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Abstract

The capacity of existing human keypoint localization
models is limited by keypoint priors provided by the train-
ing data. To alleviate this restriction and pursue more gen-
eral model, this work studies keypoint localization from a
different perspective by reasoning locations based on key-
piont clues in text descriptions. We propose LocLLM, the
first Large-Language Model (LLM) based keypoint local-
ization model that takes images and text instructions as in-
puts and outputs the desired keypoint coordinates. LocLLM
leverages the strong reasoning capability of LLM and clues
of keypoint type, location, and relationship in textual de-
scriptions for keypoint localization. To effectively tune Lo-
cLLM, we construct localization-based instruction conver-
sations to connect keypoint description with corresponding
coordinates in input image, and fine-tune the whole model
in a parameter-efficient training pipeline. LocLLM shows
remarkable performance on standard 2D/3D keypoint lo-
calization benchmarks. Moreover, incorporating language
clues into the localization makes LocLLM show superior
flexibility and generalizable capability in cross dataset key-
point localization, and even detecting novel type of key-
points unseen during training†.

1. Introduction
Human keypoint localization aims to locate target keypoints
from input person image and is a fundamental task in com-
puter vision and graphics. It has a wide range of appli-
cations in human pose estimation [26, 31–33] and facial
landmark detection [23], etc. Existing keypoint localization
methods typically utilize powerful neural networks, e.g.,
Convolutional Neural Network (CNN) [26, 37] or Vision
Transformer (ViT) [38] to either directly regress keypoint
coordinates [11] or estimate the keypoint heatmaps [26, 37]
to perform localization. Those methods learn keypoint pri-

†Project page: https://github.com/kennethwdk/LocLLM
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Figure 1. Upper: The conventional keypoint localization meth-
ods [11, 37, 38] encodes keypoint prior provided by the training
set into model architecture and refers to encoded prior for key-
point localization. Bottom: The proposed LLM-based keypoint
localization method refers to keypoint type, location, and relation-
ship descriptions, and utilizes pre-trained powerful LLM [17, 43]
to predict keypoint coordinates. Our method is more general to
locate novel keypoints cross datasets, as textual descriptions can
be provided flexibly.

ors encoded in the training set into the backbone, e.g., along
channel dimension in the last layer. This design reinforces
the model responses on keypoints encoded in the backbone,
but limits the generalization capability to detect keypoints
in unseen human pose from different dataset, or to handle
novel type of keypoint not included in the training set.

To alleviate the restriction by the training set and pursue
a more general model, this work aims to perform keypoint
localization from a different perspective, i.e., by referring
to clues in textual descriptions that can be flexibly acquired.
Inspired by the Large Language Model (LLM) [17, 43], we
describe keypoint location through natural language and uti-
lize the powerful reasoning capability of LLM for keypoint
localization. Previous localization methods need to refer to
encoded keypoint priors in network architecture, which is
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hard to update. Differently, we explicitly send the keypoint
name and location descriptions, along with input image to
a LLM. Besides visual clues, this new pipeline allows to
flexibly input descriptions of novel keypoints by indicating
their type, location, and relationship with other keypoints.
It also effectively adopts the reasoning capability of pre-
trained LLM, therefore improving the generalization ability
of keypoint localization.

The above intuition leads to our LocLLM, the first LLM-
based localization model for generalizable keypoint local-
ization. As illustrated in Fig. 1, LocLLM formulates the
keypoint localization as a question-answer task, taking both
image and text description as the input and outputting key-
point coordinates. LocLLM comprises a visual encoder, a
projection layer to bridge image and text modalities and
a pre-trained LLM. The visual encoder is responsible for
learning image representations. The subsequent projector
converts image representations into image tokens, which
are combined with text tokens as the input of LLM. To
effectively train LocLLM, we construct localization-based
instruction conversations on existing keypoint localization
benchmarks to connect the keypoint description with corre-
sponding coordinates in input image. A parameter-efficient
tuning method is proposed to effectively tune the whole
model through instruction conversations.

