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Abstract

DETR is a novel end-to-end transformer architecture ob-
Jject detector, which significantly outperforms classic detec-
tors when scaling up. In this paper, we focus on the com-
pression of DETR with knowledge distillation. While knowl-
edge distillation has been well-studied in classic detectors,
there is a lack of researches on how to make it work effec-
tively on DETR. We first provide experimental and theoret-
ical analysis to point out that the main challenge in DETR
distillation is the lack of consistent distillation points. Dis-
tillation points refer to the corresponding inputs of the pre-
dictions for student to mimic, which have different formula-
tions in CNN detector and DETR, and reliable distillation
requires sufficient distillation points which are consistent
between teacher and student.

Based on this observation, we propose the first general
knowledge distillation paradigm for DETR (KD-DETR)
with consistent distillation points sampling, for both homo-
geneous and heterogeneous distillation. Specifically, we de-
couple detection and distillation tasks by introducing a set
of specialized object queries to construct distillation points
for DETR. We further propose a general-to-specific distil-
lation points sampling strategy to explore the extensibility
of KD-DETR. Extensive experiments validate the effective-
ness and generalization of KD-DETR. For both single-scale
DAB-DETR and multis-scale Deformable DETR and DINO,
KD-DETR boost the performance of student model with im-
provements of 2.6% — 5.2%. We further extend KD-DETR
to heterogeneous distillation, and achieves 2.1% improve-
ment by distilling the knowledge from DINO to Faster R-
CNN with ResNet-50, which is comparable with homoge-
neous distillation methods.

1. Introduction

In recent years, [2] propose the novel end-to-end detector
Detection Transformer (DETR) which eliminates the need
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Figure 1. Schematic Illustrations of Distillation Points in Dif-
ferent Architecture: (a) Two-Stage Detector: both positive and
negetive proposals in RPN and Rol are consistent distillation
points with strict one-to-one correspondence between teacher and
student model; (b) DETR: Object queries lacks spatial or semantic
relationship between teacher and student model, resulting in in-
consistent distillation points; (c)In KD-DETR, a set of special ob-
ject queries is introduced to construct consistent distillation points
for DETR distillation

for hand-crafted anchors and non-maximum suppression
(NMS). [43][14][19][41]further make remarkable stride to-
wards the scalability and potential of DETR, significantly
outperforming classical detectors.
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Different from classic detectors, DETR interprets object
detection as an end-to-end set prediction problem with bi-
partite matching. A set of learnable object queries are intro-
duced, each responsible for a certain instance. The object
queries interact with features extracted from the encoder to
make final predictions of box locations and categories. De-
spite the impressive performance, the growing model scale
prevents DETR from being deployed to real-world applica-
tions with urgent computation budget requirement.

To address this problem, current works have made ef-
forts in designing efficient DETR architectures, reducing
the encoder tokens utilized in cross-attention module to de-
crease the computation cost[24], and leveraging dense prior
from RPN to downsize the decoder layers [36]. In this
work, we concentrate on compressing the large-scale DETR
model by knowledge distillation[ | 1] approaches, which is a
promising technique for model compression and accuracy
boosting. Knowledge distillation can transfer the knowl-
edge learned from large and cumbersome DETR models to
small and efficient ones by forcing the student to mimic the
predictions from teacher, whether logits or internal activa-
tions. However, modern knowledge distillation methods are
designed under CNN-based detectors, and researches on ex-
panding it to general DETR compression are limited.

