have been uniformly
cropped to a resolution of 320×320. Finally, the MoNuSAC
contains 1177 training images, 295 validation images and
651 test images. CoNSeP contains H&E stained image tiles
with annotations of 7 cell types, where we divide them into
3 classes: epithelial, spindle-shaped and others. With the
same pre-processing, we obtain a training set with 345, a
validation set with 87, and a test set with 224 images.
Protocols. There are two common settings in ISS bench-
marks: disjoint and overlapped. In the disjoint setting, Dt

only contains images of new classes and old classes. In the
overlapped setting, Dt can contain images of all classes,
including old classes, new classes, and future classes. Re-
garding of setting, only new classes are annotated, while
others are treated as background. The overlapped setting
is considered more realistic since it allows future classes to
appear in the current dataset, reflecting real-world scenarios
more accurately. In this work, we only focus on the over-
lapped setting.
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Method
1-1 (4 tasks) 2-1 (3 tasks) 2-2 (2 tasks) 3-1 (2 tasks)

Old New Mean Old New Mean Old New Mean Old New Mean
ILT [25] 33.46 53.91 48.80 50.00 73.30 61.65 46.00 68.18 57.09 62.11 73.27 64.90
MiB [4] 59.95 64.57 63.41 52.51 74.67 63.59 57.33 76.87 67.10 63.85 75.38 66.73
SDR [26] 55.50 67.30 64.35 53.47 74.37 63.92 57.08 78.03 67.56 65.70 77.31 68.60
PLOP [13] 60.14 65.60 64.23 56.85 75.87 66.36 56.74 75.88 66.31 66.16 77.43 68.97
REMINDER [30] 62.41 66.49 65.47 56.57 75.89 66.23 59.89 76.03 67.96 68.22 77.18 70.46
CoNuSeg [35] 65.37 67.92 67.28 57.85 76.09 66.97 61.70 77.11 69.40 66.47 77.33 69.18
IDEC [41] 62.16 69.41 67.59 58.63 76.03 67.33 63.22 75.41 69.31 67.36 77.12 69.80
EWF [36] 64.57 67.89 67.06 60.27 76.23 68.26 65.90 75.94 70.92 69.06 77.62 71.20
Ours 68.11 69.86 69.44 63.79 76.53 70.16 65.43 77.21 71.32 70.46 78.03 72.36
Joint 72.01 75.29 74.47 70.36 78.58 74.47 70.36 78.58 74.47 72.65 79.93 74.47

Table 1. Incremental semantic segmentation results (mDice) on MoNuSAC. The best is in bold.

Figure 4. Visualization of the proposed method and EWF at different incremental steps on two datasets.

Evaluation. The ISS benchmark configurations are repre-
sented as n-m where n and m correspond to the number of
new classes to be learned during the initial step and each
subsequent step, respectively. We set several ISS settings
for each dataset, e.g., on MoNuSAC 3-1, 2-1, 2-2, and 1-1
respectively include learning 3 classes then 1 class (2 steps),
2 classes then 1 class (3 steps), 2 classes then 2 classes (2
steps) and 1 class at initial step then 1 class at subsequent
step (4 steps). We emphasized that the 1-1 setting is the
most challenging task due to its small amount of data and
high number of steps. Similarly, on CoNSeP 1-1 (3 steps)
and 2-1 (2 steps). After training all steps, we use mean Dice
(mDice) to evaluate the performance.
Implementation Details. We use the ResNet-101 pre-

trained on ImageNet as the feature encoder for all experi-
ments. During training, the initial learning rate is set to 0.05
for the first step and 0.01 for subsequent incremental steps.
The number of epochs for all steps is set to 100. We employ
an SGD optimizer with a batch size of 12, distributed across
three 2080Ti GPUs, to train the model.
Comparison Results. To demonstrate the advantages of
our method, we employ the state-of-the-art approach (EWF)
as our baseline for comparison. Table 1 displays our ap-
proach’s comparative results against some strong ISS meth-
ods on the MoNuSAC dataset. Evidently, the perfor-
mance of ILT is the worst in all incremental setups, since
it lacks the capacity to address background shift. Inte-
grating background correction methods, such as MiB and
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PLOP, leads to marked improvements for both old and
new classes in all settings. By further introducing inno-
vative distillation mechanisms into the background correc-
tion method, approaches like REMINDER, CoNuSeg, and
IDEC have achieved additional performance gains. EWF
receives higher performance after applying the Endpoints
Weight Fusion strategy to PLOP.

Despite their great progress, our approach surpasses
them by a large margin on all settings. In particular, on
the most challenging setup (1-1), our method outperforms
the EWF by 3.54 % in old classes and IDEC by 0.45% in
new classes. While the gains in new classes are not that
large, we believe that the performance is already quite bet-
ter compared to that of old classes. As presented in Figure 5,
our model achieves all the highest mDice scores from incre-
mental step 1 to step 3. This also indicates that the stability
and plasticity of our model are superior to those of other
strong models. Experiments in Table 2 further demonstrate
the strong generalization ability of our method.

Figure 5. Results of mDice at different incremental steps.

