
IntrinsicAvatar: Physically Based Inverse Rendering of Dynamic Humans from
Monocular Videos via Explicit Ray Tracing
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Figure 1. IntrinsicAvatar aims to achieve physically based inverse rendering of clothed humans from monocular videos. Left: Our model
takes a monocular video as input and learns an avatar of the target person. Middle: We show decomposed properties of the learned avatar.
Importantly, our model can produce such decomposition without any data-driven prior on geometry, albedo, or material. Right: With the
learned avatar and intrinsic properties, we can animate and relight the avatar using arbitrary pose and arbitrary lighting condition.

Abstract

We present IntrinsicAvatar, a novel approach to recov-
ering the intrinsic properties of clothed human avatars in-
cluding geometry, albedo, material, and environment light-
ing from only monocular videos. Recent advancements in
human-based neural rendering have enabled high-quality
geometry and appearance reconstruction of clothed humans
from just monocular videos. However, these methods bake
intrinsic properties such as albedo, material, and environ-
ment lighting into a single entangled neural representation.
On the other hand, only a handful of works tackle the prob-
lem of estimating geometry and disentangled appearance
properties of clothed humans from monocular videos. They
usually achieve limited quality and disentanglement due to
approximations of secondary shading effects via learned
MLPs. In this work, we propose to model secondary shad-
ing effects explicitly via Monte-Carlo ray tracing. We model
the rendering process of clothed humans as a volumetric
scattering process, and combine ray tracing with body ar-
ticulation. Our approach can recover high-quality geom-
etry, albedo, material, and lighting properties of clothed
humans from a single monocular video, without requiring
supervised pre-training using ground truth materials. Fur-
thermore, since we explicitly model the volumetric scatter-
ing process and ray tracing, our model naturally general-

izes to novel poses, enabling animation of the reconstructed
avatar in novel lighting conditions.

1. Introduction
Photo-realistic reconstruction and animation of clothed hu-
man avatars is a long-standing problem in augmented real-
ity, virtual reality, and computer vision. Existing solutions
can achieve high-quality reconstruction for both geome-
try and appearance of clothed humans given dense multi-
view cameras [24, 27, 61]. Recently, reconstruction of
clothed humans from monocular videos has also been ex-
plored [23, 56, 73, 76]. While these approaches achieve
satisfactory results, they model the appearance of clothed
humans as a single neural representation. This makes it
difficult to edit the physical properties of the reconstructed
clothed human avatars, such as reflectance and material,
or to relight the reconstructed clothed human avatars un-
der novel lighting conditions. In this work, we aim to re-
cover physically based intrinsic properties for clothed hu-
man avatars including geometry, albedo, material, and en-
vironment lighting from only monocular videos.

Physically based inverse rendering is a challenging prob-
lem in computer graphics and computer vision. Tradi-
tional approaches tackle this problem as a pure optimiza-
tion problem with simplifying assumptions such as con-
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trolled, known illumination. On the other hand, recent ad-
vances in neural fields have enabled the high-quality re-
construction of geometry and surface normals from multi-
view RGB images. Given this progress, physically based
inverse rendering of static scenes under unknown natural il-
lumination has been demonstrated [33, 88]. Most recently,
various works have combined human body priors with the
physically based inverse rendering pipeline to reconstruct
clothed human avatars with disentangled geometry, albedo,
material, and lighting from monocular videos [15, 28, 70].
However, these methods either ignore physical plausibility
or model secondary shading effects via approximation, re-
sulting in limited quality of reconstructed human avatars.

Two major challenges are present for physically based
inverse rendering of clothed humans from monocular
videos: (1) accurate geometry reconstruction, especially
normal estimates are essential for high-quality inverse ren-
dering. (2) Modeling secondary shading effects such as
shadows and indirect illumination is expensive and requires
a certain level of efficiency to query the underlying neural
fields. Existing monocular geometry reconstruction meth-
ods of clothed humans all rely on large MLPs to achieve
high-quality geometry reconstruction. However, using large
MLPs negatively impacts the efficiency of secondary shad-
ing computation. Therefore, most existing methods are
forced to rely on simple assumptions (no shadows, no in-
direct illumination) or approximations (pre-trained MLPs)
to model secondary shading effects. More efficient neural
field representations such as instant NGP (iNGP [48]) have
proven to be effective for geometric reconstruction given
multiple input views of a static scene [40, 62, 74], but it re-
mains a challenge to extend such representation to dynamic
humans under monocular setup.