We start from experiments of applying classic logit-
based distillation[4] to DETR to investigate the key point in
DETR distillation. With these experiments, we observe that
the critical challenge lies in the different formulations of
DETR and classic detectors. Compared with classic detec-
tors, the set-prediction formulation of DETR naturally con-
tains fewer consistent distillation points. We use distillation
points to denote the corresponding input of the prediction
for mimicking in knowledge distillation, and the sufficiency
and consistency of distillation points form the foundation
of knowledge distillation. Specifically, abundant distilla-
tion points which are kept consistent between teacher and
student models are essential for effective distillation. As
shown in Figure la, classic detectors make predictions for
a set of region proposals generated from the sliding win-
dow locations on the images with handcraft scales. This
pattern naturally ensures a strict spatial correspondence be-
tween the large number of proposals made by teacher and
student models, even for those negative ones with low con-
fidence, thus providing a sufficient number of consistent
distillation points for mimicking. In DETR, as is shown
in Figure 1b, the distillation points actually consist of both
image and object queries. However, the object queries from
teacher and student models are egocentric and even differ
in number, thus lacking definite correspondence, especially
those redundant negative queries in bipartite matching. As
the distillation points in DETR are inconsistent and insuffi-
cient, the predictions acquired from teacher are not reliable
or informative for student to mimic.

The observation above raises the issue: how to obtain
sufficient and consistent distillation points for DETR dis-
tillation. Previous work[3] explicitly alleviate this issue by
utilizing the bipartite matching between the object queries
from teacher and student. However, the bipartite matching
is not stable[14], and the matched object queries are just
similar but not consistent, lacking sufficiency and extensi-
bility. To directly address this issue, we propose a general
knowledge distillation paradigm for DETR (KD-DETR)
with consistent distillation points sampling. In KD-DETR,
as illustrated in Figure 1c, we decouple detection and distil-
lation task by introducing a set of specialized object queries
to construct distillation points. The distillation points are
unlearnable and shared between teacher and student mod-
els, probing the “dark knowledge” in teacher model. In this
way, consistent distillation points with customized quanti-
ties become available. With the paradigm of KD-DETR,
we propose a general-to-specific distillation points sam-
pling strategy to probe comprehensive knowledge in teacher
model. We further propose a coordination-based distillation
points sampling strategy to extend KD-DETR to heteroge-
neous distillation between DETR and CNN detector.

To the best of our knowledge, this is the first work
to propose a general knowledge distillation paradigm for
DETR for both homogeneous and heterogeneous distil-
lation. In this paper, we first provide a thorough anal-
ysis of the key points in DETR distillation. Based on
the analysis, we design a novel KD-DETR which signif-
icantly improves the performance of DETR distillation.
KD-DETR has both flexibility to different DETR archi-
tectures and potential for scalability, even for heteroge-
neous distillation between DETR and CNN detectors. We
conduct extensive experiments on the MS COCO2017[17]
dataset on both homogeneous and heterogeneous distilla-
tion, and significantly boosts the performance of student
models. DAB-DETR with ResNet-18 and ResNet-50 back-
bone achieves 41.4%, 45.7% mAP, respectively, which are
5.2%, 3.6% higher than the baseline. Deformable DETR
with ResNet-18 and ResNet-50 reaches 43.7% and 48.3%
mAP, 3.6% and 3.8% higher than the baseline, and outper-
form DETRDistill[3] with 1.7% improvement. DINO with
ResNet-18 and ResNet-50 also gains 4.4% and 2.6% im-
provement than baseline. We further extend KD-DETR to
heterogeneous distillation, and achieves 2.1% improvement
by distilling the knowledge from DINO to Faster R-CNN
with ResNet-50, which is comparable with homogeneous
distillation methods.

2. Related Work
2.1. Classic Object Detection

Classic detectors with CNN view object detection as a
verification task with a sliding window on the image to gen-
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erate anchors. The mainstream detectors can be divided into
one-stage detectors[28][16] and two-stage detectors[23][1].
One-stage detectors, such as Retinanet[18], YOLO[22],
and FCOS[28], directly predict the category and re-
gression of anchors on each pixel of the feature maps.
While two-stage detectors such as Faster-RCNN[23] and
its variants[21][32][39] introduce a Region Proposal Net-
works (RPN) to generate proposals, and a ROIPool or
ROIAlign[29] to extract features of each region proposal for
further classification and regression refinement. Both one-
stage and two-stage detectors require post-processing, such
as NMS, to remove duplicate predictions.

