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Abstract

Recent works utilize CLIP to perform the challenging un-
supervised semantic segmentation task where only images
without annotations are available. However, we observe
that when adopting CLIP to such a pixel-level understand-
ing task, unexpected bias occurs. Previous works don’t ex-
plicitly model such bias, which largely constrains the seg-
mentation performance. In this paper, we propose to ex-
plicitly model and rectify the bias existing in CLIP to facil-
itate the unsupervised semantic segmentation. Specifically,
we design a learnable “Reference” prompt to encode class-
preference bias and project the positional embedding of vi-
sion transformer to represent space-preference bias. Via
a simple element-wise subtraction, we rectify the logits of
CLIP classifier. Based on the rectified logits, we gener-
ate a segmentation mask via a Gumbel-Softmax operation.
Then a contrastive loss between masked visual feature and
the text features of different classes is imposed to facilitate
the effective bias modeling. To further improve the seg-
mentation, we distill the knowledge from the rectified CLIP
to the advanced segmentation architecture via minimizing
our designed mask-guided, feature-guided and text-guided
loss terms. Extensive experiments on standard benchmarks
demonstrate that our method performs favorably against
previous state-of-the-arts. The implementation is available
at https://github.com/dogehhh/ReCLIP.

1. Introduction

Semantic segmentation aims to attach a semantic label to
each pixel of an image. Since the rising of deep learn-
ing [27, 28, 45, 54], semantic segmentation has been widely
adopted in real-world applications, e.g., autonomous driv-
ing, medical image segmentation, etc. Conventional ap-
proaches [6, 9, 10, 37, 38, 53, 60] for semantic segmentation
have achieved remarkable performance. However, the su-
perior performance of those methods relies heavily on large
amounts of fully annotated masks. Collecting such high-
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quality pixel-level annotations can be both time-consuming
and expensive, e.g., some annotations for specialized tasks
require massive expert knowledge, some are even inacces-
sible due to privacy reasons, etc. Therefore, it is necessary
to explore unsupervised semantic segmentation where only
images without annotations are available.

Unsupervised semantic segmentation (USS) has been
studied for years. Many non-language-guided USS methods
have been proposed, e.g., clustering-based methods [11, 25,
29, 34, 42], contrastive-learning-based methods [21, 51],
boundary-based methods [23], etc. Despite promising
progress achieved, there still exhibits a large performance
gap between USS and the supervised segmentation meth-
ods. Besides, these methods typically obtain class-agnostic
masks and have to depend on additional processing (e.g.,
Hungarian matching) to assign semantic labels to the masks,
rendering them less practical in real scenarios.

Recently, large-scale visual-language pre-trained mod-
els, e.g., CLIP [45], demonstrate superior zero-shot classi-
fication performance by comparing the degree of alignment
between image feature and text features of different cate-
gories. A few CLIP-based USS approaches [22, 46, 49, 62]
emerge and show remarkable performance improvement
compared with the non-language-guided USS methods.
These models require no access to any types of annotations,
and directly assign a label to each pixel, benefiting from the
aligned vision and text embedding space of CLIP. However,
good alignment between image-level visual feature and tex-
tural feature doesn’t necessarily mean good alignment be-
tween pixel-level visual feature and textural feature. Thus,
for CLIP, unexpected bias may inevitably appear. Previous
works didn’t explicitly model such bias, which may largely
constrain their segmentation performance.

We observe two kinds of bias existing in CLIP. From
one aspect, as shown in Fig. 1(a), CLIP exhibits space-
preference bias. CLIP performs apparently better for seg-
menting central objects than the ones distributed near the
image boundary. It can be reflected by the fact that mIoU
decreases as the distance between the centroids of object
and the image increases. From the other aspect, as shown in
Fig. 1(b), there exists class-preference bias between similar
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Figure 1. (a) Space-preference bias. (Left): The relationship between distance (x-axis) and mIoU (y-axis) is drawn on PASCAL VOC
[18]. The distance means the spatial distance between the centroids of the object and the image and mIoU is computed based on predictions
and ground truth. The curve shows that CLIP [45] (green) is apparently better at segmentation for central objects than boundary ones, but
our method (blue) effectively mitigates this bias. More details about how we draw this figure has been shown in our supplementary material.
(Right): Visualizations also show our improvement on space-preference bias qualitatively. (b) Class-preference bias. (Left): We randomly
select 6 classes from PASCAL Context [40] and draw the confusion matrix of CLIP and our model. It shows that beside the ground truth,
CLIP also prefers to assign an incorrect but relevant label to a pixel in quite a few cases, while our results show apparent improvement.
(Right): The visualizations are consistent with what we observed in confusion matrix. For example, for a “cow”, CLIP tends to classify it
as “dog” incorrectly.