We conduct extensive experiments on different key-
point localization benchmarks including 2D benchmarks
like COCO Keypoint [16], MPII [30] and Human-Art [8],
and 3D benchmark Human3.6M [7]. On standard COCO
Keypoint benchmark, LocLLM achieves 77.4 AP, which is
comparable with existing SoTA CNN and ViT-based local-
ization methods. LocLLM can also detect 3D human key-
point and achieves promising performance on Human3.6M
benchmark. Moreover, LocLLM shows superior general-
ization ability under various settings. On the cross dataset
generalization setup, LocLLM achieves 33.4 PCKh@0.1 on
MPII, which is better than ViTPose [38] by 7.8. On Huma-
nArt, our method obtains 64.8 AP, outperforming previous
methods by a large margin. Moreover, LocLLM can detect
novel types of keypoint such as pelvis and neck through text
descriptions, which are not included in the training set. All
above experiments demonstrate that LocLLM is a superior
generalizable keypoint localization method.

To the best of our knowledge, LocLLM is the first LLM-
based keypoint localization model that explicitly exploits
natural language description of keypoint into localization.
This design allows us to utilize the rich clues from flexible
text description and leverage pre-trained LLM for location
reasoning. LocLLM achieves promising performance on
standard 2D/3D human keypoint localization benchmarks,
cross dataset generalization, and novel keypoint detection.
LocLLM also incorporates keypoint localization into Multi-
modal LLM, which enhances its capability in more fine-

grained visual content analysis.

2. Related Work
2.1. Human Keypoint Localization

Human keypoint localization aims to locate the person key-
points from input RGB images and plays an important
role in computer vision and graphics. Existing keypoint
localization methods can be divided into two categories:
heatmap-based and regression-based methods.

Heatmap-based keypoint localization encodes keypoint
location with a probability map [29]. This type of meth-
ods estimates heatmaps and retrieves keypoint coordinates
with a post-processing operation. Currently, heatmap-based
methods dominate the field of keypoint localization because
heatmap is easy to learn with CNN or Vision Transformer.
Pioneer works [20, 26, 37] design powerful CNN models
to estimate high resolution heatmaps for human pose es-
timation and facial landmark detection. From estimated
heatmaps, the target keypoint can be simply obtained by a
post-processing shifting [20, 41].

Regression-based keypoint localization directly outputs
keypoint coordinates from input image via a neural net-
work, which is adopted by several classical methods [2, 30].
Many works have been proposed to improve the perfor-
mance of direct regression. The first kind of methods
changes the way of regression. Soft-armgax [28] and
Sampling-argmax [12] regress keypoint locations by inte-
grating a latent heatmap, which is proved to be superior to
direct regression. The second kind of methods improves
regression by proposing new loss functions. RLE [11]
changes the predefined Gaussian or Laplace distribution
in commonly used regression loss with a learned distribu-
tion via normalizing flow. Finally, researchers also propose
more powerful backbones to improve the performance of
direct regression, such as TokenPose [14] and PETR [25].

All above methods directly encode keypoint type clues
into architecture and implicitly learn the keypoint location
through training data. Therefore, their generalization ca-
pability is restricted by the model architecture and training
data. In contrast, our method explicitly exploits keypoint
type and location from language description and LLM,
making it more generalizable to detect novel keypoints.

2.2. Multi-modal Large Language Model

Large Language Model (LLM) shows remarkable reason-
ing capabilities in natural language processing tasks, there-
fore researchers try to enhance it with additional modal-
ities, e.g., image, audio, motion, etc., to develop Multi-
modal LLM (MLLM). Flamingo [1] proposes Perceiver
to extract representative visual tokens and add them into
LLM through cross-attention. BLIP-2 [13] proposes Q-
Former to align visual features with text tokens in LLM.
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Instruction tuning [36] is a commonly adopted way to align
vision and language modalities to improve the ability of
MLLM. Mini-GPT4 [43] and LLaVA [17] construct a high-
quality instruction tuning dataset and fine-tune only a sin-
gle fully connection layer to construct MLLMs. Instruct-
BLIP [5] introduces an instruction-aware visual feature ex-
traction method and fine-tunes the entire Q-Former, show-
ing promising zero-shot performance on various multi-
modal tasks. mPlug-Owl [40] incorporates a visual abstrac-
tor to align the two-modalities, and fine-tune both the visual
encoder and visual abstractor during the pre-training stage.
AnyMAL [19] aligns not only image but also more modali-
ties, such as video, audio and IMU motion sensor to LLM.