2.2. Detection Transformer

[2] first propose an end-to-end transformer-based detec-
tor without any post-processing. Different from classic ob-
ject detection, DETR interprets object detection as a set-
prediction problem with bipartite matching. Lots of follow-
up focus on the slow convergence of DETR[5][26][7][40].
Deformable DETR[43] introduces a deformable attention
module by generating reference points for query elements,
each of which only concentrates on a small number of loca-
tions on the whole feature map. An alternative way is to add
more prior information to the object queries in the decoder.
Conditional-DETR[20] decouples the context and position
features in object queries and generates position features
by spatial location. DAB-DETR[19] further introduces the
width and height information to the positional features. An-
chor DETR[31] also encodes the anchor points as object
queries with multiple patterns, and further designs a row-
column decouple attention to reduce memory cost. The re-
cent work of DINO[4 1] draws the existing novel techniques,
and further exerts the potential of DETR by enlarging the
scale of model and datasets.

Besides, another problem in DETR is the scale and com-
putation cost of the model. Current works solving this prob-
lem by designing more efficient DETR architecture. Sparse
DETR[24] reduces the computation cost by sparsifying en-
coder tokens. Efficient DETR[36] otherwise introduce RPN
to generate object queries and eliminate the cascading de-
coder layers in DETR. PnP DETR[30] shorten the length of
sampled feature with a poll and pool sampling module.

2.3. Knowledge Distillation

Knowledge distillation is a widely-used method for
model compression and accuracy boosting by transferring
the knowledge in a large cumbersome teacher model to a
small student. [11] first propose the concept of knowledge
distillation, where the student mimics the soft predictions
from teacher. Knowledge distillation has been utilized in
various fields[27][34][33]. According to the objective of
mimicking, knowledge distillation can be divided into three
categories: response-based[42], feature-based[10][35] and

relation-based[37][38], which distill with logits, intermedi-
ate activations and the relation of features in different layers
respectively.

Several works focus on applying knowledge distillation
to object detection[8][4][12]. [4] successfully distills the
features on the neck, the classification head, and the re-
gression head, while [15] chooses to distill the logits and
features from the RPN head. To overcome the imbalance
of foreground and background, [29] introduces fine-grained
mask to focus on the regions close to ground-truth bounding
boxes, [0] pays more attention to the regions where teacher
and student are divided in predictions.

However, the modern knowledge distillation methods for
object detection are built upon the architecture of CNN-
based detectors, and are not suitable for DETR due to the
completely different transformer architecture. [3] directly
introduces response-based and feature-based distillation to
DETR with Hungarian-matching. Different from the pre-
vious work, we analyze the limitation of the set-prediction
formulation in knowledge distillation, and propose a gen-
eral paradigm for both homogeneous and heterogeneous
DETR distillation.

3. A Closer Look at DETR Distillation

In this section, we first revisit the DETR architecture
briefly. Then we conduct a series of classic knowledge dis-
tillation experiments on DETR to reveal that the core of
DETR distillation is to obtain sufficient and consistent dis-
tillation points.

3.1. Revisiting DETR

DETR is built upon the encoder-decoder architecture of
transformer. The encoder takes pixels of the feature map
from backbone as input for multi-head self-attention to ex-
tract context features X € REWXD where HW denotes
the resolution of the feature map, and D denotes the fea-
ture dimension. The decoder takes the features from en-
coder and a set of learnable object queries Q = {¢; €
RPJi = 1,...,N} as input, where N denotes the number
of queries. Each object query is an abstract feature describ-
ing a certain instance, and will probe and pool the features
from encoder through cross-attention to make predictions
of category C = {c; € R¥|i = 1,..., N} and location
B = {b; = (b, by;, bw;, bh;)|i = 1, ..., N}, where K de-
notes the number of categories. Finally, the Hungarian al-
gorithm is used to find a bipartite matching between ground
truth and predictions of object queries.