categories in CLIP. For example, according to visulization
(right), when ground truth is “cow”, CLIP tends to incor-
rectly classify it as “dog”. We also show such trend be-
tween randomly selected classes by confusion matrix (left).
Elements on diagonal line represent right classification,
while others are false. We observe a wide range of class-
preference bias introduced by CLIP.

In this paper, we propose to explicitly model and rectify
the bias of CLIP to facilitate the USS. Specifically, we de-
sign two kinds of text inputs for each class, which are named
as “Reference” and “Query” respectively. The Query is
manually designed while the Reference contains learnable
prompts. We adopt the text features of Query and Refer-
ence as classifiers to generate the Query and Reference log-
its respectively for each pixel of image. The Query logits
represent the segmentation ability of original CLIP, while
the Reference logits are expected to reflect the bias of CLIP
preferring a specific class. Additionally, we project the po-
sitional embedding of CLIP’s vision transformer to generate
positional logits for each image. We expect the positional
logits to represent space-preference bias of CLIP. Then, we
remove the class-preference and the space-preference bias
from original CLIP via a logit-subtraction mechanism, i.e.,
subtracting the Reference logits and the positional logits
from the Query logits. Based on the rectified logits, we
generate a segmentation mask via a Gumbel-Softmax op-
eration. Then the contrastive loss between masked visual

feature and the text features of different categories is im-
posed to facilitate the effective bias modeling and rectifi-
cation. To further improve the segmentation performance,
we distill the knowledge from the rectified CLIP to the ad-
vanced segmentation architecture, via mask-guided distilla-
tion, feature-guided distillation and text-guided learning.

We conduct extensive experiments on standard semantic
segmentation benchmarks, including PASCAL VOC [18],
PASCAL Context [40] and ADE20K [61]. Experiment
results demonstrate that our method performs favourably
against previous state-of-the-arts. Notably, on PASCAL
VOC, our method outperforms CLIP S4 [22] by 3.4%. Ex-
tensive ablation studies verify the effectiveness of each de-
sign in our framework.

Our contributions are summarized as follows.
• We observe that when applying CLIP to pixel-level

understanding tasks, unexpected bias including space-
preference bias and class-preference bias, occurs.
Such bias may largely constrain the segmentation per-
formance of CLIP-based segmentation models.

• We propose to explicitly model the class-preference
and space-preference bias of CLIP via learnable Ref-
erence text inputs and projection of positional embed-
ding. Through a simple logit-subtraction mechanism
and the contrastive loss built on masked features, we
effectively rectify the bias of CLIP.

• We conduct extensive experiments on segmentation
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benchmarks under the unsupervised setting. Experi-
ment results show superior performance of our method
to previous state-of-the-arts.