2.3. Large Language Model for Vision Tasks

Despite remarkable progress in MLLM, most methods still
focus on vision-language tasks, such as VQA and image
caption. The effectiveness of LLM in classical vision tasks,
e.g., detection, segmentation and localization has not been
fully exploited. LISA [10] defines a new vision task named
as reasoning segmentation and propose a framework to ex-
tract referring text embedding from MLLM, which is sent
to a segmentation model like SAM [9] to perform segmen-
tation. VisionLLM [35] proposes a framework to address
vision tasks such as detection and segmentation through
LLM with a complex image tokenizer. However, none of
above work exploits the effectiveness of LLM in keypoint
localization task, which requires locating target in sub-pixel
level accuracy, rather than the coarse object level in detec-
tion and segmentation. To the best of our knowledge, this
is the first work that exploits LLM for keypoint localiza-
tion and demonstrates that LLM can achieve superior per-
formance in generalizable keypoint localization.

3. Method
3.1. Overview

The goal of human keypoint localization is to estimate the
coordinates of target keypoints from input image, which can
be conceptually denoted as,

{Ki}ni=1 = locate(I), (1)

where Ki denotes the coordinates of the i-th type keypoint,
e.g., person shoulder or knee, n is the total type of keypoint
defined in each dataset. Following Eq. 1, previous meth-
ods [11, 37] encode keypoint clues into network architec-
ture and learn location prior from training set, which limits
their generalization ability.

Different from above formulation, in this paper we inves-
tigate keypoint location description and utilize the power-
ful large language model to perform localization, rewriting
Eq. (1) into

{Ki} = locate(I, Ti), (2)

where Ti contains the text description of i-th target key-
point. In this way, the keypoint type is not solely encoded
into the model but also through the text description input,
allowing us to explicitly exploit keypoint type, location and
relationship, and even detect novel keypoint.

Following Eq. (2) and most MLLM work [17, 39], we
formulate the keypoint localization as a visual question an-
swer (VQA) task and utilize the powerful reasoning capa-
bility of LLM to achieve our goal. Specifically, we propose
LocLLM, a generative model that aims to complete multi-
modal sentences to output keypoint coordinates. As shown
in Fig. 2, LocLLM consists three main components: a vi-
sual encoder ΦV (·), a linear projector ΦP (·) and a large
language model ΦL(·). The input of LocLLM contains two
parts, the image I ∈ R3×H×W and text instruction T . The
output is target keypoint coordinates K, this process can be
denoted as,

K = ΦL(ΦP (ΦV (I)), T ). (3)

The visual encoder ΦV (·) takes an image I ∈ R3×H×W

as input and outputs a sequence of image features F =
(f1, f2, ..., fm), where m is the number of image features.
The image features are further projected into image tokens
by a single linear layer projector ΦP (·) [17], i.e.,

{v1, v2, ..., vm} = ΦP (ΦV (I)). (4)

The text T will also be processed by the tokenizer of
ΦL(·) to generate text tokens {t1, ..., tl}, which is combined
with image tokens to be sent to ΦL(·). Utilizing the self-
attention mechanism, the LLM is capable of understanding
the contextual relationships between different types of to-
kens, enabling it to generate responses based on both text
and image inputs. Formally, the output of LLM ΦL(·) is
also a sequence, i.e.,

{k1, k2, ..., ks} = ΦL({v1, ..., vm, t1, ..., tl}), (5)

where s denotes the length of output tokens, ki is
generated sequentially based on all previous tokens
{v1, ..., vm, t1, ..., tl, k1, ..., ki−1}. Then ki will be mapped
to LLM vocabulary by a linear classifer C(·). During train-
ing, we encode the keypoint coordinates K into ground truth
vocabulary class sequence {k∗1 , k∗2 , ..., k∗s} and add standard
Cross Entropy loss on the output classification score, which
can be denoted as,

L =
∑
i

CE(C(ki), k∗i ). (6)

During inference, we decode the output tokens to vocabu-
lary words by selecting the words with the highest probabil-
ity in C(ki) to get estimated keypoint coordinates.

Previous works [17, 39, 43] reveal that the text instruc-
tion T plays a key role in unleashing the power of LLM to
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Large Language Model

Keypoint: The {left shoulder} is the joint connecting the left arm and the torso, 
typically situated on the upper left side of the chest.
Question: Where is the {left shoulder} of this person in this image? Please provide 
its coordinates.

