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Abstract

Long-tail class incremental learning (LT-CIL) is de-
signed to perpetually acquire novel knowledge from an im-
balanced and perpetually evolving data stream while en-
suring the retention of previously acquired knowledge. The
existing method only re-balances data distribution and ig-
nores exploring the potential relationship between different
samples, causing non-robust representations and even se-
vere forgetting in classes with few samples. In this paper,
we constructed two parallel spaces simultaneously: 1) Sub-
prototype space and 2) Reminiscence space to learn robust
representations while alleviating forgetfulness. Concretely,
we advance the concept of the sub-prototype space, which
amalgamates insights from diverse classes. This integration
facilitates the mutual complementarity of varied knowledge,
thereby augmenting the attainment of more robust represen-
tations. Furthermore, we introduce the reminiscence space,
which encapsulates each class distribution, aiming to con-
straint model optimization and mitigate the phenomenon
of forgetting. The tandem utilization of the two parallel
spaces effectively alleviates the adverse consequences as-
sociated with imbalanced data distribution, preventing for-
getting without needing replay examples. Extensive exper-
iments demonstrate that our method achieves state-of-the-
art performance on various benchmarks.

1. Introduction
Most deep learning literature focuses on learning a model
on a fixed data stream [41, 42]. However, data in the real
world is not static and even changes its distribution over
time. Consider a scenario where a model trained on old
data needs to be fine-tuned on new data, but the old data
are unavailable due to privacy concerns; such fine-tuning
will significantly degrade the model’s performance in older
data, known as catastrophic forgetting.

Continual learning endeavors to alleviate catastrophic

*Corresponding author.

Eyes

Body

Tail

Adequate data

𝐿3

Paw

Rare data

𝐿1

𝐿𝑡

Sub-prototype Place

Construct

Re-sample
𝐿2

Re-sample

Construct

Figure 1. The sub-prototype space integration knowledge from
different classes, and when the space is constructed, the features
re-sampled from the space less affected by imbalanced data.

forgetting by maintaining a balance between the plasticity
and stability of the model, which ensures that old knowl-
edge remains preserved (stability to changes), while also
accommodating the acquisition of new incoming data (plas-
ticity to adapt) [24]. In the real world, most deep learning
models need to tackle the forgetfulness caused by a contin-
uous data stream. For this purpose, several works have been
proposed to address catastrophic forgetting in many sce-
narios, including image classification [7], object detection
[36], instance segmentation [10], and even domain adapta-
tion [40]. Unfortunately, those continual learning methods
assume the data distribution is balanced in different tasks.
However, real-world data is often imbalanced, usually in a
long-tailed distribution.

The deep learning on long-tailed data is often dominated
by the majority classes (classes with amount samples), re-
sulting in poor performance of the minority classes (classes
with few samples) [46]. To tackle this problem, existing
work attempts to expand data or change the network struc-
ture [35] and so on, both achieved good results. Surpris-
ingly, continual learning on imbalanced data has yet to re-
ceive widespread attention. Due to the prevalence of im-
balanced data distributions in the real-world, deep learning
models can continually learn without catastrophically for-
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a) b)

Figure 2. Illustration of long-tail class incremental learning (LT-
CIL) scenarios. a) is Ordered LT-CIL and b) is Shuffled one.

getting that imbalanced data is more relevant to real-world
needs. The paper [22] proposes long-tail class incremen-
tal learning and adds the balance training loss to the existed
CL methods to tackle the LT-CIL. However, it ignores ex-
ploring the potential relationship between different classes,
and there is still severe forgetting in classes with few sam-
ples. To tackle this problem, we first point out that imbal-
anced data distribution increases the difficulty of continual
learning. Toward this end, our work aims to overcome two
inevitable obstacles of LT-CIL: 1) catastrophic forgetting:
forgetting the knowledge of old classes while learning the
new, due to the data in different tasks always being differ-
ent. In this work, we nickname it inter-task imbalance,
and 2) long-tailed data distribution: in the same task, differ-
ent classes have different sample sizes, and the distribution
shows the imbalance, calling intra-task imbalance.