In this paper, we employ iNGP with hashing-based vol-
umetric representation and signed distance field (SDF) to
achieve fast and high-quality reconstruction of clothed hu-
mans from monocular videos. The high-quality initial ge-
ometry estimation and efficiency of iNGP facilitate the
modeling of inverse rendering via explicit Monte-Carlo ray
tracing. Furthermore, traditional surface-based inverse ren-
dering methods give ambiguous predictions at edges and
boundaries. We propose to use volumetric scattering to
model edges and boundaries in a more physically plausi-
ble way. Our experiments demonstrate that we can achieve
high-quality reconstruction of clothed human avatars with
disentangled geometry, albedo, material, and environment
lighting from only monocular videos. In summary, we make
the following contributions:
• We propose a model for fast, high-quality geometry re-

construction of clothed humans from monocular videos.
• We propose to combine volumetric scattering with the

human body articulation for physically based inversed
rendering of dynamic clothed humans. We use explicit

Monte-Carlo ray tracing in canonical space to model the
volumetric scattering process, enabling relighting for un-
seen poses.

• We demonstrate that our method can achieve high-quality
reconstruction of clothed human avatars with disentan-
gled geometry, albedo, material, and environment light-
ing from only monocular videos of clothed humans. We
also show that our learned avatars can be rendered realis-
tically under novel lighting conditions and novel poses.

We have made our code and models publicly available1.

2. Related Work

Traditional Inverse Rendering: Traditional approaches
to inverse rendering work on either single RGB images [4,
38, 39, 41, 64, 67, 75, 81] or multi-view, multi-modality in-
puts [21, 24, 35, 36, 50, 52, 59, 65, 83]. Recovering shape,
reflectance, and illumination from a single RGB image is
heavily underconstrained and often works poorly on real-
world setups such as scene-level reconstruction and artic-
ulated object reconstruction. A more practical approach is
to reconstruct shapes from multi-view RGB(D) images and
make simplifying assumptions such as controlled lighting
conditions [44, 50, 66]. This kind of approach often re-
sults in high-quality reconstruction of physical properties
but lacks flexibility.

Physically Based Inverse Rendering with Neural Fields:
Since the blossom of neural radiance fields (NeRF [47]),
a variety of works have been proposed to tackle the in-
verse rendering problem using neural field representations.
However, many works make use of simplifying assumptions
such as known lighting conditions [68], ignoring shadowing
effects [7, 8, 49, 82], or assuming constant material [82].
NeRFactor [84] was the first work that enabled full estima-
tion of a scene’s underlying physical properties (geometry,
albedo, BRDF, and lighting) under a single unknown nat-
ural illumination while also taking shadowing effect into
account. InvRender [85] builds upon the state-of-the-art
shape and radiance field reconstruction methods [72, 79]
and proposed to model indirect illumination by distilling a
pre-trained NeRF into auxiliary MLPs. [45] learns a neural
radiance transfer field to enable global illumination under
novel lighting conditions, but relies on accurate geometry
initialization and does not optimize it jointly with mate-
rial and lighting. NVDiffRecMC [25] tackles the inverse
rendering problem by exploring the combination of mesh-
based Monte-Carlo ray tracing and off-the-shelf denoisers.
However, the mesh-based representation of NVDiffRecMC
gives less accurate reconstruction compared to [72, 79].

Most recently, TensoIR [33] takes advantage of fast ra-
diance field data structures [10] and conducts explicit visi-

1https://neuralbodies.github.io/IntrinsicAvatar/
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bility and indirect illumination estimation via ray marching.
In comparison, we use an SDF representation and combine
iso-surface search technique with volumetric scattering, re-
sulting in better visibility modeling, especially for cloth
wrinkles. Most importantly, we target dynamic, animat-
able clothed avatar reconstruction while TensoIR focuses
on static scene reconstruction.