Projector
Answer: [0.528,0.238] or [0.528,0.238,0.517200] 

Input Image Localization-based Instruction Conversation

LoRA

Visual
Encoder

LoRA

Figure 2. The proposed LocLLM for keypoint localization via large language model. LocLLM takes image and text instruction as input and
contains three parts: a visual encoder, a projector and a decoder-only LLM. The image input is processed by visual encoder and projector
to extract image tokens. The LLM takes the image tokens and text tokens as input and output corresponding keypoint coordinates. During
training, we freeze the visual encoder and LLM and only update a small set of learnable parameters with projector, therefore relieving the
training cost.

Instruction Template

Image: {image tokens}
Keypoint: {keypoint location description}
Question: {question to perform localization}
Answer: {keypoint coordinates}

Table 1. Illustration of the proposed localization-based instruction
conversation template.

complete corresponding tasks. Moreover, how to effectively
tune LocLLM to generate accurate keypoint coordinates is
also a challenge. Therefore, following two parts proceed to
introduce the detailed localization-based instruction conver-
sation construction to instruct LLM to perform keypoint lo-
calization, and a parameter-efficient tuning pipeline to train
the LocLLM, respectively.

3.2. Localization-based Instruction Conversation

Constructing proper instructions is a key step to tune LLM
towards a specific task, which is verified in many visual
instruction tuning methods [17, 43]. To enable LLM per-
form keypoint localization accurately, we create the follow-
ing localization-based instruction conversation as LocLLM
input. The instruction template is shown in Table 1 and an
example can be found in Fig. 2.

Keypoint Description. Different from previous work
that only provide question, we additionally provide a sen-
tence that describes the keypoint location on human body to
help LLM locate target keypoint. For each type of keypoint,
we ask ChatGPT to generate corresponding description and
manually check it with Wikipedia. Manual intervention

aims to ensure the descriptions are reliable. The generation
and manual intervention are offline and no longer needed
once the descriptions are checked. The detailed description
of each keypoint can be found in supplemental materials
and its effectiveness is verified in Sec. 4.

Keypoint Coordinates Format. One challenge in
localization-based instruction conversation is how to format
the keypoint coordinates so that LLM can predict them ac-
curately. According to previous work OFA [34], Shikra [3]
and Pink [39], we investigate two types of keypoint coordi-
nates format in instruction conversation.

The first is adopting location token to represent key-
point coordinates, which is used in many methods such as
OFA [34]. For example, a keypoint with (95, 123) coordi-
nates can be converted into two ⟨095⟩ ⟨123⟩ tokens. Con-
sidering that the image size is fixed, e.g., 224× 224, we can
add a set of fixed location token into tokenizer to represent
keypoint coordinate. However, the drawback of location to-
ken is that their embedding should be additionally learned,
and it is hard to represent decimal coordinate such as depth
in 3D keypoint representation.

The second is to directly adopt decimal string to repre-
sent keypoint coordinates. Specifically, we normalize the
keypoint coordinates into the range [0, 1] with respect to the
image size in spatial dimension or camera 3D bounding box
size in depth dimension and preserve 3/6 decimal places for
each number, i.e.,

[0.abc, 0.def, 0.ghijkl], (7)

where lowercase letters denote any number between 0 and
9. For decimal string the tokenizer will split it into a set of
words, e.g., ”0.abc” into {”0”, ”.”, ”a”, ”b”, ”c”}, which is
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already included in LLM vocabulary. Therefore, the advan-
tage of the second format is that we do not need to add new
tokens into LLM vocabulary and train corresponding em-
bedding layer. Moreover, the decimal string format allow us
to easily extend the framework to locate 3D keypoint with
minimal modification, i.e., just extend the string to include
depth dimension.

Multi-Round Conversation. One image may contain
multiple target keypoints, e.g., knee and shoulder. There-
fore it is not efficient to ask only one keypoint location in
one conversation. To boost the training efficiency, we fol-
low the VQA method to construct multi-round conversation
to ask multiple keypoint locations for one input image in a
single forward pass.

3.3. Parameter-Efficient Tuning

Due to the huge parameters of LLM, it is not feasible to fine-
tune the entire model with limited GPU resource. Moreover,
fully fine-tuning LLM and visual encoder requires millions
of image-text pairs to avoid model collapse, which is unre-
alistic in keypoint localization task.