2. Related Work
Pre-trained vision-language models. Pre-trained vision-
language models (VLMs) [8, 14, 32, 33, 35] have developed
rapidly with the help of large-scale image-text pairs avail-
able on the Internet. Recently, CLIP [45], ALIGN [26] and
Slip [41] have made great progress on learning visual and
textual representations jointly by using contrastive learn-
ing. With the image-level alignment with text, pre-trained
VLMs have strong ability for zero-shot classification task
and can be transferred to various downstream tasks, such as
object detection [17, 54] and semantic segmentation [62].
Unsupervised semantic segmentation. While conven-
tional approaches of semantic segmentation [37, 38, 53,
60] rely on pixel-level annotations and weakly-supervised
methods [1, 16, 44, 56] still ask for image-level labels, unsu-
pervised semantic segmentation (USS) methods [11, 20, 42,
50, 51] explores to train a segmentation model without any
annotations. Models like [2, 7] adopt generative model [12]
to separate foreground with background or generate corre-
sponding masks. SegSort [23], HSG[29] and ACSeg [34]
use clustering strategy, while IIC [25] uses mutual in-
formation maximization to perform unsupervised learn-
ing. MaskContrast [51] introduces contrastive learning into
USS. Others like DSM [39] and LNE [13] exploit features
extracted from self-supervised model, and combine it with
spectral graph theory. However, the methods mentioned
above either fail to segment images with multi-category
objects or show a large performance gap with the super-
vised methods. Besides, they can only obtain class-agnostic
masks and have to depend on additional strategy, such as
Hungarian-matching algorithm [30], to match correspond-
ing category with masks. Recently, pre-trained vision-
language models are adopted in USS. MaskCLIP [62] mod-
ifies the image encoder of CLIP to generate patch-level fea-
tures and directly performs segmentation with text features
as classifiers. CLIP-py [46] performs contrastive learning
between visual features from self-supervised ViT [4] and
text features from CLIP. ReCo [49] performs image retrieval
with CLIP and extracts class-wise embedding as classifier
with co-segmentation. CLIP-S4 [22] learns pixel embed-
dings with pixel-segment contrastive learning and aligns
such embeddings with CLIP in terms of embedding and se-
mantic consistency. These methods can directly assign a
category to each pixel, whose setting is named as language-
guided unsupervised semantic segmentation. However, di-
rectly applying CLIP may bring prior bias, including space-
preference bias and class-preference bias. As we know,
there is no previous method trying to solve these bias and
we manage to explicitly model the bias, and rectify them by

element-wise subtraction.
Language-guided semantic segmentation. Recently,
many works are exploring semantic segmentation guided by
language under different settings. Zero-shot works [3, 31,
43, 55] split classes into seen and unseen set. During the
training period, only masks of seen classes are provided.
For inference, models are tested on both seen and unseen
classes, but the test data is still in the same distribution with
the training data. Open-vocabulary works [5, 19, 36, 47,
57–59] are trained in one scenario with extra annotations
including class-agnostic masks or image captions, but are
used for predicating segmentation masks of novel classes in
other scenarios. From the technical view, our method also
falls into the category of language-guided semantic segmen-
tation. However, we consider the unsupervised setting. In
this setting, we have access to images without any annota-
tions during training. The training and inference images are
sampled from the same distributions and the same set of cat-
egories. Such a setting is different to the typical zero-shot
or open-vocabulary setting.

3. Method
Background In this work, we aim to rectify the bias of
CLIP for unsupervised semantic segmentation. In USS, we
only have access to images without any types of annotations
to train the segmentation model. For training and inference,
the same set of categories are considered and the data dis-
tributions are assumed to be the same.
Overview The general framework of our method is illus-
trated in Fig. 2. We aim to rectify the bias of CLIP includ-
ing the class-preference bias and the space-preference bias,
to facilitate unsupervised semantic segmentation. From a
high level, class-preference bias reflects the shift of CLIP
predictions towards specific classes, while space-preference
bias reflects the shift of CLIP predictions towards specific
spatial locations. Both biases will be finally reflected in the
predicted logit maps. A reasonable way to rectify the bias
is to subtract its logit maps from the normal logit maps pre-
dicted via original CLIP.

To realize our goal, we firstly forward the image I ∈
R3×H×W through the image encoder of CLIP to obtain the
patch-level image features Z. We design two kinds of text
inputs for each class. One is the manually designed Query
text input Q and the other one is the Reference text in-
put R which consists of a learnable prompt and the name
of class. For each class, passing Q and R through the
text encoder of CLIP, we obtain two text embeddings Wq

and Wr, which serve as the weights of query segmentation
head and reference segmentation head respectively. Tak-
ing the same visual feature Z as input, the query and ref-
erence segmentation heads output a query logit map Mq

(Sec. 3.1) and Reference logit map Mr (Sec. 3.2) respec-
tively. Meanwhile, positional embedding p is sent into a
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learnable convolutional network to generate positional logit
map Mp (Sec. 3.3). Then the bias logit map Mb can be
obtained by adding Reference logit map Mr and positional
logit map Mp. We then subtract Mb from Mq to generate
the rectified logits M . Based on the rectified logits, we gen-
erate masks for different classes. Then a contrastive loss
is imposed between the masked visual features and the text
features of different categories to encourage the bias mod-
eling and rectification (Sec. 3.4). In order to enhance the
segmentation performance, we distill the knowledge of rec-
tified CLIP to the advanced segmentation architecture with
specifically designed mask-guided, feature-guided and text-
guided loss terms (Sec. 3.5). In both the rectification and
distillation stages, we keep CLIP frozen.