The existing method captures the hidden properties be-
tween different classes in the mini-batch to alleviate intra-
task imbalance. Thus, although there is still a large gap be-
tween different classes, there are still shared sub-prototypes
(For example, most mammals have shared characteristics
such as claws, eyes, and noses). Our work considers learn-
ing different sub-prototypes as basis vectors to construct a
sub-prototype space shared by different classes, as shown
in Figure 1. With the constructed sub-prototype space, we
can amalgamate insights from diverse classes. This integra-
tion facilitates the mutual complementarity of varied knowl-
edge, thereby augmenting the attainment of more robust
representations and mitigating the intra-task imbalance. At
the same time, we propose a reminiscence space to store the
data distribution when the number of tasks is increasing, ex-
pand the sub-prototype space to accommodate new knowl-
edge while trying to keep the original space unchanged, and
the newly constructed sub-prototype space has aggregated
knowledge from different tasks at the same time, which alle-
viates the forgetfulness of previously learned thus alleviates
the inter-task imbalance. In this way, the proposed method
overcomes intra- and inter-task imbalance simultaneously.
Our main contributions can be summarized as follows:
• We propose a novel and effective learnable sub-prototype

space that simultaneously mitigates intra-task and inter-
task imbalances in long-tail class incremental learning.

• We propose a reminiscence space to store data distribu-
tion, which prevents the model from collapsing under the
influence of new knowledge and forgetting the learned old
knowledge during training.

• We perform extensive experiments to demonstrate the ef-
fectiveness of our method, all achieving state-of-the-art in
diverse settings.

2. Related Work
2.1. Long-tailed representation learning

The long-tailed data distribution is an enduring and perva-
sive problem in machine learning [12]. Long-tailed dis-
tribution is where a few categories (also called majority
classes) contain many samples, while most categories (also
called minority classes) have only a tiny number of sam-
ples. Such datasets make the deep learning network per-
form well in the majority classes and inefficiently in the
minority classes, with a significant drop in overall recog-
nition accuracy [26]. The current long-tailed representa-
tion methods mainly consist of Class Re-balancing [16, 37],
Information Augmentation [5, 38] and Module Improve-
ment [15]. Class Re-balancing methods seek to balance
the samples of different classes during model training, but
even if we balance them along one dimension, they can be-
come unbalanced in another dimension [19]. Information-
Augmentation-based methods seek to introduce additional
information into model training so that the model perfor-
mance can be improved in minority classes [8]. Besides
Class Re-Balancing and Information Augmentation, exist-
ing methods also try to expand the network, such as chang-
ing the feature extractor, enhancing the model classifier, and
proposing a new structure, but this will increase the number
of parameters of the model [35].

2.2. Continual learning

Continual learning aims to continuously learn new knowl-
edge from a never-ending data stream. The main challenge
of continual learning is to learn without catastrophic for-
getting: with the incoming new data, the model perfor-
mance should not significantly degrade on the past learned
tasks [27]. Current solutions for continual learning can
be divided into three main categories: regularization-based
methods [2, 20, 30, 45], replay-based methods [11, 33], and
architecture-based methods [9, 25].

Regularization-based methods focus on weight regular-
ization by estimating and preventing the important network
weights from changing. Some methods add well-designed
regularization terms into the loss function to constrain the
update of the model parameters [30]. Some methods con-
strain model changes by the gradient [13, 23]. The most
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Figure 3. The overall framework of our method is composed of the sub-prototype place and reminiscence space. Specifically, sub-prototype
space consists of independent sub-prototype basis vectors, which integrate of different classes and mitigate the data imbalanced distribution.
The reminiscence space regularizes the whole model with the feature distribution of each class.

popular method is knowledge distillation which constrains
the new model as similar as possible to the old [39]. The dif-
ference between Regularization-based methods is the way
to compute the importance of the parameters and constraints
on the model can be applied directly to the weights, pre-
dicted probabilities, or gradients.

The replay-based method attempts to store old data for
replay. Most of these methods save the raw data directly
and adopt it alongside the current data in the learning of new
tasks [33]. The difference between saving-raw-data meth-
ods is how to choose the samples, and there is random prob-
ability method [17] and meta-learning methods [14, 28]. In
addition to storing real data, some works try to generate
samples by generating models by saving the distribution of
old data, which takes data privacy into account [6].

