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Abstract

Vision-and-language navigation (VLN) enables the
agent to navigate to a remote location following the natural
language instruction in 3D environments. At each naviga-
tion step, the agent selects from possible candidate loca-
tions and then makes the move. For better navigation plan-
ning, the lookahead exploration strategy aims to effectively
evaluate the agent’s next action by accurately anticipating
the future environment of candidate locations. To this end,
some existing works predict RGB images for future envi-
ronments, while this strategy suffers from image distortion
and high computational cost. To address these issues, we
propose the pre-trained hierarchical neural radiance rep-
resentation model (HNR) to produce multi-level semantic
features for future environments, which are more robust and
efficient than pixel-wise RGB reconstruction. Furthermore,
with the predicted future environmental representations, our
lookahead VLN model is able to construct the navigable
future path tree and select the optimal path via efficient
parallel evaluation. Extensive experiments on the VLN-CE
datasets confirm the effectiveness of our method. The code
is available at https://github.com/MrZihan/HNR-VLN

1. Introduction
Vision-and-language navigation (VLN) tasks [5, 22, 23, 31]
require an agent to understand natural language instructions
and move to the destination. In the continuous environ-
ment setting (VLN-CE) [22], the navigation agent is free
to traverse any unobstructed location with low-level actions
(i.e., turn left 15 degrees, turn right 15 degrees, or move
forward 0.25 meters), similar to some visual navigation
tasks [41, 42, 45–47]. As a result, the agent is more prone

Instruction: Walk past the bed and exit the bedroom through the door.
Enter the toilet, and then stop before the window.
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Figure 1. Illustration of different methods to represent the naviga-
ble candidate locations. (a) uses the single-view observation (yel-
low sector area). (b) uses the panorama of the candidate location
(blue circular area) to anticipate the future environment.

to entering the visual blind area compared to the discrete
environment setting with perfectly predefined navigable lo-
cations. This phenomenon raises a challenge to accurately
represent future environments with visual occlusions, lead-
ing to incorrect action decisions.

As illustrated in Figure 1(a), previous approaches [8, 9,
25, 26] mainly rely on single-view visual observation of the
current location to perceive candidate locations, thus lead-
ing to a small restricted view (yellow sector area) due to
the visual occlusions. In contrast, as shown in Figure 1(b),
a comprehensive panorama of the candidate location (blue
circular area) is much more helpful to the agent for under-
standing the future environment and capturing critical vi-
sual cues in action decisions. Lookahead exploration [1, 11]
aims to enable an agent to explore steps forward before
making a navigation decision. Unlike other lookahead ap-
proaches, we adopt a strategy of exploring steps forward
with environment anticipation, which helps current action
decisions by predicting the future outcome of actions.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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As generating future environment representations ben-
efits much for action prediction, DREAMWALKER [39]
proposes to imagine panoramic images of the navigable
candidates. With simulated images through the visual gen-
eration model [20], it gains promising performance. How-
ever, one major drawback of this method is the large distor-
tions between the generated panoramic images and the ac-
tual images, introducing noisy visual features to the agent.
Due to the pixel-wise training objective, image generation
model [20] tends to fit the RGB values of local pixels, rather
than focusing on key environmental semantics. Indeed, for
unseen 3D environments, accurate RGB reconstruction is
insurmountably difficult due to the high information re-
dundancy of RGB images. In addition, generating high-
resolution panoramic images is computing-intensive and
time-consuming, increasing the delay of agent’s responses.

To anticipate future environments with higher quality
and faster speed, we propose a pre-trained Hierarchical
Neural Radiance (HNR) Representation Model that pro-
duces multi-level semantic representations of future can-
didate locations instead of generating panoramic images.
Our semantic representations are learned through a vision-
language embedding model (i.e., CLIP [32]) that com-
presses the redundant information of RGB images and ex-
tracts the critical visual semantics associated with the lan-
guage. Specifically at each step of navigation, the fine-
grained grid features [44] extracted by the CLIP model are
saved into the feature cloud with 3D positions and orien-
tations. To predict the semantic features of future environ-
ments, we sample points along camera rays, and aggregate
features around these points to produce latent feature vec-
tors and volume density, then use volume rendering tech-
niques to composite these values into small-scale region
features. Furthermore, multi-level encoders are adopted to
produce multi-level semantic features for future environ-
ments, supervised by CLIP embeddings.