3.2. Consistent Distillation Points

The core idea of knowledge distillation is forcing the stu-
dent to mimic the prediction of teacher, which can be in-
terpreted as matching the mapping function of student and
teacher with a set of distillation points. Distillation points
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Strategy ‘ AP APsy APrs
Baseline 36.2 56.1 37.9
Inconsistent 35.1 552 36.7

Similar Foreground | 37.2 574 399
Similar General 374 580 40.6

Table 1. Distillation with Different Distillation Points. Inconsis-
tent distillation points are harmful for distillation.

refer to the corresponding input x of the predictions, as
y = f(x), where f represents the model. In this view, the
distillation points should kept sufficient in quantity and con-
sistent between teacher and student models for effective and
reliable matching. However, comparing the formulation of
CNN detector and DETR, a critical challenge of DETR dis-
tillation lies in the lacking of consistent distillation points.

Classic detector degrades object detection to a verifica-
tion problem which combines classification and regression,
and introduces a set of anchors to specify the region for ver-
ification. In this way, the formulation of distillation points
consists of the image and the location and scale of anchor
x = (I,anchor). As the anchors are generated through the
sliding window strategy with handcrafted shapes, the loca-
tions and scales of anchors are implicitly embedded in the
model architecture as prior information. Since student and
teacher models share the same or similar architectures, a
large number of object proposals generated by teacher and
student models naturally have strict spatial correspondence,
even for those background regions with low confidence.
With the spatial correspondence which can be viewed as an
inductive bias of CNN, classic detector naturally guarantees
a sufficient number of consistent distillation points.

In contrast, the DETR formulates object detection as a
set-prediction problem. The distillation points, therefore,
become the combination of the image and the object queries
x = (I,q). However, the object queries in different mod-
els are egocentric, as they are initialized and optimized by
themselves independently. Since object queries play the
role of probing and pooling the features of certain instances,
they have inconsistent conc entration preferences in differ-
ent models. Consequently, the formulation of DETR natu-
rally lacks the ability to provide sufficient distillation points
with strict consistency between teacher and student models,
and the predictions acquired from teacher are not informa-
tive or reliable for student to mimic.

3.3. Distillation with Inconsistent Distillation Points

To validate the analysis above that the sufficiency and
consistency of distillation points is the essential challenge in
DETR distillation, we start with applying the original logit-
based distillation method[4] in classic detector to DETR,
which mimics the category and box location logits predic-
tions of teacher model.

We examine three distillation points strategies: Inconsis-
tent, Similar Foreground, and Similar General. In Inconsis-
tent, all the object queries are viewed as distillation points
with their original permutation; In Similar Foreground, only
object queries matched to ground truth in bipartite matching
will be used as distillation points, and will permute with the
same order of ground truth label; Similar General further
increase the number of distillation points by viewing the
average of negative object queries in bipartite matching as a
general background distillation point. Experiments are con-
ducted on DAB-DETR and evaluated on MS COC02017,
with ResNet18 as student and ResNet-50 as teacher.

As shown in Table 1, Inconsistent distillation points re-
sults in great degradation of the student model with unre-
liable knowledge from teacher model; Similar Foreground
with semantic-similar foreground distillation points allevi-
ate the problem; and Similar General achieves further im-
provement by increasing the number of distillation points
with general background features. The preliminary experi-
ments validate that the sufficiency and consistency of distil-
lation points are of prime importance to improve the perfor-
mance of student model in DETR distillation.

4. KD-DETR

To address the lack of consistent distillation points
in DETR, we propose a general knowledge distillation
paradigm for DETR (KD-DETR) with consistent distilla-
tion points sampling. As illustrated in Figure 2, KD-DETR
introduces a set of specialized object queries q shared be-
tween teacher and student models to construct distillation
points. Decoupling the distillation task and detection task,
KD-DETR can provide sufficient and consistent distillation
points. We denote the original input and sampled distilla-
tion points as x = {I, q}, % = {I, q} respectively.

For detection task, the student model is first optimized
by its original detection loss: the original input x is fed into
student model to make category and box location predic-
tions, which will be assigned to the ground truth with bipar-
tite matching and calculate detection loss L ge;.