Architecture-based methods tend to continually extend
the network structure for different tasks of incremental
learning [25, 32, 43]. Existing methods have tried to make
the model have multiple classifiers. However, as the incre-
mental learning task continues to increase and the demands
on the model become higher, it is clear that continually ex-
tending the model structure is highly impractical.

However, these methods barely consider imbalanced
data distribution, which can cause a drop in overall accu-
racy by not paying attention to the performance degrada-
tion of the minority classes during continuous learning. Our
proposed method explores relationships between different

classes, concerns the more severe forgetting in the minority
classes, and takes advantage of the rich knowledge of the
majority classes to assist in the minority classes learning,
solving inter-class forgetting and intra-class data imbalance,
enabling continual learning on imbalanced data.

3. Method
Our goal is to enable the network to learn multiple tasks se-
quentially with imbalanced data streams. In this section, we
present the problem definition of long-tail class incremental
learning. After that, we detail the proposed method.

3.1. Preliminary

Typically, we consider a supervised class incremental learn-
ing setting where a model needs to learn T different tasks
in turn. Each task contains different classes, and the classes
between tasks are disjoint: C0 ∩ C1 ∩ . . . ∩ CT = ∅ and
Ct is the class set of task t. At each task t ∈ {1, . . . , T },
(x, y) ∈ Dt denotes the training sample, where x is a sam-
ple in the input space X , y is its corresponding label and
D is sample space. Different from the previous class incre-
mental learning where the samples per class are equal, long-
tail class incremental learning has imbalanced data distri-
bution in each task, which means samples per class are un-
equal. The imbalanced distribution is parameterized by ρ,
which is the ratio between the most and least sample size.
For example, when ρ = 0.01, the most class sample size is
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100 times to the least. Meanwhile, when ρ = 1, the most
class sample size equals the least, which means the balanced
data distribution. Given a random imbalance ratio ρ, after
subjecting the training data to an imbalanced distribution,
we follow the existing work [22] to propose two different
LT-CIL scenarios:
• Ordered LT-CIL. The dataset is sequentially divided into

different tasks, as shown in Figure 2 a). There is an im-
balanced distribution over the complete dataset, and the
total number of samples within the tasks is decreasing.

• Shuffled LT-CIL. The majority and minority classes ran-
domly belong to any task. While there is still an imbal-
anced distribution in each task, the total number of sam-
ples from different tasks shows a random trend as shown
in Figure 2 b).
To facilitate analysis, we divide the network into two

parts: a feature extractor and a unified classifier. Specifi-
cally, the feature extractor fθ : X → Z , parameterized by
θ, maps the input x into a feature vector z = fθ(x) ∈ Rd

in the deep feature space Z; the unified classifier gφ : Z →
RC1:t

parameterized by φ, produces a probability distribu-
tion gφ(z) as the prediction for x. The model has to classify
all seen classes at any point in training.

Our proposed method comprises two parallel spaces: the
sub-prototype space and the reminiscence space. In the
next, we present the specific definitions of these two spaces.

3.2. Sub-prototype space

The proposed sub-prototype space comprises two primary
processes: space construction and feature re-sampling.

3.2.1 Space construction

We propose a sub-prototype space (SS) with independent
sub-prototype basis vectors, which are obtained by learn-
ing from the training data, thus constructing the differ-
ent semantic information of the subspace to alleviate both
intra- and inter-task imbalance. The main framework is
shown in Figure 3. Assume the feature extractor output is
zt = fθ(x

t) ∈ RB×D, where x is the input images, B is
the batch size and D is the feature dimension and t is the
task index. The SS takes the intermediate features zt as in-
put and then re-samples the features in sub-prototype space
using sub-prototype basis vectors:

z̃t = SS (zt) ∈ RB×D. (1)

Specifically, sub-prototype space consists of M t differ-
ent basis vectors in task t. The number of basis vectors
increases by n when a new class is to be learned. Thus
M0 = n×N0 and M t = M t−1 + n×N t(t ≥ 1), where
N t denote the number of new classes in task t. When it
comes to learning the new task t, the basis vectors can be
represented as:

Lt = [Lt−1; l1, . . . , ln] , (2)

where ln ∈ RD. When learning a newly arriving task t, the
dimension of the sub-prototype space is Lt ∈ RMt×D. To
construct the sub-prototype space, independent basis vec-
tors must be learned from the training data. When a new
set of learned features zt is input, sub-prototype space first
projects the features into the existing basis vectors, queries
the correlation between the input features and the basis vec-
tors using the query function Q and then obtains correlation
matrix At between the sub-prototype basis vectors and the
input features.