3.1. Baseline: Directly Segment with CLIP

Following MaskCLIP [62], we adapt pre-trained CLIP [45]
(ViT-B/16) to the semantic segmentation task. We remove
the query and key embedding layers of last attention but
reformulate the value embedding layer and the last linear
projection layer into two respective 1×1 convolutional lay-
ers. Therefore, the image encoder can not only generate lo-
cal features for dense predictions, but also keep the visual-
language association in CLIP by freezing its pre-trained
weights. We forward image I through the image encoder
and obtain patch-level features Z ∈ Rn×D (n is the number
of patches and D is the dimension of features in CLIP).

Each text in Query Q = {Q1, Q2, · · · , QC} (C is the
number of classes) is an ensemble of several manually de-
signed prompts, e.g., “a good/large/bad photo of a [CLS]”
where [CLS] denotes the a specific class name. Passing
Q through the text encoder, we obtain its text embeddings
Wq . We treat text embeddings Wq as the weight of seg-
mentation head to perform 1 × 1 convolution. By sending
features Z to the segmentation head, we get a Query logit
map Mq ∈ Rn×C . Then the segmentation mask can be
predicted by argmax operation on Mq .

3.2. Learn Class-Preference Bias

In order to explicitly model the class-preference bias
brought by pre-trained CLIP for specific datasets, we de-
sign a Reference Ri, i = {1, 2, · · · , C}, as additional text
input for each class. Inspired by CoOp [63], Ri consists of
a learnable prompt which is shared across all the classes for
efficiency, and a class name [CLS], which can be formed as

Ri = [v1][v2]...[vl]...[vL][CLS], (1)

where each [vl](l ∈ {1, ..., L}) is a vector with dimension
D and serves as a word embedding. The L is a constant
representing the number of word embeddings to learn. To-
tally, there are 77 word embeddings for a text of CLIP. As
two word embeddings are used for class name and two for
indicating start and end of a text, we set L to 73.

Passing the Reference R through text encoder, we obtain
reference text embedding Wr ∈ RC×D. The text embed-
ding Wr is then directly utilized as the weights of segmen-
tation head to perform 1 × 1 convolution on visual feature
Z and output a Reference logit map Mr ∈ Rn×C .

As we obtain different Reference logit maps for differ-
ent classes, we expect the Reference logit map to encode
the class-preference bias to facilitate the following bias rec-
tification process. It is worth noting that we make Reference
R learnable but keep Query Q fixed. It is because when we
make them both learnable, Query may also capture some
class-preference bias and technically we cannot guarantee
which text embedding should encode the class-preference
bias, resulting in an implicit bias modeling. Thus, in our
framework, we choose not to make the Q learnable to just
encourage R encode the bias. Such a design cooperates with
the following logit subtraction mechanism to make the bias
modeling and rectification more meaningful and effective.

3.3. Learn Space-Preference Bias

In ViT [15], positional embeddings (PE) are important for
encoding spatial information to features. Thus, we assume
the space-preference bias should depend on the positional
embeddings (PE) and choose to learn a projection of PE to
represent the space-preference bias.

We design a 3-layer 3 × 3 convolutional network, and
each convolutional layer is followed by a batch normaliza-
tion. Specifically, we project PE p by the designed convolu-
tional network to obtain positional logits Mp ∈ Rn×1. Dur-
ing the training process, the projection network is optimized
to model the space-preference bias in positional logits Mp.
Since PE is shared across all categories, the learned space-
preference bias is also shared across all the categories.