For distillation task, the sampled distillation points X will
be fed into both student and teacher to make category and
location predictions c, b:

c®,b® = f*(L,q), (1
c’, bt = fY(L,q), 2)

where f°, f! refer to student and teacher model respec-
tively. The distillation loss is calculated with following
form:
M
Laistin = Y _[NetsLrcr(€11€7) + Ar1LLi (b}, bl), 3)
i=1

+)\GIOU£GIOU (b:a bf)]v
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Figure 2. KD-DETR architecture KD-DETR decouples the distillation and detection tasks by introducing a set of distillation points
shared between teacher and student models. For distillation, the distillation points are served as the query of the transformer decoders
for both teacher and student models, and the student will mimic teacher’s classification and box location predictions. The weight of each
distillation point is measured by its foreground probability predicted by teacher. For detection task, the original object queries are processed

by the student decoder for final prediction.

where M denotes the number of distillation points. For clas-
sification, we choose the KL-divergence L, as distillation
loss with temperature 7: ¢ = SoftMax(%). For box re-
gression, L1, and Lg .y represent the L1 and GIoU loss
for location distillation, which have the same formulation
with detection loss. Ags, A1, Agrou represent the coeffi-
cient of corresponding loss.

The total Loss is calculated with following form:

L = Laiseinn + Laet 4

4.1. Distillation Points Sampling

Generally, object queries are a set of abstract features
responsible for certain objects by probing and pooling the
context features from encoder. Existing works interpret ob-
ject queries as anchors or reference points, revealing that
each object query is sensitive to a particular region on the
feature maps. Following this perspective, we provide a
comprehensive general-to-specific sampling strategies for
distillation points sampling: § = {qg, qs}.

General Sampling with Random Initialized Queries. In
general sampling, we hope to probe teacher’s general re-
sponses on different locations of the features by sparsely
scanning the whole feature maps. Therefore, we randomly
initialize a set of object queries, which are uniformly dis-
tributed on the features, to construct the general distillation
points: qg = {aq; ~ U(0,1)|i = 1,...,M,}, where M,
denotes the number of general distillation points. To learn
more general knowledge from teacher, we leave these dis-
tillation points unlearnable during training, and re-sample

them every iteration.

Specific Sampling with Teacher Queries. While the gen-
eral sampling provides a global retrieval of the features, we
further propose a specific sampling strategy, focusing on
those regions where teacher pays more attention. An intu-
itive way for specific sampling is to directly reuse the well-
optimized object queries in teacher model:qs = Qteacher-
While teacher model is learned to concentrate more on these
object queries, the predictions in these areas are more pre-
cise and informative.

Foreground Rebalance Weight. The imbalance between
foreground and background regions is one critical problem
in object detection distillation, not special in DETR. An in-
tuitive way is to utilize the classification scores of distil-
lation points which are predicted by teacher model to re-
balance the distillation loss. Concretely, those distillation
points with higher classification scores are regarded as fore-
ground distillation points, containing more useful informa-
tion for detection, and should be given more attention.

w; = max_ p'(ye|qs), ®)

c€[0,K]
where p’(y.|q;) denotes the probability of q; assigned to
category c predicted by teacher model, and w; denotes the
foreground rebalance weight of q;. In this way, the distilla-
tion loss in Eq. (3) will be writen as follow:

M
Laistir = Y_ wilAasLrcr(€5]&)

i=1
+)\L1£L1(bf7 bf) + )\GIOUEGIOU(bS’ bﬁ)]

(6)
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Models Epochs | AP | APsy AP;; APs APy APp | GFlops Params
DAB-DETR ResNet-50(T) 50 42.1 | 63.1 447 215 457 693 90 44M
ResNet-18(S) 50 36.2 | 56.1 379 169 390 535 49 23M
Ours 50 414 | 614 442 212 447 58.7 49 23M