At = Q(zt, Lt) = [aij ]i∈B,j∈Mt , (3)

where At ∈ RB×Mt

, aij indicates the correlation factor
between the ith feature and the jth sub-prototype basis vec-
tor, we regard the correlation factor as the component of the
feature projection to this basis vector. According to the cor-
relation matrix At, the input features can be projected into
the space. Note that since the number of basis vectors in
the space is larger than the number of classes, to prevent the
projection of features from spreading out too much to get
the better sub-prototype, we only select the most relevant
k basis vectors with correlation factor in the actual projec-
tion process. At the same time, due to the imbalanced data
distribution within the task, the selection based on the corre-
lation factor may lead to a part of the basis vectors being se-
lected frequently while others are selected too infrequently
or never selected, resulting in the space being skewed to-
wards a certain dimension, so we add the controlling factor
H = [ηi]i∈Mt . During the training process of each task, the
number of selected times of vector i is counted as ni, and
the controlling factor ηi = e−ni . Thus, the actual correla-
tion matrix At is:

At = Q(zt, Lt) = [aij ]i∈B,j∈Mt

aij =

{
aij if aij ∈ [H ·A[i :]]topk

0 else
(4)

After obtaining the correlation matrix, the projection of
the input features in the sub-prototype space can be ex-
pressed as:

Z̃ = At Lt
⊤ =

[
z̃1, · · · , z̃B

]⊤
, (5)

Note that the sub-prototype basis vectors in the space are
trainable, and in order to keep the semantic information be-
fore and after the feature projection consistent, we use the
L2 Norm to constrain the updating of the basis vectors:

Lcon = ∥Z̃ − Z∥2, (6)
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Therefore, the loss in the construction phase consists of two
parts: the classification loss based on supervised informa-
tion Lcls(ϕ;x, y) = Lce(ϕ(x), y), where Lce is the cross-
entropy loss and the construction loss Lcon. Thus the entire
training loss is:

L1 = Lcls + λ1Lcon. (7)

In the construction phase, we use cosine similarity as the
query function. When the training is over, we simultane-
ously construct a sub-prototype space of different classes
and a learned model corresponding to the task. In the re-
sampling phase, we use the constructed sub-prototype space
to fine-tune the model and mitigate the impact of imbal-
anced data on the model.

3.2.2 Feature re-sampling

In the feature re-sampling phase, the sub-prototype space is
fixed, and only the feature extractor fθ and the classifier gφ
are trained. When the training data stream re-pass through
the model and get the corresponding features zt, firstly, we
re-calculate the correlation factor between the features and
the basis vectors in the sub-prototype space. For a random
feature, based on the magnitude of the correlation factor,
we select the top two most correlated directions: ltop1

, ltop2

and regard it as the re-sampling base direction. Then, com-
bined with the remaining h basis vectors randomly selected
to generate the augmentation features in the sub-prototype
space. Since the imbalanced distribution within the task, the
number of re-sampled features is considered to be dynami-
cally adjusted according to the frequency of sample occur-
rences, the number of ith class in task t correspondingly
re-sampled features N t

re,i = N t
max−N t

i +10, where N t
max

indicates the max sample size in task t and N t
i is the sample

size of ith class in task t.

ẑ = ltop1
+ ltop2

+ I

[
Ch
Mt−2

h∑
i=1

li

]
, (8)

where
[
Ch
M−2

∑h
i=1 li

]
denotes all the combinations of any

h permutations of the remaining M t − 2 basis vectors, ex-
cluding the dimensions of the top two correlation factors, C
is combination and I is indicator matrix consists of 0 and 1
with the same dimension of combinations. Thus, the fea-
tures through the classifier become Znew =

[
Z, Ẑ

]
and

the re-sampling features have the same label as the origi-
nal feature. Thus, the loss in the re-sampling phase is the
classification loss based on supervised information with a
cross-entropy loss: Lf (ϕ;x, y) = Lce(Znew, Ynew).