The advantages of our method over previous methods
for future environment prediction are three-fold. First, our
model directly predicts robust multi-level semantic features
for future candidate locations, avoiding the difficulty of
pixel-level image reconstruction in unseen environments
as used in existing methods like RNR-Map [24, 35] and
DREAMWALKER [39]. Second, as many empty regions
in the future views can be caused by visual occlusions, we
employ a hierarchical encoding method to predict features
of these empty regions by integrating surrounding contexts
at both region and view levels. Lastly, our method using
volume rendering handles better spatial relationships in the
3D environment, which is challenging for 2D image gener-
ation methods [25, 39] that lack depth perception.

With the predicted high-quality future views of candi-
date locations, we propose a lookahead VLN model to eval-
uate the possible next actions. As shown in Figure 1(b), we

predict more navigable locations (red nodes) in future en-
vironments and integrate them into a future path tree. The
cross-modal graph encoder parallelly evaluates the match-
ing score of different path branches in this path tree and se-
lects the optimal candidate locations (blue nodes) to move.

In this work, our main contributions include:
• We propose a hierarchical neural radiance representation

model to produce multi-level semantic representations for
future environments with better quality and efficiency.

• Utilizing predicted representations of future environ-
ments, we propose a lookahead VLN model to parallelly
evaluate possible future paths in the path tree, thus im-
proving navigation planning.

• Extensive experiments demonstrate the effectiveness of
our methods over existing methods in continuous vision-
and-language navigation tasks.

2. Related Work
Vision-and-Language Navigation (VLN). VLN [5, 22,
23, 31] has received significant attention in recent years.
The VLN tasks include step-by-step instructions such as
R2R [5] and RxR [23], navigation with dialogs such as
CVDN [37], and navigation for remote object grounding
such as REVERIE [31] and SOON [48]. VLN-CE tasks
convert the topologically-defined VLN tasks into continu-
ous environments, such as R2R-CE [22] and RxR-CE [23].
Lots of previous methods focus on the representations of the
visited environment during navigation. Among them, the
recurrent unit [5, 12, 15, 36, 40], explicitly encoded history
sequence [8, 29], topological map [4, 9], top-down semantic
map [7, 13, 18] and grid-based map [3, 27, 44] are usually
adopted to represent the visited environment.

Although the representation of the visited environment
in VLN has received continuous attention, future environ-
mental representation and lookahead strategy have not been
fully explored. VLN-SIG [25] generates the semantics of
future navigation views using visual codebook [34] for bet-
ter decision-making. DREAMWALKER [39] utilizes an
image generation model [20] to generate panoramic images
of future environments and predict future actions. ULN [11]
and Active Exploration [38] explore steps forward for ro-
bust navigation decision-making, and Tactical Rewind [19]
performs tree search for planning. In contrast to them, we
propose a hierarchical neural radiance representation model
to anticipate future environments and construct the naviga-
ble future path tree for long-term planning.
Navigation with Neural Radiance Fields. The neural ra-
diance field (NeRF) [28] has gained significant popularity
in various AI tasks. NeRF predicts the RGB color and den-
sity of a sampled point in a scene so that an image from
an arbitrary viewpoint can be rendered. However, the tradi-
tional NeRF methods with implicit MLP network can only
synthesize view images in seen scenes, which makes it dif-
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Figure 2. The framework of the hierarchical neural radiance representation model (HNR). The HNR model encodes the observed environ-
ments (yellow area) into the feature cloud. Through aggregating k-nearest features, the MLP network predicts the latent vector and volume
density of sampled points along the rendered ray. A region-level representation is encoded by compositing these latent vectors via volume
rendering, then a view encoder is used to encode all region-level representations within a future view (red area) and obtain an entire future
view representation. All future views of the candidate location can be combined as a panorama (blue area) to support navigation.