3.4. Rectify Bias with Contrastive Learning Loss

By keeping Query prompt Q fixed, the Query logits Mq rep-
resents the natural prediction ability of CLIP model, which
may contain class-preference bias and space-preference
bias. With learnable Reference prompt and projection
of PE, we explicitly encode the class-preference bias and
space-preference bias into the Reference logit map Mr and
positional logit map Mp respectively. We then add Mr and
Mp together to depict the final bias Mb, i.e.,

Mb = Mr +M∗
p , (2)

where we simply expand Mp to M∗
p ∈ Rn×C which means

we repeat each Mp for C times.
Then we perform a simple element-wise subtraction be-

tween Mq and Mb to generate the rectified logit map M ,

M = Mq −Mb. (3)
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Figure 2. Method overview. We propose a new framework for language-guided unsupervised semantic segmentation. (a) Rectification
Stage: At this stage, we aim to rectify the class-preference and space-preference bias of CLIP. (b) Distillation: We distill knowledge from
the rectified CLIP to the advanced segmentation architecture with the mask-guided, feature-guided and text-guided loss terms.

From a high-level, this operation can be interpreted as sub-
tracting the “bias” from the predictions with text features of
Query as segmentation head.

Since the argmax operation is not differentiable, we uti-
lize a Gumbel-Softmax trick [24] to generate the candidate
masks for each class with τ1 as the temperature, i.e.,

M̂ = Gumbel-Softmax(M, τ1). (4)

We apply M̂ to the feature Z to get the masked features
Zg , which are expected to encode the features of objects
with different classes. We then design a contrastive loss
to supervise the learning via aligning masked features with
text features of different classes. As the masked features
represent the objects of interest without context, we utilize
Wq generated by text input Q for alignment.

Additionally, as it is usually impossible for an image to
contain all the classes of interest, we need to infer what
classes exist in the current image. Our strategy is as fol-
lows. Firstly, we choose to extract global visual feature
from image encoder of CLIP. Then we calculate the simi-
larity scores between the text input of a specific class and
the global visual feature of the image. We only choose the
classes whose similarity scores are higher than a threshold
t as the potential classes exist in the current image.

Then we may select K pseudo labels {c1, c2, · · · , cK}
for each image. We perform a global average pooling of Zg

and compute the similarities between pooled visual features
of pseudo labels and text features of all the categories. The
contrastive loss can be defined as

L = − 1

K

K∑
k=1

log
exp{Sck,ck/τ}∑C
j=1 exp{Sck,j/τ}

(5)

where Sck,j denotes the similarity between visual feature of
pseudo label ck and text feature of j-th (j ∈ {1, 2, · · · , C}
category and the τ is a constant.

A better modeling of bias yields more accurate estima-
tions of object masks. Then the masked features of objects

are more aligned with corresponding text features. As a re-
sult, the contrastive loss (Eq. (5))will be lower. In contrast,
a worse modeling of bias results in higher contrastive loss.
Thus, minimizing Eq. (5) will drive the model to update
towards making more accurate mask predictions, i.e., rec-
tifying the bias of CLIP when adapted to the downstream
USS task.

3.5. Distillation for Enhanced Results

As CLIP is not specifically designed for segmentation tasks,
we choose to distill the knowledge from the rectified CLIP
(teacher) to the advanced segmentation architecture (stu-
dent) to enhance the feature representations and finally im-
prove the segmentation performance. In our paper, we
choose DeepLab V2 [6] as the student network which di-
rectly inherits and fixes the Query and Reference segmenta-
tion heads, and utilizes logit subtraction mechanism to gen-
erate the final segmentation masks. In our design, the rec-
tified CLIP works as a teacher to guide the feature learning
of DeepLab V2 with three designed loss terms.

Mask-guided loss. We directly exploit segmentation
masks generated from the bias rectification stage as pseudo
labels. We compute a cross-entropy loss between the
pseudo labels M̃ and predictions MD from DeepLab V2,
i.e.,

Lmask = − 1

HW

H∑
i

W∑
j

logPij(M̃ij) (6)

where H and W denote the height and width of an image.
The Pij(M̃ij) = Softmax(MD

ij )M̃ij
, which means the pre-

dicted probability with respect to the pseudo label M̃ij .
Feature-guided loss. After obtaining features Z from

visual backbone of rectified CLIP and Ẑ from student vi-
sual backbone, we resize two features to the same shape of
original image by bilinear interpolation. We then perform a
L1 loss between two features

Lfeat = ||Z − Ẑ||1 (7)
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Therefore, visual features from student network is aligned
with visual and textual features of rectified CLIP, providing
an important basis for the following text-guided loss.