Gains +52 | 453 +63 +43 +57 +5.2
DAB-DETR ResNet-101(T) 50 435 | 63.9 446 236 473 615 157 63M
ResNet-50(S) 50 42.1 | 63.1 447 215 457 60.3 90 44M
Ours 50 457 | 66.3 494 264 498 62.7 90 44M

Gains +3.6 | +3.2 +47 +49 +41 +24
Deformable-DETR  ResNet-50(T) 50 445 | 63.6 487 27.1 476 59.6 171 40M
ResNet-18(S) 50 40.1 | 58.1 437 224 428 542 127 24M
Ours 50 437 | 62.1 477 259 468 57.6 127 24M

Gains +3.6 | +40 +4.0 +35 +4.0 +34
Deformable-DETR  ResNet-101(T) 50 48.0 | 66.7 526 30,5 523 623 238 59M
ResNet-50(S) 50 445 | 63.6 487 271 476 59.6 171 40M
Ours 50 48.3 | 66.7 529 308 52.1 625 171 40M

Gains +3.8 | +3.1 +42 +3.7 +45 +29
DINO ResNet-50(T) 36 509 | 69.0 553 346 541 646 245 47M
ResNet-18(S) 12 440 | 61.2 48.1 274 469 569 200 30M
Ours 12 48.4 | 65.5 53.0 316 51.7 623 200 30M

Gains +4.4 | +4.3 +49 +4.2 +4.8 +54
DINO ResNet-101(T) 36 51.3 | 69.5 558 348 548 658 311 66M
ResNet-50(S) 12 49.0 | 66.6 535 320 523 63.0 245 47TM
Ours 12 51.6 | 69.6 56,6 342 548 669 245 47M

Gains +2.6 | +3.0 +3.1 +2.2 +25 +39

Table 2. Results of the proposed KD-DETR with different DETR detectors and backbones with various scale.

4.2. Generalization to Heterogeneous Distillation

To further extend the generalization of the KD-DETR
paradigm, we apply the idea to heterogeneous distillation
between DETR and CNN detector. Intuitively, both the an-
chor in the CNN detector and the object query in DETR
represent certain locations on the image and share spatial
consistency. We first construct a set of distillation points q
with the coordinate of anchors in CNN detector, and then
convert them to the formulation of object queries in DETR.
The distillation loss is in the formulation of Eq. (3).

We further propose a simple but effective strategy for
distillation points sampling in heterogeneous distillation
with Intersection over Union (IoU). Specifically, we calcu-
late the IoU between anchors and ground truth grounding
boxes, and select the top k anchors as distillation points.
Details about heterogeneous distillation are in Appendix 7.

5. Experiment

To validate the effectiveness and generalization of KD-
DETR, we evaluate it on different DETR architectures in-
cluding DAB-DETR, Deformable DETR and DINO, with
two scales of backbones: ResNet-50 and ResNetl8. We
also extend KD-DETR to heterogeneous distillation, and

evaluate on distillation between DINO-Res50 and Faster-
RCNN Res50. To support our analysis of consistent distilla-
tion points, we further conduct an extensive ablation study.

5.1. Experimental Settings

Datasets: All the proposed experiments are evaluated on
MS COCO2017[17] spanning 80 categories, with the de-
fault split of 117k training images for training and S5k vali-
date images for testing. Standard COCO evaluation metrics
are adopted for validation.

Implementation Details: As KD-DETR is a plug-and-
play distillation module, we follow the original settings of
hyper-parameters and optimizer of all the student model
for the training of detection part. We choose ResNet[9] as
backbone, which are pre-trained on ImageNet1K[13]. We
propose the inheriting strategy[12] to initialize students’
level embeddings on multi-scale DETR (details in Ap-
pendix 8.2). For distillation task, we set hyper-parameters
of the coefficient of the distillation loss as A\ = 1, A1 =
5, Agrov = 2. The number of General distillation points
is 300, 300,900 for DAB-DETR, Deformable DETR, and
DINO. For heterogeneous distillation, the hyper-parameter
k for IoU sampling is set to 10. We train our models on
Nvidia A100 GPUs with batch size set to 16 in total.
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Method AP APgs APy, APy
Deformable DETR Res50 | 44.5 27.1 47.6  59.6
FGD[34] 44,1 259 477 588
FitNet[25] 449 272 484 59.6
DETRDistill[3] 46.6 285 500 604
Ours 483 308 521 62.5

Table 3. Comparison with state-of-the-art on Deformable DETR.