Microfacet fields [46] proposed to utilize volumetric
scattering with a surface BRDF and ad-hoc sampling strate-
gies. Concurrent to [46] , NeMF [86] also proposed
to use volumetric scattering with microflake phase func-
tions [26, 31] to replace surface-based BRDF for volume
scattering, resulting in the ability to reconstruct thin struc-
tures and low-density volumes. Both methods focus on
static scenes reconstruction and relighting while using den-
sity fields to represent the underlying geometry.

Neural Radiance Fields for Human Reconstruction:
Neural radiance fields have been used for human recon-
struction from monocular videos. Most works [19, 32, 37,
54, 55, 76] focus on appearance reconstruction while using
density fields as a noisy geometry proxy. Some methods use
SDFs to represent the geometry of humans and achieve im-
pressive results in both geometry reconstruction and photo-
realistic rendering [23, 56, 73, 77]. However, these methods
bake intrinsic properties such as albedo, material, and light-
ing all into the learned neural representations, preventing
the application of these methods in relighting and material
editing.

Physically Based Inverse Rendering of Humans: High-
quality 3D relightable human assets can be obtained via a
multi-view, multi-modality capture system with controlled
lighting [6, 17, 24, 29, 63, 83] or by training regressors
on high-quality digital 3D assets [3, 18, 87]. RANA [28]
pre-trains a mesh representation on multiple subjects with
ground truth 3D digital assets while using a simplified
spherical harmonics lighting model, thus cannot handle sec-
ondary shading effects such as shadows and indirect illumi-
nation. [70] propose to model the secondary shading effects
via spherical Gaussian approximations, which do not han-
dle shadowing effects. Relighting4D [15] jointly estimates
the shape, lighting, and the albedo of dynamic humans from
monocular videos under unknown illumination by approx-
imating visibility via learned MLPs. These learned MLPs
are over-smoothed approximations to real visibility values,
while also having the inherent problem of not being able to
generalize to novel poses. In contrast, we employ fast, ex-
act visibility querying via explicit ray tracing, and thus can
generalize to any novel poses.

Concurrent Works: [5] and [34] respectively recon-
struct relightable faces and hands from monocular videos.
For full-body relightable avatars, [42] proposes to construct
part-wise light visibility MLPs to achieve better novel pose

generalization for relighting. However, it needs to train light
visibility MLPs on additional unseen poses. In compari-
son, we use explicit ray tracing to compute secondary ray
visibilities, which generalizes to novel poses without addi-
tional training. [78] designs a hierarchical distance query al-
gorithm and extends DFSS [53] to deformable neural SDF,
achieving efficient light visibility computation using sphere
tracing. However, the use of sphere tracing and surface ren-
dering results in visible artifacts around elbows and armpits,
as sphere tracing does not guarantee convergence, espe-
cially when combined with human body articulation. In
contrast, we use volumetric scattering to model the human
body, which results in less visual artifacts.

3. Method
In this section, we first introduce basic concepts of neural
radiance fields (NeRF [47]). Then we describe our frame-
work of geometry reconstruction of clothed avatars from
monocular videos. The clothed avatars are modeled as an
articulated NeRF with SDF as its geometry representation.
Next, we introduce the volumetric scattering process from
computer graphics and draw a connection between it and
NeRF. Finally, we describe our solution to secondary ray
tracing of volumetric scattering, which combines the ex-
plicit ray-marching with iso-surface search and body artic-
ulation. The final outputs are intrinsic properties of clothed
avatars including geometry, material, albedo, and lighting.