To perform an efficient training and enable the entire
model to benefit from multi-modal localization-based in-
struction conversation, we freeze the visual encoder and
LLM and introduce a small set of learnable parameters
into them. This approach prevents the visual encoder and
LLM from suffering semantic loss due to the limited in-
struction text data and provide a parameter-efficient train-
ing way to perform keypoint localization. Specifically, we
adopt LoRA [6] to training LocLLM. Given a weight ma-
trix W ∈ Rd×k in pre-trained model , the LoRA is defined
as follows,

Ŵ = W +∆W = W +WBWA, (8)

where WA ∈ Rr×k and WB ∈ Rd×r denote the weight
matrices of LoRA module, r is the hidden dimension which
is much smaller than d and k. WB is initialized to zero to
ensure that at the beginning of the training LoRA does not
change the original output.

We add LoRA modules into both visual encoder and
LLM, and fine-tune them with the linear projector. In our
method, the whole trainable parameters are 8.7M, which is
much smaller than the whole model and common CNN and
ViT models. Following previous methods [17], LocLLM
is trained in two stages. In this first stage, we align the
image and text by only fine-tuning the projection layer on
image-text pairs CC3M [24]. In the second stage, we freeze
the visual encoder and LLM and fine-tune the newly added
LoRA module and projector on the localization-based in-
struction conversations. Therefore, LocLLM can benefit
from the multi-modal conversation and perform keypoint
localization accurately.

CLIP 
Image

[0.406,0.156]

CLIP 
Text

Keypoint-
Agnostic 
Heatmap 

Head
The nose is 
the central…

Figure 3. Illustration of the CLIP-based keypoint localization.

3.4. Baseline: CLIP-based Keypoint Localization

Another potential way to utilize keypoint description to
guide localization is to adopt vision-language model such
as CLIP [22]. Different from LLM, CLIP aligns the image
and text feature space through millions of image-text pairs,
so that we can extract text feature and use it to guide im-
age feature extraction in conventional localization method.
Therefore, we also propose a simple CLIP-based keypoint
localization baseline to compare with LocLLM, with the
aim to indicate that LLM is important in utilizing keypoint
description for localization.

As shown in Fig. 3, we adopt CLIP image and text en-
coders to extract corresponding features from input image
and text, which can be denoted as Fv and ft. A text-
conditioned feature map can be obtained by element-wise
multiplication above two features, i.e., F t

v = Fv⊙ft, which
is sent to a keypoint-agnostic head to estimate correspond-
ing heatmap. Note that the proposed baseline is different
from CLAMP [42], which also adopts CLIP to locate key-
points. CLAMP only uses text to enhance the feature, and
still uses n-channel heatmap head to estimate n heatmaps
defined by training data. Therefore, it cannot be used to
locate novel type keypoints that are out of training set. In
contrast, the proposed CLIP baseline introduces the text-
conditioned feature and keypoint-agnostic head to locate
keypoint, thus is not limited to the fixed keypoint set in
training set. Performance of this baseline is tested in Sec. 4.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct experiments on different datasets, including
image-text pair dataset CC3M [24], 2D human keypoint
localization datasets COCO Keypoint [16], MPII [30] and
HumanArt [8], and 3D human keypoint localization dataset
Human3.6M [7].

Filtered CC3M [24] is constructed by LLaVA [24] and
is the widely adopted visual instruction tuning dataset. It
contains 595K image-text pairs. We adopt this dataset for
the first stage training of LocLLM.

COCO Keypoint [16] contains 64K images of 270K per-
sons labeled with 17 keypoints. Its train set contains 57K
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images, 150K persons. The val set contains 5K images,
6.3K persons is used for evaluation. We adopt this dataset
to construct 2D localization-based instruction conversation
to train LocLLM at the second stage.

Human3.6M [7] is a large scale indoor benchmark for
3D human keypoint localization, which consists of 3.6 mil-
lion images from 4 camera views. Following the standard
protocols, We adopt subjects 1, 5, 6, 7, 8 to construct 3D
localization-based instruction conversation to training Lo-
cLLM at the second stage and test model on subjects 9, 11.
Besides above datasets, we further evaluate the generaliza-
tion ability of LocLLM on other human keypoint localiza-
tion datasets, e.g., MPII [30] and HumanArt [8].

We follow the standard evaluation metric to report per-
formance on each dataset. We report PCKh@0.5/0.1 on
MPII and mAP on other 2D datasets. For 3D human key-
point localization, we report the Mean Per Joint Position
Error (MPJPE) to evaluate the error of each method.