ficult to generalize to the unseen scenes and adapt to many
embodied AI tasks. To address this issue, GSN [10] pro-
poses locally conditioned radiance fields, which encode ob-
served images into a latent grid map, supporting rendering
images in unseen environments. Based on GSN [10], RNR-
Map [24] designs a localization framework using renderable
neural radiance map for visual navigation, and Le-RNR-
Map [35] embeds CLIP features into RNR-Map for query
search with natural language. RNR-Map and Le-RNR-Map
all encode features into a 2D latent grid map, which loses
a lot of 3D geometric detail. The 3D feature cloud and hi-
erarchical encoding in HNR provide better capabilities of
spatial representation and multi-level context integration.

3. Method
3.1. Navigation Setups
The HNR model focuses on the VLN-CE [22, 23] tasks,
where the agent navigates with low-level actions. Initialized
at a starting location and given natural language instruc-
tions W , the agent needs to explore the environment and
reach the target location. At time step t, the agent observes
panoramic RGB images Rt = {rt,i}12i=1 and the depth im-
ages Dt = {dt,i}12i=1 surrounding its current location (i.e.,
12 view images with 30 degrees separation).

During navigation, the agent’s visual observations are
encoded and stored into the feature cloud. Meanwhile, a
pre-trained waypoint predictor [16] is used to predict navi-
gable candidates. For each navigable candidate, the HNR
model predicts 12 future view representations using hi-
erarchical encoding method. Firstly, HNR uses the vol-
ume rendering method to aggregate the features from the
feature cloud and produce region-level embeddings. Sec-
ondly, region-level embeddings within the same future view
are fed into the view encoder and obtain the entire future

view representation. These future representations of candi-
dates help predict more and farther navigable locations (i.e.,
lookahead nodes). By integrating lookahead node represen-
tations into a future path tree, the lookahead VLN model
evaluates the match scores of different path branches and
selects the optimal candidate location. Finally, a control
module [4] is used to produce low-level actions to reach the
selected candidate location.

3.2. Hierarchical Neural Radiance Representation

3.2.1 Feature Cloud Encoding

To encode the observed visual information, as shown in Fig-
ure 2, our HNR model stores the fine-grained visual fea-
tures and their corresponding spatial information into the
feature cloud M. Specifically, at each navigation step t,
for 12 observed RGB images Rt = {rt,i}12i=1, a pre-trained
CLIP-ViT-B/32 [32] model is used to extract grid features
{gt,i ∈ RH×W×D}12i=1. For convenience, all the subscripts
(i, h, w) are denoted as j, where j ranges from 1 to J ,
and J = 12·H·W . Through the downsized depth images
{dt,i ∈ RH×W }12i=1, each grid feature gt,j ∈ RD is mapped
to its 3D world position Pt,j = [px, py, pz] using camera
pose [R,T] and camera intrinsics K as follows:

Pt,j =

dt,jR
−1K−1

h
w
1

−T

T

(1)

To better represent the spatial information of features in
the feature cloud, we introduce the horizontal orientation
θt,j and the size st,j of each observed grid region:

st,j = 1/W · [tan(ΘHFOV /2) · dt,j ] (2)
where W is the width of the feature map extracted by the
CLIP model for each view, ΘHFOV is the camera’s hori-
zontal field-of-view. All these grid features and their spatial
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Figure 3. Illustration of the volume rendering method and hierar-
chical encoding.

information are stored into the feature cloud M:

Mt = Mt−1 ∪ {[gt,j , Pt,j , θt,j , st,j ]}Jj=1 (3)

3.2.2 Region Level Encoding via Volume Rendering

As shown in Figure 3, to produce a feature map R ∈
RH×W×D for each future view, given the encoded feature
cloud M and the camera pose of the future view, the HNR
model predicts each region feature Rh,w via volume ren-
dering method [28]. Specifically, for each region-level rep-
resentation, the HNR model uniformly samples N points
{Pn|n = 1, ..., N} along the ray from the camera posi-
tion P1 of the candidate location to the predicted region’s
center until 10 meters away. The KD-Tree algorithm [14]
is used to search the k-nearest features {gk}Kk=1 in feature
cloud for each sampled point Pn = [Xn,Yn,Zn]. Then
a MLPfeature network is used to aggregate the k-nearest
features of Pn within radius R to produce a latent vector
rn ∈ RD and the volume density σn ∈ R1 as Equation 7.
These latent vectors along the ray are composited into the
region feature Rh,w via volume rendering as Equation 8.