3.1. Background: Neural Radiance Fields

Given a ray r = (o,d) defined by its camera center o and
viewing direction d, NeRF computes the output radiance
(i.e. pixel color) of the ray via:

Crf (r) =

∫ tf

tn

T (tn, t)σt(r(t))L(r(t),−d)dt (1)

s.t r(t) = o+ td

T (tn, t) = exp

(
−
∫ t

tn

σt(r(s))ds

)
where (tn, tf ) defines the near/far point for the ray integral.
In practice, NeRF uses a ray marching algorithm to approx-
imate the exact value of the integral:

Crf (r) ≈
N∑
i=1

w(i)L(r(t(i)),−d) (2)

s.t r(t) = o+ td

w(i) = T (i)
(
1− exp(−σt(r(t

(i)))δi
)

T (i) = exp

−∑
j<i

σt(r(t
(j)))δ(j)


δ(i) = t(i+1) − t(i)
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Figure 2. Inverse Rendering of Clothed Avatars with Volumetric Scattering. Given an input image and associated camera rays, we
warp the rays to the canonical space and do both primary and secondary ray marching/tracing in canonical space. We model geometry with
a geometry hash grid γg and MLP fg , while also modeling volumetric radiance and material with an appearance grid γc and two additional
MLPs frf , fm. We supervise both Crf and Cpbr using a L1 loss wrt. the input image.

where {t(1), · · · , t(N)} are a set of sampled offsets on the
ray. σt(·) and L(·, ·) are represented as either neural net-
works [47, 51, 72, 80], explicit grid data [1, 69], or a hybrid
of both [10–12, 16, 20, 48, 60].

3.2. Clothed Humans Avatars as Articulated Neural
Radiance Fields

We follow the recent approaches of modeling humans as ar-
ticulated NeRF [32, 37, 73, 76]. We assume body articula-
tions are based on the SMPL model [43]. Following previ-
ous works, we define the observation space as a space where
the human is observed, and the canonical space as a space
where the human is in a canonical pose. We apply inverse
linear blend skinning (LBS) to transform 3D points in the
observation space xo = r(t) to the point in canonical space
xc. We model the radiance field, materials, and albedo all
in the canonical space.

Articulation via Inverse LBS: In the SMPL model, the
linear blender skinning (LBS) function is defined as:

xo = LBS(xc, {Bb}Bb=1, w(xc)) =

(
B∑

b=1

w(xc)bBb

)
xc

(3)

where {Bb}Bb=1 are the rigid bone-transformations de-
fined by estimated SMPL parameters. w(xc) are skinning
weights of point xc. We use Fast-SNARF [14] to model
the canonical skinning weight function w(·) and the inverse
skinning function:

xc = LBS−1(xo, {Bb}Bb=1, w(xc)) (4)

For simplicity, we drop the dependency on {Bb}Bb=1 and
w(xc) for the remainder of the paper.

Geometry: We use iNGP [48] with SDF to represent the
underlying canonical shape of clothed humans. Specifi-
cally, given a query point xc in canonical space, we predict
the SDF value of the point and a latent feature z:

(SDF(xc), z) = fg(γg(xc)) (5)

where γg(·) is the iNGP hash grid feature of the input point,
and fg is a small MLP with a width of 64 and one hidden
layer. We use VolSDF [80] to convert from SDF to density
σt.

Radiance and Material: Radiance and materials are pre-
dicted as follows:

L(xc,d) = frf (γc(xc), z, ref(d,n),n) (6)
α(xc), r(xc),m(xc) = fm(γc(xc), z) (7)

where γc(·) is the feature from another iNGP hash grid
designed specifically for radiance and material prediction.
The same strategy was also employed in [62] for learning
better geometric details. frf and fm are both MLPs with a
width of 64 and two hidden layers. n is the analytical nor-
mal obtained from SDF fields. ref(d,n) reflects the viewing
direction d around the normal n, similar to [71]. L(·, ·) will
be used for Eq. (2) whereas α, r, and m are spatially vary-
ing albedo, roughness, and metallic parameters that will be
used for physically based rendering.

For ray marching, we use 128 uniform samples and do
two rounds of importance sampling, each time with 16 sam-
ples, to obtain a final set of 160 samples per ray.

With the aforementioned model, we can quickly recon-
struct the detailed geometry of clothed human avatars from
a single monocular video in less than 30 minutes.
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3.3. Physically Based Inverse Rendering via Volu-
metric Scattering

With initial geometry and radiance estimation from previ-
ous sections, we now account intrinsic properties of clothed
human avatars, i.e. material, albedo, and lighting conditions
for the rendering process.