4.2. Implementation Details

Model Architecture. We adopt ViT-L/14 as visual encoder,
which is pre-trained with DINOv2 [21] weights. For pre-
trained LLM, we adopt an instruction-tuned model vicuna-
7B [4].The projection layer is a single fully connection
layer. The LoRA modules are inserted into the q and v of
each self-attention layer of both visual encoder and LLM,
with a hidden dimension r = 8.

Training Details. AdamW is adopted as the optimizer.
In the first stage, the model is trained for 1 epoch with a
batch size of 128 and weight decay of 0.0. After a warm-up
period of 200 steps, the learning rate starts at 0.03 and de-
cays to 0 with the cosine schedule. In the second stage, the
model is trained on COCO Keypoint for 3 epochs for abla-
tion study and 12 epochs for final comparison on 2D human
keypoint localization. For 3D keypoint localization, we fol-
low RLE [11] to train model on mixed Human3.6M and
MPII. The model is trained with a batch size of 64 by gradi-
ent accumulation and weight decay of 0.05. The warm-up
phase consists of 10k steps and the learning rate starts at
5e-4. The input image is resized to 224×224. Note that our
model has only 8.7M trainable parameters, making it feasi-
ble to train with consumer GPUs, e.g., four 24G NVIDIA
3090s.

4.3. Ablation Study

Localization-based Instruction Conversation. We first
analyze each component in constructing localization-based
instruction conversation. Results are shown in Table 2. The
keypoint description is useful to help LocLLM to locate
keypoints. As discussed in Sec.3.2, there are two ways to
represent keypoint coordinates, i.e., discrete location token
and decimal string. As shown in Table 2, we observe that
decimal string is superior to location token. Observing the

Component AP AP50 AP75 APM APL

Keypoint Description

No description 70.8 91.4 78.0 68.0 75.8
With description 72.4 92.4 80.1 69.2 77.4

Keypoint Format

Location token 67.2 91.4 75.9 64.2 71.9
Decimal string 72.4 92.4 80.1 69.2 77.4

Conversation Round

Single 68.9 92.4 76.6 66.2 73.1
Multiple 72.4 92.4 80.1 69.2 77.4

Table 2. Component analysis of localization-based instruction
conversation on COCO val set.

ΦV (·) ΦP (·) ΦL(·) AP AP50 AP75 APM APL

✓ 39.5 77.1 36.2 38.5 40.9
✓ ✓ 70.3 92.3 78.0 67.6 74.4

✓ ✓ 55.1 87.0 60.2 52.9 58.3
✓ ✓ ✓ 72.4 92.4 80.1 69.2 77.4

Only second stage 70.6 92.0 78.9 67.8 75.3

Table 3. Ablation study on parameter-efficient tuning each com-
point of LocLLM on COCO val set.

loss we can conclude that introducing location token into
LLM requires to retrain the embedding layer, which is hard
to learn from a small scale dataset.

We also investigate the effectiveness of conversation
round. Training LocLLM with single-round conversation
achieves 68.9 AP on COCO val set, this can be im-
proved to 72.4 AP when adopting a multi-round conversa-
tion paradigm during training. This indicates that providing
more examples can help the model to perform better on hu-
man keypoint localization task.

Paramter-Efficient Tuning. The way of tuning the
LLM is also important to the final performance. Due to the
limited GPU resource and annotation, we could not fine-
tune the whole model. Therefore, we insert some leanable
parameter modules into the model to conduct parameter-
efficient tuning. This experiment investigates the effects of
insert locations of learnable parameter module to the per-
formance of LocLLM. As shown in Table 3, only training
projector layer cannot learn much information from the data
and performs badly on COCO val set. Inserting learnable
module into either visual encoder or LLM can both substan-
tially improve the localization performance. Among them,
we find that tuning both visual encoder and LLM achieves
the best performance.
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Method AP AP50 AP75 APM APL AR

Heatmap-based

SimplePose [37] 74.4 92.6 82.5 71.5 79.2 77.6
HRNet [26] 76.8 93.6 83.6 74.0 81.5 79.6
SimCC [15] 76.5 93.2 83.1 73.6 81.5 79.7
ViTPose [38] 77.4 93.6 84.8 74.7 81.9 80.2

Regression-based

DeepPose [30] 53.8 82.6 59.2 52.2 57.3 66.8
RLE [11] 74.0 91.5 81.6 70.9 78.5 76.8

Language-based

CLIP baseline 73.1 92.5 81.3 70.3 77.4 76.5
Ours (LocLLM) 77.4 94.4 85.2 74.5 81.8 80.6

Table 4. Comparison with other methods on COCO Keypoint val
set in 2D keypoint localization. All results are obtained by evalu-
ating the official model weights provided by the authors using GT
bbox without flip test.