3.3. Not to forget: Reminiscence space

The number of sub-prototype basis vectors in the sub-
prototype space increases with the number of tasks, but in

the construction phase, whether existing or new, all the basis
vectors need to be trained at the same time, if there are no
constraints, the existing basis vectors will undoubtedly for-
get what has been learned before. To prevent the previously
constructed space from being corrupted by the new knowl-
edge without storing any data, we propose the reminiscence
space to alleviate forgetfulness.

Specifically, when each task is trained over, we calcu-
lated the class feature centroid µk = 1

nk

∑nk

i=1 fθ(xi) and
the corresponding covariance matrix Σk, where each ele-
ment is the covariance between the two features in the same
class. We use the class-specific statistics to form a mul-
tivariate normal distribution Nk = N (µk,Σk) for each
class. Meanwhile, we calculated the mean of the correla-
tion matrix in sub-prototype space for each class:

Ak =
1

n

∑
{△k|y∈ class k}

△k, (9)

where △k = At [ak:] indicates the correlation matrix be-
tween class k and all basis vectors in space. Thus, we
form the reminiscence space for class k as Sk =

(
Nk,Ak

)
.

To prevent the previously constructed sub-prototype space
from being corrupted by the new knowledge while train-
ing a new task, we perform the distillation loss on the sub-
prototype basis vectors using Ak. Since the number of basis
vectors in the sub-prototype space corresponding to differ-
ent tasks is different, the dimensions of the correlation ma-
trix stored in the reminiscence space are different, so we
need to mask the dimension of redundancy when distilla-
tion:

Ldis1 =

Nt∑
i=1

∥∥Ai −Q (µi, Lt) [: Ii]
∥∥
2
, (10)

where Ii indicates the dimension of Ai.
To maximize the effectiveness of our proposed method,

we sample features from the reminiscence space ṽk ∼ Sk

and compute the cross-entropy loss of the model: Ldis2 =
Lce(ṽ

k, k). Thus, the two phases can be briefly described:
Space construction: The sub-prototype space is con-

structed while training the model. The training loss is:

L1 = Lcls + λ1Lcon + λ2Ldis1. (11)

Feature re-sampling: The feature extractor and classi-
fier are fine-tuned, and the total training loss is:

L2 = Lf + λ3Ldis2. (12)

4. Experiments
4.1. Experiments Setttings

Datasets. Following previous work [22], we perform our
experiments on CIFAR100 and ImageNet-Subset datasets
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Table 1. Results on Shuffled LT-CIL. We compare our method with Baselines and previous methods.

Methods Memory Size

Shuffled LT-CIL
CIFAR100 ImageNet-Subset

ρ = 0.01 ρ = 0.05 ρ = 0.1 ρ = 0.01 ρ = 0.05 ρ = 0.1
5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks

Baseline 0 11.3 7.3 13.6 8.1 13.9 8.2 12.9 11.2 15.3 13.1 16.7 12.7

LDAM[4]
0

11.5 11.4 15.2 14.3 19.8 18.2 15.4 15.2 19.4 19.0 22.6 22.1
BalPoE[1] 18.9 17.6 20.5 20.0 26.1 25.4 17.8 17.3 22.6 21.4 25.3 24.3
MDCS[47] 18.2 16.3 19.5 19.1 24.3 23.7 16.9 16.2 22.4 21.4 25.6 24.1

EWC[18]

0

28.7 25.3 33.1 31.9 40.6 39.7 30.8 30.4 35.6 34.7 43.8 43.6
LwF[21] 29.3 25.1 34.3 33.5 41.2 41.0 31.6 31.0 36.1 35.4 44.4 43.9
SDC[44] 32.7 29.6 35.2 34.1 42.9 42.3 33.9 33.4 39.4 38.1 45.9 45.1
PASS[49] 33.6 31.8 37.9 35.5 43.2 42.1 34.2 33.8 39.9 38.5 46.2 45.7
IL2A[48] 35.1 36.2 43.9 39.4 50.2 49.3 40.5 39.2 44.2 43.7 53.4 52.7
SAVC[34] 34.4 32.3 38.3 35.9 43.1 42.0 35.3 34.9 40.1 39.6 48.3 47.6

iCaRL[29]