With the standard equation of transfer of participating
media in computer graphics [30, 57], we reach the NeRF
formula Eq. (1) by assuming all the radiance that reaches
the camera is modeled by neural networks. On the other
hand, if we think all the radiance that reaches the camera is
scattered from some light sources (e.g. environment maps)
by a volume of media, while the media itself does not emit
any radiance, then we are tackling the volume scattering
problem.

Formally, we have the following integral to compute the
radiance scattered by the volume representing the human
body along a certain camera ray (o,d):

Cpbr(r) =

∫ tf

tn

T (tn, t)σs(r(t))Ls(r(t),−d)dt (8)

s.t r(t) = o+ td

T (tn, t) = exp

(
−
∫ t

tn

σt(r(s))ds

)
Ls(x,−d) =

∫
S2

fp(x,−d, d̄)Li(x,−d̄)dd̄

σt(r(t)) = σa(r(t)) + σs(r(t))

S2 is the domain of a unit sphere. σs and σa are the
scattering coefficient and the absortion coefficient, respec-
tively. Their sum is the attentuation coefficient, which is
also known as the density in NeRF literature. fp(x,−d, d̄)
is the phase function that describes the probability of light
scattering from direction d̄ to −d at point x. Li(x,−d̄) is
the incoming radiance towards point x along the direction
−d̄, it can be computed as a weighted sum of Crf (x, d̄)
(Eq. (1)) and radiance from an environment map Env(d̄):

Li(x,−d̄) =Crf (x, d̄)

+ exp

(
−
∫ tf′

tn′

σt(x+ sd̄)ds

)
Env(d̄)

(9)

where tn′ and tf ′ are the near and far points of secondary
rays. In traditional physically based rendering, the first term
represents indirect illumination while the second term rep-
resents direct illumination. Instead of modeling indirect il-
lumination with path tracing, we use the trained radiance
field to approximate it. This is also done in various recent
works [33, 85] for modeling static scenes from multi-view
input images. For Monte-Carlo estimation of Cpbr(r), we
will have to sample the two integrals

∫ tf
tn

and
∫
S2 separately.

SurfaceVolume SurfaceVolume

Radiance field sample !(")
Volume scattering sample !(")

Camera ray

Figure 3. Illustration of Volumetric Scattering. Volumetric scat-
tering can blend between multiple surfaces when a ray crosses
edges (left). This results in smooth transitions of appearance at
boundaries, avoiding noisy shadow (middle) and lighting (right) at
these locations.

The first integral is estimated via quadrature as was done in
standard NeRF rendering. We next describe how to sample
the second integrals.

For approximating Eq. (8), we importance sample off-
sets {t̄(1), · · · , t̄(M)} from the PDF estimated by radiance
field samples that have been used to estimate Eq. (2) . The
approximated Eq. (8) becomes:

Cpbr(r) ≈
M∑
i=1

w(i)σs(r(t̄
(i)))

σt(r(t̄(i)))
Ls(r(t̄

(i)),−d) (10)

s.t r(t) = o+ td

w(i) = T (i)
(
1− exp(−σt(r(t̄

(i))δ(i))
)

T (i) = exp

−∑
j<i

σt(r(t̄
(j)))δ(j)


Ls(r(t̄

(i)),−d) = fp(r(t̄
(i)),−d, d̄(i))

pdf(d̄(i))

· Li(r(t̄
(i)),−d̄(i))

σt(r(t)) = σa(r(t)) + σs(r(t))

in which σs(r(t̄
(i)))

σt(r(t̄(i)))
corresponds to the spatially varying

albedo and is analogous to that in surface-based rendering.
pdf(d̄(i)) is the PDF from which d̄(i) is sampled.

Essentially, we use quadrature to estimate the first inte-
gral

∫ tf
tn

, and Monte-Carlo sampling to estimate the second
integral

∫
S2 , all together with M samples. We refer readers

to the Supp. Mat. for a detailed derivation of Eq. (10). Dur-
ing training d̄(i) is uniformly sampled from the unit sphere
with M = 512 and stratified jittering [58]. For relighting,
we use light importance sampling with M = 1024 to sam-
ple from a known environment map.