Method Eat Pose Sit Wait Walk Avg

Sun et al. [27] 54.2 53.1 71.7 53.4 47.1 59.1
PoseNet [18] 50.1 46.8 61.9 49.9 41.8 53.3
Sun et al. [28] 49.5 43.8 58.9 47.8 38.9 49.6
RLE [11] 44.5 43.1 59.2 44.1 37.5 48.6

Ours (LocLLM) 41.2 40.0 53.6 41.8 37.8 46.6

Table 5. Comparison with other methods on Human3.6M bench-
mark in monocular 3D keypoint localization.

4.4. 2D/3D Human Keypoint Localization

This section demonstrates that LLM can perform well on
conventional keypoint localization tasks, including 2D hu-
man pose estimation and 3D human pose estimation. We
compare LocLLM with recent methods on COCO Keypoint
for 2D keypoint localization and Human3.6M for 3D key-
point localization. Results are shown in Table 4 and Table 5.

We first compare LocLLM with other methods in 2D hu-
man pose estimation task and report performance on COCO
Keypoint val set. As shown in Table 4, existing 2D hu-
man pose estimation methods can be divided into heatmap-
based method: SimplePose [37], HRNet [26], SimCC [15]
and ViTPose [38], and regression-based methods, includ-
ing: DeepPose [30] and RLE [11]. Our method can be
viewed as a language-based method that utilize text key-
point description to locate keypoint position, therefore we
also report the performance of CLIP baseline in Fig. 3. As
shown in Table 4, our method achieves superior perfor-
mance on COCO val set, which is comparable to recent
SoTA methods such as ViTPose and RLE. With a few learn-
able parameters (8.7 M), LocLLM can achieve comparable
performance with recent SoTA methods.

In Table 5 we further demonstrate that LocLLM can
perform 3D keypoint localization in monocular RGB im-
age, which is rarely exploited by previous MLLM methods.
Benefited by the decimal string representation of keypoint
coordinates, LocLLM can be easily extended to 3D key-
point localization by simply adding a depth dimension in
outputs. We follow RLE [11] to conduct experiments and
compare with previous methods. As shown in Table 5, Lo-
cLLM achieves superior 3D keypoint localization perfor-
mance, indicating its capacity in depth understanding.

4.5. Cross Dataset Generalization

This section aims to evaluate the generalization ability of
LocLLM on locating keypoint for unseen human pose from
other datasets. We conduct cross dataset validation to test
LocLLM trained on COCO on various different human
pose estimation benchmarks such as Human-Art [8] and
MPII [30]. The results are shown in Table 6.

Human-Art is a benchmark that contains human pose in
both natural scenes such as sports or outdoor, and artifi-
cial scenes including cartoon, digital art, ink painting and
etc. It is suitable to evaluate the generalization ability of
keypoint localization methods. As shown in Table 6, we
compare LocLLM with previous conventional keypoint lo-
calization methods in Table 4. Conventional localization
methods achieves promising performance on COCO, but
suffer a large performance drop on Human-Art. For exam-
ple, ViTPose achieves 77.4 AP on COCO, but only obtains
53.8 AP on Human-Art. In contrast, our method achieves
64.8 AP on Human-Art, significantly better than compared
methods. This indicates the superior generalization ability
of our method in cross dataset validation.

4.6. Novel Keypoint Localization

We finally show that LocLLM can even locate novel type of
keypoint that are never seen during training, to demonstrate
its superior generalization ability. Existing methods encode
the keypoint prior into the network architecture, making
them hard to generalize to unseen keypoints. Our LocLLM
is not subject to this restriction and can locate novel type of
keypoints by referring to text descriptions.