5.2. Distillation on Different DETR benchmarks

We evaluate our method on three typical DETR architec-
tures: DAB-DETR[19], a single-scale DETR with special
object query settings; Deformable-DETR[43], a multi-scale
DETR with deformable attention module; and DINOJ[41],
which combines a series of novel techniques including de-
formable attention, two-stage object queries settings, and a
de-noising module, to evaluate our effectiveness on well-
optimized model with high accuracy. Distillation results of
DINO with Swin Transformer backbone and compressing
the layers of DETR are in Appendix 8.2, 8.3

The results are illustrated in Table 2. For DAB-DETR,
KD-DETR significantly boosts the performance of ResNet-
18, and ResNet-50 with 5.2%, and 3.6% mAP improvement
respectively. Note that student with ResNet-50 even sur-
pass the teacher by 2.2% mAP. For Deformable DETR with
ResNet-18 and ResNet-50, KD-DETR achieve 3.6% and
3.8% mAP gains, and student with ResNet-50 also exceed
the teacher with 0.3% mAP. For DINO with ResNet-18 and
ResNet-50, KD-DETR also improves 4.4% and 2.6% mAP
of the student models on 12-epoch training scheduler.

Table 3 shows the comparison with state-of-the-art dis-
tillation method. With simple logit-based distillation alone,
KD-DETR outperforms former methods , with an improve-
ment of 1.7% on Deformable DETR with ResNet-50 com-
pared with DETRDisitll[3]

5.3. Generalization to Heterogeneous Distillation

Table 4 presents the results with Faster RCNN ResNet-
50 as student and DINO ResNet-50 as teacher. KD-DETR
works well on heterogeneous distillation task, improving
the student models with 2.1% mAP, achieving the perfor-
mance of state-of-the-art homogeneous methods. This val-
idate our analysis on the effect of distillation points on
knowledge distillation, and bridge the gap of transferring
knowledge between detectors with different architectures.

5.4. Ablation Study

The ablation study is conducted on MS COCO2017 with
DAB-DETR with backbone of ResNet50 as teacher and
ResNet18 as student.

Analysis on the Benefit of Knowledge Distillation

Method AP APs APy AP
RCNN-Res50 | 384 215 42.1 50.3
FGFI[29] 393 225 423 522
GID[6] 40.2 2277 440 532
FGD[34] 404 228 445 535
Ours 40.5 2277 44.6 53.8

Table 4. Heterogeneous Distillation: Distillation between DINO
and Faster RCNN

Object  Distillation
Queries Points AP APso  APrs
300 - 362 56.1 379
300+300 - 37.7 580 41.1
300 300 402 60.7 428

Table 5. Benefit of Knowledge Distillation: Simply increasing
the set of object queries leads to trivial improvement

In KD-DETR, we introduce a set of specialized distil-
lation points in the training process to the original DETR
architecture. [41][14] have proven that the number of ob-
ject queries will affect the performance of model. To val-
idate that the benefit is from knowledge distillation rather
than the increase of object queries, we conduct an ablation
experiment by applying an additional set of object queries
with the same number of distillation points.