We note that when using an SDF-density representation,
most of the samples t̄(i) are concentrated around the surface
of the human body. This makes the volumetric scattering
process similar to a surface-based rendering process when
there is a clear intersection between the ray and the surface.
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On the other hand, rays at edges and boundaries may not
have a well-defined surface as the corresponding pixels may
cover multiple surfaces. For these rays, it would be difficult
to employ surface-based rendering while volume scattering
suits naturally for this case (Fig. 3).

We use a simplified version of Disney BRDF [9]
to model the combined effect of the volumetric albedo
σs(r(t̄

(i)))
σt(r(t̄(i)))

and the phase function fp. It takes predicted
albedo α, roughness r and metallic m as inputs:

σs

σt
fp(ωo, ωi) = BRDF(ωo, ωi, α, r,m,n)max (n · ωi, 0)

We drop dependency on spatial locations for brevity. An
extended implementation detail of the above BRDF can
be found in the Supp. Mat. More physically accurate
phase functions for rendering surface-like volumes, such as
SGGX [26] can also be plugged into our formulation, but
we empirically do not find them providing any advantage
for our application.

3.4. Articulated Secondary Ray Tracing

Given the M samples {t̄(i)}Mi=1 on a primary ray, we trace
one secondary ray for each of the samples, and compute
opacity (or visibility in a surface rendering setup) and ra-
diance for each secondary ray. Formally, we trace a sec-
ondary ray r̄(i) from the corresponding sample, where
r̄(i) = (ō(i), d̄(i)) with ō(i) = r(t̄(i)).

Secondary Ray Tracing: We note that traditional sphere
tracing could lead to non-convergence rays when the SDF is
not smooth. This is exacerbated when the SDF is approxi-
mated by neural networks and combined with body articula-
tion. Furthermore, the sequential evaluation of SDF values
on a ray is not amenable to parallelization, especially when
a large number of secondary rays need to be evaluated and
each evaluation involves neural networks.

Given the underlying NeRF representation, precise sur-
face location is often not required to compute radiance,
while the opacity is binary most of the time due to the SDF-
density representation. This motivates us to use ray march-
ing to compute secondary shading effects. However, we
observe that the Laplace density function of [80] tends to
assign non-negligible density values to small positive SDF
values. This will cause the secondary ray marching to give
non-zero weights to points that are very close to the surface,
i.e. starting points ō’s of secondary rays. While NeuS [72] is
more well-behaved as it only assigns high weights for SDF
zero-crossing intervals, estimating weights of ray segments
requires estimation of analytical surface normals, which
usually doubles the computation cost of ray marching.

Motivated by these facts, we propose a hybrid approach
to secondary ray marching by searching for the first SDF
zero-crossing point of a set of uniform samples on the sec-
ondary ray and only start accumulating importance weights

Algorithm 1 Zero-Crossing Search and Importance Weight
Accumulation

Require: {SDF(r̄(t′(i)))}64i=1, r̄ = (ō, d̄)
Ensure: Importance weights {w(i)}63i=1

1: s← 1
2: {w(i)}63i=1 ← 0
3: while s < 63 do
4: if SDF(r̄(t′(s))) · SDF(r̄(t′(s+1))) < 0 then
5: break
6: end if
7: s← s+ 1
8: end while
9: T (r̄)← 1

10: for i = s to 63 do
11: δ(i) ← t′(i+1) − t′(i)

12: w(i) ←
(
1− exp(−σt(r̄(t

′(i)))δ(i))
)
T (r̄)

13: T (r̄)← T (r̄) exp
(
−σt(r̄(t

′(i)))δ(i)
)

14: end for
15: return {w(i)}63i=1

from that point. Given the weights of uniform samples, we
sample 4 additional samples on the secondary ray and com-
pute the transmittance and radiance from these 4 samples.
The computed transmittance and radiance are inputs to in-
coming radiance evaluation Eq. (9).