1000

31.5 30.5 40.2 39.1 46.5 45.9 35.4 34.6 42 41.3 48.2 47.4
TwF[3] 34.2 33.8 42.3 42.1 49.3 48.7 38.6 38.1 43.6 43.3 52.2 51.7

SCoMMER[31] 35 35.2 43.4 42.3 49.9 49.1 39.3 38.9 44.9 44.1 52.9 52.6
LUCIR+LWS[22] 37.2 36.9 45.2 45.0 51.9 51.2 43.1 42.3 47.3 47.1 54.7 54.1

Ours 0 40.2 39.4 47.3 47.0 53.6 53.1 45.3 44.8 49.2 48.9 56.2 55.4

Table 2. Results on Orderd LT-CIL. We compare our method with Baselines and previous methods.

Methods Memory Size

Ordered IL-CIL
CIFAR100 ImageNet-Subset

ρ = 0.01 ρ = 0.05 ρ = 0.1 ρ = 0.01 ρ = 0.05 ρ = 0.1
5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks 5 tasks 10 tasks

Baseline 0 16.5 15.4 18.9 15.3 20.1 15.1 20.3 18.3 21.7 18.9 23.5 21.1

LDAM[4]
0

20.1 19.4 24.8 23.1 33.8 33.0 19.7 18.6 27.3 26.4 35.7 34.6
BalPoE[1] 24.9 24.0 28.3 27.5 37.3 36.1 23.5 23.0 30.4 28.5 36.2 35.6
MDCS[47] 24.3 23.7 27.9 27.1 37.0 35.4 23.1 22.8 30.1 28.3 35.9 35.5

EWC[18]

0

32.1 31.6 36.7 36.1 43 42.1 35.7 31.2 36.4 36.1 46.7 46.1
LwF[21] 32.8 31.9 36.4 35.8 43.5 42.7 36.1 33.4 36.7 35.7 47.1 46.5
SDC[44] 34.9 34.5 39.2 38.8 45.7 45.0 43.2 42.0 44.5 44.1 48.1 47.2
PASS[49] 35.8 35.2 39.8 39.3 46.1 45.5 43.9 42.6 45.0 44.7 48.9 47.3
IL2A[48] 40.6 40.9 43.2 42.9 52.3 52.0 47.2 46.9 50.6 50.4 53.7 53.4
SAVC[34] 36.1 35.8 40.0 39.6 46.7 46.2 45.5 45.0 46.8 46.3 50.6 49.9

iCaRL[29]

1000

36.4 36.2 40.2 39.4 48.7 48.5 43.6 42.7 47.9 47.5 51.6 51.3
TwF[3] 40.1 39.8 42.7 42.1 51.1 51.0 46.1 45.4 49.4 48.9 52.8 52.3

SCoMMER[31] 41.2 41.0 43.8 42.5 52.9 52.4 47.0 46.5 51.1 50.6 54.3 53.6
LUCIR+LWS[22] 42.3 42.1 45.7 45.3 54.2 53.4 50.3 49.6 53.1 52.7 56.2 56.0

Ours 0 44.8 44.3 47.8 47.4 54.6 54.3 52.7 52.6 55.7 55.2 57.4 57.2

with 100 classes. For both datasets, we split them into dif-
ferent settings: 50 + 5 × 10, 50 + 10 × 5. For example,
50 + 5 × 10 means the first task has 50 classes and has 5
incremental phases, each incremental phase has 10 classes.
At the same time, we divide the dataset into Ordered LT-
CIL and Shuffled LT-CIL according to different imbalanced
rate.

Implementation Details. For both datasets, our baseline
feature extractor is ResNet18. The training batch size is 64
with 121 epochs in the construction phase and 81 epochs
in the re-sampling phase. The learning rate is 0.001 and
will be reduced by a factor 10 at every 40 epoch. In our
experiments, n = 2, k = 10 and h = 4. The values of the
hyperparameters are as follows: λ1 = 6 × 10−4, λ2 = 10
and λ3 = 10 . For CIFAR100, the class sample size less
than 100 is the minority class, while for ImageNet-Subset,

class sample size less than 200 is the minority class. For
page limitation, we have placed the sensitivity analysis of
the parameters, and the analysis of the values that need to
be considered in the supplementary material.