To give the MLPfeature network translational invariance
for better generalization, the relative position P rel

k and rela-
tive orientation θrelk of k-nearest feature gk to sampled point
Pn is calculated as:

P rel
k = [xrel

k , yrelk , zrelk ]

= [ (xk −Xn) · cosΘn + (yk − Yn) · sinΘn ,

(yk − Yn) · cosΘn − (xk −Xn) · sinΘn ,

zk −Zn ] (4)

θrelk = [ sin(θk −Θn), cos(θk −Θn) ] (5)
where Pk = [xk, yk, zk] is the world position of k-nearest
feature gk, Θn denotes the horizontal orientation of the ren-
dered ray. θk and sk are the orientation and region size of
gk. The positional embedding is encoded as:

qk = LN(W1[P
rel
k , θrelk , sk]) (6)

where LN denotes layer normalization and W1 is learnable
parameters. With k-nearest features {gk}Kk=1 and positional
embeddings {qk}Kk=1, the MLPfeature network aggregate
all k-nearest features of sampled point Pn as follows:

[rn, σn] = MLPfeature({gk ⊕ qk}Kk=1) (7)
The volume density σn [28] can be interpreted as the

differential probability of a ray terminating at point Pn. As
shown in Figure 3, the latent vector with a higher volume
density has a higher contribution to the region feature. To
reduce the computational cost, we adopt a sparse sampling
strategy. Specifically, if the sampled point Pn does not have
any neighboring features within the radius R̂, the latent vec-
tor rn and volume density σn will be directly set as zero,
without using MLPfeature.

With all latent vectors {r}Nn=1 of N sampled points, we
use the volume rendering method [28] to produce a region
feature Rh,w for future view as follows:

Rh,w =

N∑
n=1

τn(1− exp(−σn∆n))rn,

where τn = exp(−
n−1∑
i=1

σi∆i) (8)

τn represents volume transmittance, and ∆n is the distance
between adjacent sampled points. To enhance interaction
among different region features, we use both region-level
semantic alignment Lregion and view-level semantic align-
ment Lview after view level encoding in Section 3.2.3.

Although the goal of region-level encoding is to gener-
ate regional semantic features, for image reconstruction and
depth estimation, we also trained an MLPrgbd network to
predict the color value cn and volume density σ̂n, then ob-
tain the volume transmittance τ̂ . As shown in Equation 9
and 10, the RGB pixel Ch,w and depth value Dh,w can be
predicted via volume rendering. The rendering loss Lrgbd is
the squared error between rendered pixels and ground truth.

Ch,w =

N∑
n=1

τ̂n(1− exp(−σ̂n∆n))cn (9)

Dh,w =

N∑
n=1

τ̂n(1− exp(−σ̂n∆n))dn (10)

where cn denotes color values, and dn denotes the distance
between the sampled point Pn and the camera position P1.

3.2.3 View Level Encoding

The regional feature Rh,w obtained in Section 3.2.2 can
only represent a small-scale region. To represent the en-
tire future view and predict features of empty regions by in-
tegrating surrounding contexts, the regional feature map R
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together with a learnable view token V is inputted into the
view encoder and output the encoded R̂ and V̂. The view
encoder consists of four-layer transformers.