Formally, given a secondary ray r̄, we first uniformly
sample 64 offsets {t′(1), · · · , t′(64)} on the ray between the
near and far points, tn′ = 0 tf ′ = 1.5. Each of the sampled
offsets is transformed to the canonical space to query its
SDF value:

SDF(r̄(t′)) = fg(γg(LBS−1(r̄(t′)))) (11)

Alg. 1 describes the procedure of searching for the first
zero-crossing point and accumulating weights for each of
the points. This is similar to the traditional sphere tracing
algorithm, with the difference that SDF values are evaluated
uniformly in parallel instead of sequentially. We parallelize
Alg. 1 together with importance sampling over rays with
custom CUDA implementation.

3.5. Training Details

We use standard L1 loss wrt. input images on radiance pre-
dicted by both radiance field (RF loss) and volumetric scat-
tering (PBR loss). We apply eikonal loss [22] (throughout
training) and curvature loss [62] (only the first half of the
training) to regularize the SDF field. We also apply Lips-
chitz regularization [62] and standard smoothness regular-
ization [33, 84] to the material predictions. Details on losses
and hyperparameters can be found in the Supp. Mat.

We train a total of 25k iterations with a learning rate of
0.001 decayed by a factor of 0.3 at 12.5k, 18.75k, 22.5k,
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and 23.75k iterations, respectively. The first 10k iterations
are trained with the RF loss only, while the rest of the itera-
tions are trained on both the RF loss and the PBR loss. We
use a batch size of 4096 rays. Training is done on a single
NVIDIA RTX 3090 GPU in 4 hours.

4. Experimental Evaluation
4.1. Datasets

We utilize 3 different datasets to conduct our experiments
• RANA [28] To quantitatively evaluate our estimation of

the physical properties of the reconstructed avatar, we
use 8 subjects from the RANA dataset. The dataset is
rendered using a standard path tracing algorithm, with
ground truth albedo, normal, and relighted images avail-
able for evaluation. We follow protocol A in which the
training set resembles a person holding an A-pose rotat-
ing in front of the camera under unknown illumination.
The test set consists of images of the same subject in ran-
dom poses under novel illumination conditions.

• PeopleSnapshot [2] In PeopleSnapshot, subjects always
hold a simple A-pose and rotate in front of the camera
under natural illumination. We use 6 subjects from the
dataset with refined pose estimation from [13, 32].

• SyntheticHuman-Relit To additionally evaluate relight-
ing on more complex training poses of continuous videos,
we create a synthetic dataset by rendering two subjects
from the SyntheticHuman dataset [56] with Blender un-
der different illumination conditions. Due to space limits,
we refer readers to the Supp. Mat. for details and results
on this dataset.

4.2. Baselines

To our knowledge, Relighting 4D (R4D [15]) is the only
baseline with publicly available code for the physically
based inversed rendering of clothed human avatars under
unknown illumination, without pretraining on any ground
truth geometry/albedo/materials. RANA [28] only pro-
vides public access to their data at the time of our submis-
sion. Furthermore, RANA pretrains on ground truth albedo,
which is not available in our setting.

We note that the original R4D implementation does not
employ any mask loss. We therefore also report a variant of
R4D (denoted as R4D*) that employs a mask loss. R4D*
achieves overall better performance than R4D (Tab. 1) and
thus we primarily compared our method to this improved
version of R4D.

4.3. Evaluation Metrics

On synthetic datasets, we evaluate the following metrics:
• Albedo PNSR/SSIM/LPIPS we evaluate the standard

image quality metrics on albedos rendered under training
views. Due to ambiguity in estimating albedo and light

intensity, we follow the practice of [84] to align the pre-
dicted albedo with the ground truth albedo. More details
can be found in the Supp. Mat.

• Normal Error this metric evaluates normal estimation er-
ror (in degrees) between predicted normal images and the
ground-truth normal images.

• Relighting PSNR/SSIM/LPIPS we also evaluate image
quality metrics on images synthesized on novel poses
with novel illumination. Relighting evaluation on train-
ing poses (i.e. SyntheticHuman-Relit dataset) is reported
in the Supp. Mat.
On real-world datasets, i.e. PeopleSnapshot, we primar-

ily present qualitative results including novel view/pose
synthesis under novel illuminations.