As shown in Table 5, simply increasing the number of
object queries only achieves trivial gains, and the main con-
tribution of boosting the model’s performance is from the
knowledge transferred from teacher with distillation points.
Analysis on the Distillation Points Sampling Strategy

A comprehensive general-to-specific distillation points
sampling scheme is introduced in this paper, including three
strategies: General Sampling, Specific Sampling, and Fore-
ground Rebalance Weight. The ablation results are illus-
trated in Table 6. The general sampling strategy with ran-
domly initialized queries can boost the performance of stu-
dent model for 2.5% mAP, while the specific sampling
strategy with teacher queries achieves an improvement of
3.8%. When refining the general distillation points with
foreground rebalance weight, the general sampling strategy
and specific sampling strategy yield larger gains for 3.7%
and 4.0%, respectively. The combination of the three strate-
gies further promotes the performance for 5.2%.

It is also important to note that the performance of gen-
eral sampling with foreground rebalance weight is fairly
close to the specific sampling. Since the teacher queries in
specific sampling are well-optimized and concentrate more
on the foreground regions, such phenomena validate that
the general sampling with randomly initialized queries can
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General Specific FRW | AP  AP;y APrs
362 56.1 379

v 387 59.1 407

v v 399 602 425

v 40.0 60.5 424

v v 40.2 60.7 428

v v v 414 614 442

Table 6. Distillation with Different Distillation Points Sampling
Strategies. FRW refers to Foreground Rebalance Weight.

Number ‘ 10 50 100 300 900
AP 38.6 393 395 399 395
APs 583 592 593 602 604
AP;; | 41.0 413 418 425 417

Table 7. Distillation with Different Number of General Distillation
Points

probe the whole feature maps evenly, and foreground re-
balance weight can help the student focus more on the
foreground regions. In addition, the further improvement
brought by the combination of three strategies indicates that
the specific distillation points bring more information from
the concentration of teacher model.
Number of General Distillation Points

We investigate the influence of the number of general
distillation points by varying the number from 10 to 900.
As is shown in Table 7, the improvement is significant when
increasing the distillation points from 10 to 50, while gradu-
ally saturating when continuing to increase to 300. There is
even a slight degradation when further increasing the num-
ber. These phenomena validate that the general distillation
points can effectively probe the knowledge from teacher’s
attention in different regions when sparsely distributed on
the feature maps. However, dense distillation points will in-
troduce more noise of background information, and will be
harmful for distillation.
Visualization of the Distillation Points

In order to understand what knowledge has been trans-
ferred from teacher to student better, we visualize the atten-
tion map of different kinds of distillation points. Figure 3 il-
lustrates the attention of the same specific distillation points
from teacher model, student model and KD-DETR. It can
be seen that the specific distillation points focus more on
the features of foreground regions. While the attention of
the original student model without distillation is different
from the teacher model, KD-DETR can align the concen-
tration of teacher and student models. On the contrary, the
general distillation points, as illustrated in Figure 4, concen-
trate more on the background regions, and objects that are
not included in the ground truth annotations, which can pro-

Teacher Attention Student Attention KD-DETR Attention

Figure 3. Attention Map Visualization of Specific Distillation
Points: Images from left to right are from teacher, original student
and student with KD-DETR. The corresponding predicted bound-
ing box of the distillation points are marked with red rectangles.

Figure 4. Attention Map Visualization of General Distillation
Points: Teacher model’s attention of general distillation points fo-
cuses more on the background regions, providing more informa-
tion for student to mimic.

vide more additional semantic information to the student. In
this way, the combination of general and specific distillation
points can provide more comprehensive knowledge.

6. Conclusion

In this paper, we study the compression of DETR with
knowledge distillation. We provide thorough experimental
and theoretical analysis on the key point in DETR distilla-
tion. Based on the analysis, we propose the first general
knowledge distillation paradigm for DETR (KD-DETR),
together with a comprehensive general-to-specific consis-
tent distillation sampling scheme. We conduct extensive
experiments to demonstrate the flexibility, generalization,
and extensibility of KD-DETR on various DETR architec-
tures, and for both homogeneous and heterogeneous dis-
tillation. For homogeneous distillation, KD-DETR com-
presses both the scale of backbone and transformer layers,
significantly boosting the performance of student model.
For heterogeneous distillation, KD-DETR effectively trans-
fers the knowledge from DETR to CNN detector.
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