Method
1-1 (3 tasks) 2-1 (2 tasks)

Old New Mean Old New Mean

ILT [25] 35.23 63.19 44.55 40.82 63.61 48.41
MiB [4] 67.02 67.06 67.04 70.99 61.96 67.98
SDR [26] 67.05 67.29 67.21 70.37 62.92 67.88
PLOP [13] 67.06 67.78 67.54 72.50 63.15 69.38
CoNuSeg [35] 67.52 68.59 68.23 72.80 63.41 69.67
IDEC [41] 67.20 68.28 67.92 72.16 62.78 69.03
EWF [36] 67.18 70.03 69.08 74.16 63.00 70.44
Ours 66.64 70.84 69.44 74.29 64.65 71.08

Table 2. Incremental semantic segmentation results (mDice) on
the CoNSep dataset.

Visual Results. We visualize the segmentation results of
our method and EWF on two datasets to highlight the com-
parative effectiveness. As shown in Figure 4, our method

yields segmentation results that are more complete and ac-
curate than those produced by EWF. For example, for the
second image (rows 3-4, left), both methods gradually for-
get class epithelial (the red ones) and macrophage (the green
ones) from step 0 to step 2. Nevertheless, our method still
yields satisfactory segmentation results after step 3. Similar
results can be observed in other images. Figure 6 explicitly
presents the Dice score for each class at every step.

Figure 6. Values of Dice metric for each class at different incre-
mental steps on MoNuSAC 1-1.

4.2. Ablation Study

We verify the effectiveness of the proposed method using
1-1 and 3-1 setups on MoNuSAC. From Table 3, we can
find that the performance of PLOP + EWF surpasses that of
PLOP. Only adding future-class awareness (FCA) can fur-
ther boost the performance of EWF across different setups.
After applying compatibility-inspired distillation (CID), we
abtain the highest performance on MoNuSAC. In particu-
lar, the performance of PLOP + EWF + FCA + CID outper-
forms that of PLOP + EWF in 1-1 settings, with a great
improvement of 3.54% in old classes and 1.97% in new
classes. These results effectively demonstrate that both pro-
posed modules can effectively improve the plasticity and
stability of the model, thereby improving the overall perfor-
mance.

Method
1-1 (4 tasks) 3-1 (2 tasks)

Old New Mean Old New Mean
PLOP 60.14 65.60 64.23 66.16 77.43 68.97
+ EWF 64.57 67.89 67.06 69.06 77.62 71.20
+ FCA 67.42 69.00 68.60 70.11 77.93 72.07
+ CID 68.11 69.86 69.42 70.46 78.03 72.36

Table 3. Ablation study results (mDice) on the MoNuSAC dataset.

4.3. Further Analysis

Future-class Awareness. To better understand how pre-
learning of future classes enhances the results, we visual-
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ize t-SNE distribution of features generated from the base-
line and baseline + FCA. As shown in Figure 7, the base-

Figure 7. T-SNE visualization of features learned by Baseline and
Baseline + FCA at final incremental step on MoNuSAC 1-1.

line tends to generate more ambiguous features while the
baseline + FCA is able to learn more discriminative fea-
tures. These robust features then help the model to resist
catastrophic forgetting better. Similar conclusions can be
drawn from the feature map (Figure 8). The baseline model

Figure 8. Feature maps of the Baseline and Baseline + FCA at
final incremental step on MoNuSAC 1-1.

exhibits a lower response to target features and is prone
to generating erroneous high responses in the background,
whereas the baseline with FCA generates more accurate and
higher responses to target features. This phenomenon fur-
ther shows that training with FCA can enhance the represen-
tation power to alleviate knowledge forgetting and reserve
more parameter space to be updated.
Compatibility-inspired Distillation. As shown in Table 4,
slightly increasing both αn and αb to 1 can improve the
performance of both new and old classes. However, a large
value of αn, e.g., αn = 5 leads the model to focus exces-
sively on new classes, compromising the performance of old
classes and thus negatively affecting overall performance.
Similarly, when we set αb a high value 3, the model tends to
overly remember old classes and overlook the new classes.

In our experiments, we achieve the best performance when
αn and αb are set to 3 and 1, respectively. For additional
ablation studies and detailed analytical experiments, please
refer to the supplementary materials.

αn αb Background Old New All
0 0 94.58 67.42 69.00 73.80
1 1 94.53 67.71 69.31 74.03
3 1 94.43 68.11 69.86 74.42
5 1 94.51 65.91 69.18 73.59
3 0 94.70 67.61 69.25 74.01
3 2 94.74 68.08 69.41 74.21
3 3 94.53 68.18 68.34 73.54

Table 4. Effect of the weighted factors αn and αb.

5. Limitation

We develop our method based on the attributes of
histopathological images, where future classes in the dataset
exhibit visual similarities to the learned classes. Therefore,
our approach may not perform optimally in datasets where
future classes significantly differ from the learned classes,
which necessitates further research. Nevertheless, consid-
ering the vast diversity of cancer cell types, our method
shows promise in enhancing computer-aided diagnosis sys-
tems with more robust incremental updating capabilities.

6. Conclusion

In this work, we present a novel method for incremental se-
mantic segmentation from histopathological images, aiming
to solve catastrophic forgetting without storing samples of
previous data. First, we propose a new future-class aware-
ness approach that detects future classes in an unsuper-
vised way. Second, drawing inspiration from software engi-
neering, we introduce an innovative compatibility-inspired
knowledge distillation to make the new model take full ad-
vantage of the knowledge learned by the old model. Fi-
nally, comparative experiments and ablation studies clearly
demonstrate the effectiveness of the proposed method.
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