4.4. Comparison to Baselines

We present the average metrics on the RANA dataset in
Tab. 1. Our method significantly outperforms R4D and
R4D* on all metrics, achieving 77% and 64% reduction in
the normal estimation error, respectively. This combined
with our explicit ray tracing technique also gives us a sig-
nificant improvement in albedo-related metrics on training
poses.

For relighting novel poses, we note that the SMPL model
is not perfectly aligned with images in the RANA dataset,
which could make the PSNR metric less meaningful. Thus
we argue that SSIM and LPIPS can better reflect the quality
of the relighting results. Nevertheless, R4D* fails to pro-
duce reasonable results due to its inability to generalize to
novel poses. On the other hand, our method can produce
high-quality re-posing and relighting results (Fig. 4).

4.5. Ablation Study

In this section, we ablate several of our design choices. We
use subject 01 from the RANA dataset for this ablation
study. We visualize average visibility (AV) maps which
best reflect the quality of the reconstruction geometry and
secondary ray tracing. The AV value of a primary ray r is
defined as:

AV(r) = 2 ∗ 1

M

M∑
i=1

V (r̄(i)) (12)

where V (r̄i) is the visibility of the i-th secondary ray (1
for not occluded, 0 for occluded), and M is the number of
secondary rays sampled for each primary ray. We multi-
ply visibility by 2 as we sample secondary rays on a unit
sphere instead of a hemisphere. The results are summarized
in Fig. 5. We describe different variants in the following:
• Ours: Our full method with all the components described

in Section 3.
• Rendered Depth with Surface Scattering: This variant

corresponds to [33] that uses rendered depth and surface
scattering.
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Figure 4. Qualitative comparison to the baseline. We show the results of our method and R4D* on both synthetic (left) and real (middle,
right) datasets. As indicated, R4D* struggles to recover intrinsic properties of avatars and do not produce realistic relighting results.
Furthermore, it fails to generalize to novel poses. Our method produces high-quality results on both synthetic and real datasets, while
generalizing well to novel poses and illuminations. More qualitative results can be found in the Supp. Mat.

Method Albedo Normal Relighting (Novel Pose)

PSNR ↑ SSIM ↑ LPIPS ↓ Error ↓ PSNR ↑ SSIM ↑ LPIPS ↓
R4D 18.24 0.7780 0.2414 42.69 ◦ 14.37 0.8133 0.2017
R4D* 18.23 0.8254 0.2043 27.38 ◦ 16.62 0.8370 0.1726
Ours 22.83 0.8816 0.1617 9.96 ◦ 18.18 0.8722 0.1279

Table 1. Quantitative comparison to the baseline on the RANA dataset.

With Rendered DepthOurs
No Secondary 

Iso-surface SearchReference Image
24.05/0.8671/𝟏𝟏. 𝟖𝟒°𝟐𝟒. 𝟏𝟏/𝟎. 𝟖𝟔𝟕𝟗/12.05° 23.75/0.8651/14.1°

Figure 5. Ablation study. We visualize average visibility (AV)
maps of each variant and report albedo PSNR (↑)/albedo SSIM
(↑)/Normal Error (↓). Surface scattering with rendered depth re-
sults in discontinuities at boundaries and edges. Without our pro-
posed iso-surface search for secondary ray tracing, the visibility
map is much darker and does not reflect true visibility. We also
refer readers to Fig. 3 for qualitative relighting results

• No Iso-surface Search for Secondary Ray Tracing: In
this variant we do not perform the iso-surface search for
secondary ray tracing (Sec. 3.4) and start accumulating
weights from the first sample of the 64 samples on the

secondary ray.

5. Conclusion

We have presented a novel approach to the inverse render-
ing of dynamic humans from only monocular videos. Our
method can achieve high-quality reconstruction of clothed
human avatars with disentangled geometry, albedo, mate-
rial, and environment lighting from only monocular videos.
We have also shown that our learned avatars can be ren-
dered realistically under novel lighting conditions and novel
poses. Experiment results show that our method signifi-
cantly outperforms the state-of-the-art method both qualita-
tively and quantitatively. We discuss limitations and future
work in the Supp. Mat.
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