To verify this claim, we conduct two experiments on
COCO Keypoint and MPII. For the first experiment, we re-
move 4 keypoints (right elbow, left wrist, left knee, right
ankle) from total keypoints (17) during training and do not
apply any data-augmentation. In other words, 13 types of
keypoints are used for training, and the model is tested to
detect 17 keypoints. The results are shown in Table 7, where
“Full keypoint” uses all keypoints for training, hence is re-
garded as the upper bound. By removing 4 types of keypoint
from training, the performance of CLIP basline deteriorates
greatly, e.g., from 73.1 to 43.1. In contrast, our LocLLM
can still achieve a reasonably good performance.
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Method
Human-Art MPII

AP AP50 AP75 APM APL AR Shou. Elbo. Hip Knee Mean Mean0.1

SimplePose [37] 48.4 73.0 50.7 27.2 50.7 52.8 93.7 85.6 85.4 81.6 84.7 22.2
SimCC [15] 51.7 75.2 54.8 26.2 54.3 57.0 92.2 84.1 82.8 80.5 83.2 28.5
HRNet [26] 53.4 76.3 56.5 30.4 55.9 57.5 93.4 86.1 85.0 81.9 85.8 26.9
ViTPose [38] 53.8 77.9 57.4 31.4 56.6 58.7 94.5 88.2 87.3 85.0 86.9 25.8

CLIP baseline 49.3 75.7 51.8 27.7 52.0 54.5 95.5 88.8 87.5 84.7 87.1 25.0
Ours 64.8 87.4 70.4 40.9 67.4 69.3 96.1 90.3 89.8 88.0 89.3 33.4

Table 6. Comparison with other methods on cross dataset generalization on Human-Art and MPII. All models are trained on COCO
Keypoint train set. We only evaluate the accuracy of keypoints that appear in COCO Keypoint.

Method AP AP50 AP75 APM APL

Full keypoint 72.4 92.4 80.1 69.2 77.4

CLIP baseline 43.0 89.2 28.7 42.0 44.9
Ours 67.1 91.2 76.3 64.9 71.1

Table 7. Results of removing 4 keypoints from training and testing
on COCO Keypoint val set.

Method
Seen Unseen

Shou. Elbo. Hip Knee Pelvis Neck

CLIP baseline 95.5 88.8 87.5 84.7 1.7 5.6
Ours 96.1 90.3 89.8 88.0 43.6 36.9

Table 8. Comparison with other methods on novel keypoint local-
ization on MPII.

For the second experiment, we use all 17 keypoints of
COCO Keypoint for training, then test the model on another
dataset with different keypoint definition, i.e., the MPII
dataset. Note that, the Pelvis and Neck keypoints in MPII
are not seen by model trained on COCO Keypoint. We
hence also report the performance on them. As shown in Ta-
ble 8, our LocLLM achieves 43.6 accuracy on Pelvis, which
is much better than the CLIP baseline with only 1.7 accu-
racy. In Fig. 4 we show some examples on novel keypoint
localization. It can be observed that our method can accu-
rately locate novel keypoints with the help of text descrip-
tion. Previous method fails to locate them and is confused
with similar keypoints which are appeared during training.

5. Conclusion and Discussion
In this paper we introduce the first LLM-based keypoint lo-
calization model named LocLLM. Different from previous
work that encodes keypoint priors into the model architec-
ture and implicitly learn keypoint relationship from training
data, LocLLM explicitly encodes keypoint type and rela-
tionship through language description, and utilizes the pow-
erful reasoning capability of LLM to locate keypoints. We

The left knee is the joint
connecting the left thigh
and the left lower leg,
typically situated in the
middle of the left leg, it
is located between the
left hip and left ankle.

Novel keypoint description CLIP baseline LocLLM w/o des. LocLLM

The pelvis is the bony
structure that forms the
base of the spine and
connects the torso to the
lower body, typically
located between the left
hip and right hip.

The neck is the part of
the body connecting the
head to the torso,
typically situated
between the shoulders.

Figure 4. Localization results of three novel keypoints which are
not seen during training (denoted by blue star in the first column
image). It can be observed that CLIP baseline matches each novel
keypoint to a similar keypoint in the training set, e.g., it locates the
left knee to right knee, pelvis to right hip, and neck to nose. In
contrast, our LocLLM can locate novel keypoint accurately.

conduct experiments on different localization tasks to show
the superior generalization ability of LocLLM. As shown in
experiments, LocLLM performs well in detecting keypoints
from unseen human pose, and locating novel type of key-
points unseen during training. We hope this work inspire
future research on generalizable keypoint localization.

Our method can be improved in several aspects. First,
the effectiveness of LocLLM relies on accurate textual de-
scriptions. The effectiveness of LocLLM on keypoints that
are hard to be described in language remain to be explored,
such as facial landmark detection. Second, the huge param-
eters of LLM require considerable GPU resource to process
a large batch of images, hence degrades its efficiency.
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