Text-guided loss. We adopt the same strategy as the
Rectification stage (Sec. 3.4) to compute contrastive loss as
our text-guided loss Ltext. The only difference is that we
use feature Ẑ and masks generated by the student network
to obtain the corresponding masked features.

Total distillation loss. Total distillation loss Ldistill is
calculated as follows, where α and β are both constants and
set to 0.5. Effect of each loss term is studied in Sec. 4.3.

Ldistill = Lmask + αLfeat + βLtext. (8)

4. Experiments
4.1. Setup

Datasets. We conduct experiments on three standard
benchmarks for semantic segmentation, including PASCAL
VOC 2012 [18], PASCAL Context [40] and ADE20K [61].
PASCAL VOC 2012 (1,464/1,449 train/validation) contains
20 object classes, while PASCAL Context (4,998/5,105
train/validation) is an extension of PASCAL VOC 2010 and
we consider 59 most common classes in our experiments.
ADE20K (20,210/2,000 train/validation) is a segmentation
dataset with various scenes and 150 most common cate-
gories are considered.
Implementation details. For the image encoder of CLIP,
we adopt ViT-B/16 as visual backbone. For the text en-
coder of CLIP, we adopt Transformer [52]. During the
whole training period, we keep both of the encoders frozen.
We use conventional data augmentations including random
cropping and random flipping. Relevant hyper-parameters
for each dataset, including number of rectification epochs,
number of distillation iterations and parameters of data aug-
mentation are shown in our supplementary material. For
both stages, we use a SGD [48] optimizer with a learning
rate of 0.01 and a weight decay of 0.0005. We adopt the
poly strategy with the power of 0.9 for learning ratte. In
our experiment, we report the mean intersection over union
(mIoU) as evaluation metric.
Baselines. We compare with previous USS meth-
ods to verify the superiority of our method, including
MaskCLIP(+) [62], CLIP-S4 [22], ReCo [49], CLIPpy [46],
etc. From the technical view, although our method falls into
the category of text-guided segmentation, we choose not to
compare with text-guided methods which are designed for
zero-shot or open-vocabulary setting (e.g., GroupViT [57],
TCL [5] and ViewCo [47]). Two main differences exist be-
tween the zero-shot/open-vocabulary setting and the unsu-
pervised setting: 1) in zero-shot/open-vocabulary, the cate-
gory sets for training and inference are non-overlapped, but
in USS the category sets are shared; 2) text-guided zero-
shot/open-vocabulary methods usually rely on large-scale

Table 1. Comparison with non-language-guided unsupervised
semantic segmentation methods on PASCAL VOC.

Model LC mIoU

IIC [25] 9.8
SegSort [23] 11.7

Deep Spectral Methods [39] 37.2
HSG [29] 41.9

ACSeg [34] 47.1
MaskContrast [51] 49.6

Ours (rectification) 58.5
Ours (distill) 75.4
Ours (distill) 76.1

image-text pairs or class-agnostic masks to supervise the
training, but in USS we only utilize the images without any
types of annotations to train the model.

4.2. Comparison with SOTA methods

We compare our method with both previous non-language-
guided USS methods (Table 1) and CLIP-based USS meth-
ods (Table 2). In all tables, we use “Ours (rectification)” to
denote the segmentation results after the rectification stage
and “Ours (distill)” to denote the segmentation results after
distillation. Unless otherwise stated, results from previous
methods are directly cited from the original papers.

As shown in Table 1, our model shows remarkably better
segmentation results compared with the conventional non-
language-guided USS methods. In order to further eval-
uate the strength of features extracted from our distilla-
tion model, we also report our results of linear classifica-
tion (LC). Following MaskContrast [51], we fix our model
to generate pixel embeddings and train a linear classifier
to generate semantic segmentation masks. The results of
LC also prove that our method extracts strong features and
achieves significant gains.