Metrics. We use the standard metrics in the continual
learning methods to measure performance: Average Accu-
racy, which calculates all seen classes’ accuracy. Let ai,j be
the accuracy of the model on the testing set of task j after
the model is trained from task 1 to task i, Average Accuracy
can be calculated:

Average Accuracy (AT ) =
1

T

T∑
j=1

aT,j . (13)

Comparison Methods. We compare our method with
the existing methods including both class incremental meth-
ods without replay data: EWC [18], LwF [21], IL2A [48],
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Table 3. Ablation study. The experiment setting is CIFAR100
with 5 incremental tasks and ρ = 0.01.

Components Accuracy
Lcls Lcon Lf Ldis1 Ldis2

a)
√

11.3
b)

√ √
10.4

c)
√ √ √

34.7
d)

√ √ √ √
36.3

e)
√ √ √ √

38.9
f)

√ √ √ √ √
40.2

class incremental methods with replay data: iCaRL [29],
LUCIR+LWS [22], TwF [3], SCoMMER [31], and class
incremental method based on prototype: SDC [44], PASS
[49] as well as the long-tail methods: LDAM [4], BalPoE
[1], MDCS [47] and method for few-shot incremental learn-
ing: SAVC [34]. All comparison experiments use the same
ResNet18 as backbone and for the methods that needs to
store data, the memory size is fixed to 1000.

4.2. Experimental Results

It is noted that the Baseline refers to distillation only, and
the long-tail method is applied directly to the Baseline. We
calculated the average accuracy of all tasks and comparative
results are presented in Table 1 and Table 2.

Shuffled LT-CIL results. The experimental results are
shown in Table 1. When the benchmark is CIFAR100, im-
balance rate 0.01, and 5 incremental tasks, our method ob-
tained an improvement of 3% over the LUCIR+LWS, even
without any replay data. and when increasing the number of
tasks to 10, our method has 2.5% improvement to the best
before. After adjusting the learning rate to 0.05 to make
the training data more, our method also achieves optimal
performance, with 2.1% and 2.0% improvements on the 5
and 10 tasks, respectively. Meanwhile, on the ImageNet-
Subset benchmark, we experimented with the same settings,
and our method achieved the same stunning results, with
a higher accuracy of 2.1% than the previous best method
when the imbalance rate was 0.01 for a total of 5 incremen-
tal tasks. In all other settings, our method achieved the best
performance.

Orderd LT-CIL results. The experiment results are
shown in Table 2. When the benchmark is CIFAR100, the
imbalance rate is set to 0.01 and there are 5 incremental
tasks, our method achieves accuracy 44.8%, 2.5% improve-
ment over the LUCIR+LWS, and when the tasks are ex-
tended to 10, 2.2% improvement over the previous method,
and the improvement also exists under the other settings.
When switching the benchmark to ImageNet-Subset, the
same stunning performance was achieved.

4.3. Ablation Study

In this section, we discuss the effectiveness of each part in
our method. The experiment setting is in Shuffled LT-CIL,
CIFAR100, 5 incremental tasks, and the imbalance rate of
0.01. The results are shown in Table 3. As Table 3 shows,
we can observe that only constructing the sub-prototype
space makes the performance of the original model drop
slightly to 10.4%, but when re-train the model with the
re-sampling features, the performance improves to 34.7%,
which proves what we emphasized in the introduction, that
there exist shared sub-prototypes between different classes,
and with the help of the knowledge integrating, the model
can learn more robust representation. Meanwhile, in order
to prevent the inter-task imbalance from leading to catas-
trophic forgetting, we propose a reminiscence space to store
the feature distribution of each class, and after performing
the constraints on the sub-prototype space and the classi-
fier respectively, the performance of the model improves to
38.9% and 36.3% from 34.7%, which is a good proof of our
effectiveness of the reminiscence space. Finally, by adding
constraints on both the sub-prototype space and the clas-
sifier, the performance improves to 40.2% and obtains the
best results in this setting, which proves that the two-parallel
space is effective to the LT-CIL.