In Table 2, we also make a comparison with typical
CLIP-based methods, including MaskCLIP, CLIPpy, ReCo
and CLIP-S4. These methods all consider the same CLIP-
based USS setting with ours. The results show our method
performs favorably against previous CLIP-based methods.
For example, after the rectification stage, our method out-
performs MaskCLIP by 9.0%, 4.1% and 1.6% respectively
on the three datasets, while after distillation, our method
outperforms MaskCLIP+ by 5.4%, 2.7% and 2.1%. Our
method also shows better results than CLIPpy by 20.8%
and 0.8% on PASCAL VOC and ADE20K and outperforms
CLIP-S4 by 3.4% and 0.2% on PASCAL VOC and PAS-
CAL Context. Since ReCo employs a “context elimination”
(CE) trick which may introduce prior knowledge, we also
report the results of ReCo by removing this trick (ReCo
w/o CE in Table 2). Our method outperforms ReCo ob-
viously, e.g., on PASCAL VOC, ours (rectification) outper-
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Table 2. Comparison with CLIP-based unsuperivsed semantic
segmentation methods on various benchmarks.

Method VOC Context ADE

CLIPpy [46] 54.6 / 13.5
MaskCLIP [62] 49.5 21.7 9.5

MaskCLIP+ [62] 70.0 31.1 12.2
ReCo [49] 55.2 26.2 /

ReCo (w/o CE) 54.8 23.1 /
CLIP-S4 [22] 72.0 33.6 /

Ours (rectification) 58.5 25.8 11.1
Ours (distill) 75.4 33.8 14.3

Table 3. Ablation on whether Query should be learnable. Re-
sults show that fixing Query performs favorably against making
Query learnable.

Query Reference VOC Context ADE

56.7 23.7 9.4
56.7 24.4 10.5

forms ReCo and ReCo (w/o CE) by 3.3% and 3.7% respec-
tively.

4.3. Ablation study

Should Query be learnable? We study on whether the
prompt of Query should be learnable. As shown in Table 3,
we conduct experiments with learnable and fixed Query re-
spectively. As we aim to show the effect of fixing Query, we
don’t utilize the projected positional logits to calculate the
numbers shown in the table. The numbers show that fixing
Query performs favorably against making Query learnable.
This verifies that we should only learn Reference but keep
Query fixed as we discuss in Sec. 3.2.
Effect of different bias modeling. As shown in Table 4,
compared with the baseline without any bias rectification
(numbers with only “Query”), utilizing learbable Refer-
ence to model the class-preference bias brings remarkable
performance improvement, e.g., 7.2% mIoU on PASCAL
VOC, 2.7% mIoU on PASCAL Context and 1.0% mIoU on
ADE20K. While introducing projection of positional em-
bedding to model the space-preference bias, the numbers
are further improved, i.e., around 1% better than modeling
the class-preference bias only. Those results verify the ef-
fectiveness of bias modeling by introducing learnable Ref-
erence and projection of positional embedding.
Effect of element-wise subtraction on bias rectification.
In order to validate the effect of our element-wise subtrac-
tion, we conduct experiments in Table 5. We compare our
subtraction mechanism with an alternative solution, i.e., in-
stead of subtracting logits encoding bias (i.e., Reference
logits plus positional logits), we add all the logits. Com-
parisons shown in the table verify the effectiveness of our

Table 4. Effect of bias modeling. Results show effect of both bias
modeling quantitatively and each contributes to better results.

Query Reference PE VOC Context ADE

49.5 21.7 9.5
56.7 24.4 10.5
58.5 25.8 11.1

Table 5. Effectiveness of element-wise subtraction. Results
show that the element-wise subtraction removes bias from CLIP.