4.4. Further analysis

a） b）

Figure 4. Similarity matrix between models. Experiments were
performed in CIFAR100, Shuffled LT-CIL, T = 5, ρ = 0.01.
Compare the similarity between the models obtained at the end of
each task. a) is the Baseline and b) is our method.

Similarity analysis. In order to better visualize the re-
sults of our method, we calculated the similarity of the mod-
els obtained after different tasks and presented them in the
form of heat maps in Figure 4, a) is the Baseline result, and
b) is our proposed method and experiments were performed
in CIFAR100, Shuffled LT-CIL, T = 5, ρ = 0.01. Since
task 0 is the initial learning task, the model obtained after
task 0 will theoretically have the maximum forgetting rate,
so in the case of distillation only, the similarity with the
model obtained after task 5 is only 0.34, meanwhile, after
adding our proposed two-parallel space, the similarity im-
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proves to 0.41, and the improvement also exists in the other
models which are evident that our method makes the model
retain more knowledge learned before. This accumulation
of similarity eventually leads to a qualitative leap in the per-
formance of our method compared to the baseline.

Figure 5. Accuracy on minority classes. The setting is the
same as the similarity matrix, and in order to make the results
more convincing, we chose methods that require replay data (LU-
CIR+LWS), do not require replay data (IL2A), and method for
long-tail distribution (BalPoE).

Minority classes accuracy. The main issue to overcome
in LT-CIL is the forgetting of the minority classes, it is nec-
essary to focus on the classification performance of the mi-
nority classes separately. We present the minority classes’
experimental results in graphs in Figure 5. Specifically, we
compare the method with replay data (LUCIR+LWS), with-
out replay data (IL2A), and the long-tail method (BalPoE),
and the experiment setting are same as similarity analysis.
Our method is lower than BalPoE and LUCIR+LWS in Task
0 but significantly higher than IL2A. When incremental
tasks are to be learned, the performance degrades because
BalPoE cannot alleviate the catastrophic forgetting. Mean-
while, LUCIR+LWS and IL2A can be stabilized within a
certain accuracy range, but all of them are declining. At the
same time, our method consistently maintains high classifi-
cation performance on the minority classes due to the con-
struction of the sub-prototype space to eliminate the effects
of imbalanced data distribution.

Basis vectors selection frequency ablation study. The
features are reconstructed using basis vectors in sub-
prototype space, and since all majority and minority classes
share these vectors, the rich knowledge of the majority
classes can assist the minority classes in learning a more
robust representation. During the reconstruction, to prevent
some basis vectors from being chosen too frequent, which
would result in tilting of the sub-prototype space in certain
directions, we use a controlling factor to regulate dynami-
cally. We add all basis vectors selection frequency in task 0

a) b)

Figure 6. Basis vectors selection frequency ablation study. The
setting is the same as the similarity matrix, and a) is the frequency
of all class occurrences in task 0, b) is the selection frequency of
all basis vectors in task 0.

to prove that. Figure 6 a) shows the frequency of all class
occurrences in task 0 and b) is the selection frequency of
all basis vectors in task 0 (both are normalized); It is ob-
vious that the basis vector selection has been much more
balanced. Due to the approximate balance within the sub-
prototype space, it can be used to solve the problem caused
by imbalanced data distribution.

5. Conclusion

In this work, we address two fundamental challenges in
long-tail class incremental learning: intra-task imbalance
due to data imbalanced distribution and inter-task imbal-
ance due to forgetting what was learned before during
incremental learning. We propose two parallel spaces:
sub-prototype space, where the sub-prototypes of distinct
classes serve as its basis vectors, and reminiscence space,
comprised of the feature distribution of each class. The sub-
prototype space amalgamates insights from diverse classes.
It facilitates the mutual complementarity of varied knowl-
edge, thereby augmenting the attainment of more robust
representations and mitigating the impact caused by the
imbalanced data distribution. Meanwhile, reminiscence
space adds constraints to the learning process to prevent the
model from catastrophic forgetting. Through the collabora-
tive operation of these two spaces, we significantly allevi-
ate the adverse effects associated with data imbalance and
forgetting. Extensive experiments on different benchmark
datasets demonstrate the effectiveness of our method.
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