Query Ref+PE sub add VOC Context

49.5 21.7
57.8 24.9
58.5 25.8

subtraction way. As we aim to remove the bias from the
original CLIP, we speculate that the subtraction operation
may work as a strong prior which regularizes the training
to facilitate meaningful and effective bias modeling. The
effect of bias rectification by element-wise subtraction is
further visualized in Fig. 3.
Visualization of Bias Modeling. In Fig. 3 (b), we illustrate
how we explicitly model and rectify the class-preference
bias. As shown in the first column of Fig. 3 (b), the origi-
nal CLIP (see “Query” mask) tends to misclassify part of a
“person” (see the ground-truth mask denoted as “GT”) into
a “boat”. Such a mistake is reflected in the comparison be-
tween the logit heatmaps for the “person” channel and the
“boat” channel: in the area misclassified as “boat”, the log-
its for “boat” are relatively higher than those for “person”.
In contrast, for Reference logit map, the person-channel
logits are quite low, while the boat-channel logits are gener-
ally very high, especially for the misclassified area. Conse-
quently, via the proposed logit subtraction operation, we ob-
tain the rectified logits (see the last column), where the boat
channel is largely suppressed. Finally, we obtain a much
better mask (see “Ours” in the first column).

In Fig. 3 (c), we aim to show that the projection of
positional embedding (PE) effectively models the space-
preference bias. By comparing the results with and with-
out rectifying logits projected by PE (see the dashed boxes
of the last two columns), we find that rectification with
PE largely improves the segmentation performance in the
boundary areas. The results illustrate that the projection
of PE does encode the space-preference bias and rectifying
such bias may largely improve the segmentation results.
Effect of different distillation loss terms. We conduct ex-
periments on PASCAL VOC to validate the effect of each
loss term of our distillation framework, including the mask-
guided, feature-guided and text-guided loss terms. From
Table 7, all the loss terms contribute to better performance.
Effect of segmentation head for distillation. As illustrated
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Figure 3. (a) Qualitative Results: We visualize segmentation results on PASCAL Context. From the visualization, we observe that our
model outperforms MaskCLIP(+) obviously by rectifying both class-preference bias and space-preference bias. (b) Class-preference
bias: In order to explain how Reference explicitly models the class-preference bias, we show the heatmap of Reference logits. (c) Space-
preference bias: The segmentation within dashed boxes shows the effectiveness of PE projection on rectifying space-preference bias.

Table 6. Effect of segmentation head for distillation. We per-
form distillation with both original classification head (Ori. Head)
and structure from our rectification stage

Ori. Head Query Reference PE Proj. mIoU

73.8
74.1
75.4
75.0

Table 7. Ablation results on distillation loss. According to the
results, each loss item contributes to better distillation result.

Mask Feature Text mIoU

73.0
74.1
75.4

in Fig 2 (b), instead of directly using original classifica-
tion head at the distillation stage, the student network (i.e.,
DeepLab V2 [6]) inherits and fixes the Query and Reference
segmentation heads from our rectification stage, and utilizes
logit subtraction mechanism to generate the final segmenta-
tion masks. In Table 6, we conduct experiments with orig-
inal head (“Ori. Head”) of DeepLab V2 and other types of
segmentation heads which are directly inherited from our
rectification stage on PASCAL VOC. From the results, we
observe that it is better to inherit the components from our
rectification stage than adopting the original classification
head. However, introducing projection of PE in segmenta-
tion head cannot bring further improvement.
Qualitative Results. We visualize our segmentation re-

sults in Fig. 3 (a). It can be observed that there exists
apparent space-preference bias and class-preference bias
in the segmentation results of original CLIP (MaskCLIP)
and these bias still cannot be removed even after distil-
lation (MaskCLIP+). However, our model outperforms
MaskCLIP(+) obviously by rectifying the bias of CLIP for
unsupervised semantic segmentation.

5. Conclusion

In this paper, we propose a new framework for language-
guided unsupervised semantic segmentation. We observe
bias, including space-preference bias and class-preference
bias, exists in CLIP when directly applying CLIP to seg-
mentation task. We propose using additional Reference to
learn class-preference bias and projecting positional embed-
ding to represent space-preference bias, and then manage
to rectify them by a simple element-wise logit subtraction
mechanism. For further improving the segmentation perfor-
mance, we distill the knowledge from rectified CLIP to ad-
vanced segmentation backbone with specifically designed
losses. Extensive experiments demonstrate that our method
achieve superior segmentation performance compared to
previous state-of-the-arts. We hope our work may inspire
future research to investigate how to better adapt CLIP to
complex visual understanding tasks.
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Pérez. Zero-shot semantic segmentation. Advances in Neural
Information Processing Systems, 32, 2019. 3

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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