As shown in Figure 2, to supervise the encoded region
features R̂, we align each region feature R̂h,w with the CLIP
embedding Rgt

h,w extracted from a small-scale cropped im-
age within the actual future view. Similarly, the view fea-
ture V̂ is aligned with the CLIP embedding Vgt extracted
from an entire future view. During training, we randomly
sample some region features and then minimize the loss be-
tween predicted features and actual CLIP embeddings, by
maximizing cosine similarity as follows:

Lregion =
∑
h,w

(1−
R̂h,w · Rgt

h,w

∥R̂h,w∥∥Rgt
h,w∥

) (11)

Lview = 1− V̂ · Vgt

∥V̂∥∥Vgt∥
(12)

For better generalization ability, the HNR model is pre-
trained in large-scale HM3D [33] dataset with 800 training
scenes. Specifically, we randomly select a starting loca-
tion in the scene and randomly move to a navigable can-
didate location at each step. At each step, parts of the un-
visited candidate locations are randomly picked to predict
future views. The model is optimized with the training loss
αLrgbd + βLregion + γLview, where α, β, γ are the factors
of proportionality. The maximum number of action steps
per episode is set to 15.

3.2.4 Panorama Level Encoding

The pre-trained HNR model in Section 3.2.3 can be used
to predict future view representations and combine them as
panoramic representations of candidate locations through
the panorama encoder, which is described in Figure 3.
Given a navigable candidate location, the HNR model pre-
dicts 12 single-view semantic features and depth maps at
30 degrees separation. Furthermore, the waypoint predictor
model [16] is used to predict navigable locations around the
candidate location via these depth maps. The predicted fu-
ture view features and navigable locations are encoded by
the panorama encoder for lookahead exploration.

3.3. Architecture of the Lookahead VLN model

3.3.1 Node Embedding

Three types of nodes are utilized to structure the topolog-
ical map, as shown in Figure 4. These nodes include vis-
ited nodes (yellow), candidate nodes (blue), and lookahead
nodes (red). Vvisited

t is represented as the current node em-
bedding via average pooling 12 observed view representa-
tions. {Vvisited

i }ti=1 are all the visited node embeddings.
For each navigable candidate location, the HNR model

predicts 12 future view features V̂ at 30 degrees separa-

HNR
model

Instruction: Walk past the bed and exit the bedroom through
the door. Enter the toilet, and then stop before the window.
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Figure 4. The framework of the lookahead VLN model. In addi-
tion to the stop embedding (black), three types of nodes are used
to structure the topological map: visited nodes (yellow), candidate
nodes (blue) and lookahead nodes (red).

tion. The panorama encoder consisting of a two-layer trans-
former is used to encode V̂ with corresponding position em-
bedding and output features Ṽ. Vcandidate is represented
as the candidate node embedding via average pooling of Ṽ.
The lookahead node embeddings are denoted as V lookahead,
which are navigable parts of the future views Ṽ with corre-
sponding position embedding. The lookahead nodes con-
nected to Vcandidate

m are denoted as V lookahead
N (m) . The ‘stop’

embedding Vstop is added to the graph to denote a stop ac-
tion and connect it with all other node embeddings.

3.3.2 Cross-Modal Graph Encoding

To encode the environmental topological map and evaluate
future path branches in it, all node representations in Sec-
tion 3.3.1 are fed into a 4-layer cross-modal transformer to
conduct interaction. Each transformer layer consists of a
cross-attention layer and a graph-aware self-attention layer
(GASA). For cross-attention calculation, the encoded vis-
ited nodes Vvisited, candidate nodes Vcandidate, lookahead
nodes V lookahead and stop embedding Vstop are used as
query tokens, the word embeddings W are used as key and
value tokens. The standard self-attention layer only con-
siders visual similarity among nodes, which may overlook
nearby nodes that are more relevant than distant nodes. To
this end, following [4, 9], we adopt the GASA layer that fur-
ther takes into account the graph topology when computing
inter-node attention for node encoding:

GASA(V) = Softmax(
VWq(VWk)

T

√
d

+ EWe)VWv (13)

where V denotes node representations, E is the pair-wise
distance matrix obtained from the topological map, and
Wq,Wk,We,Wv are learnable parameters. After cross-
modal graph encoding, the encoded node representations
are denoted as V̂visited, V̂candidate, V̂ lookahead, and V̂stop.
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3.3.3 Lookahead Exploration and Action Prediction

The model predicts a navigation goal score for each node in
the topological map as follows:

S = FFN(V̂) (14)

where FFN denotes a feed-forward network. To avoid
unnecessary repeated visits to visited nodes, the scores
for visited nodes are masked. With the candidate node
V̂candidate
m and those lookahead nodes V̂ lookahead

N (m) con-
nected to it, the VLN model predicts their goal scores
[Scandidate

m , Slookahead
N (m) ] and take the maximum value

among them as the goal score of the m-th path branch:

Spath = {Max([Scandidate
m , Slookahead

N (m) ])}Mm (15)

Finally, the agent selects a candidate node to move ac-
cording to the predicted goal scores (i.e., select the path
branch with the maximum score). The agent performs the
stop action if the ‘stop’ score has the maximum value. If the
selected candidate node is not adjacent to the current node,
the agent computes the shortest path to the goal by perform-
ing Dikjstra’s algorithm on the topological map. The con-
trol module [4] is responsible for converting the topological
plan into a series of low-level actions that guide the agent to
the selected candidate node.

As shown in Figure 4, there are two navigation supervi-
sion strategies. The first one is the Hard target supervision
Ahard, which selects an unvisited node (candidate node or
lookahead node) with the shortest distance to the destina-
tion. Then goal scores of all unvisited nodes are used to cal-
culate the cross-entropy loss. The other one is the Soft target
supervision Asoft, which selects a candidate node with the
shortest distance to the destination. The goal scores Spath

(in Equation 15) of candidate nodes are calculated by max
pooling all scores of the corresponding path branch shown
in Figure 4. Then goal scores after max pooling are used to
calculate the cross-entropy loss:

Lnav = CrossEntropy(Spath,Asoft) (16)

4. Experiment
4.1. Datasets and Evaluation Metrics

We evaluate our model on the R2R-CE [22] and RxR-
CE [23] datasets in continuous environments.

R2R-CE [22] is collected based on the discrete Matter-
port3D environments [6] with the Habitat simulator [33],
enabling the agent to navigate in the continuous environ-
ments. It provides step-by-step instructions, and the aver-
age length is 32 words. The agent uses a 15◦ turning angle
and the horizontal field-of-view is 90◦.

RxR-CE [23] is a larger multilingual VLN dataset con-
taining 126K instructions in English, Hindi, and Telugu. It

includes trajectories that are diverse in terms of length (av-
erage is 15 meters), which is more challenging in the con-
tinuous environments. The agent uses a 30◦ turning angle
and the horizontal field-of-view is 79◦.

There are several standard metrics [5] in VLN for evalu-
ating the agent’s performance, including Trajectory Length
(TL), Navigation Error (NE), Success Rate (SR), SR given
the Oracle stop policy (OSR), Normalized inverse of the
Path Length (SPL), Normalized Dynamic Time Warping
(nDTW), and Success weighted by normalized Dynamic
Time Warping (SDTW).

4.2. Comparison to State-of-the-Art Methods

Table 1 and 2 represent the performance of our proposed
HNR model compared with existing VLN models on the
R2R-CE and RxR-CE datasets respectively. Overall, HNR
achieves state-of-the-art results in the majority of metrics,
demonstrating the effectiveness of the proposed approach
from diverse perspectives. As illustrated in Table 1, for the
val unseen split of the R2R-CE dataset, our model outper-
forms our baseline method ETPNav [9] by 4% on SR and
2% on SPL. For the test unseen split, the proposed method
outperforms ETPNav by 3% on SR and 2% on SPL. Mean-
while, as illustrated in Table 2, the proposed method also
achieves the improvement of 2% in the majority of metrics
on the RxR-CE dataset.

Compared with DREAMWALKER [39] in Table 1,
which adopts a similar idea of lookahead exploration, our
HNR model achieves performance improvement of about
10% on SR for all splits. On the one hand, our HNR
constructs a unified future path tree to represent the fu-
ture environment, which is better than the step-by-step path
search strategy used in DREAMWALKER. The step-by-
step search (i.e., only evaluate one path branch at a time)
makes it difficult to compare different future paths. On the
other hand, the future environmental representations pre-
dicted by our HNR model are superior to those from the
image generation model adopted by DREAMWALKER.

4.3. Ablation Study

As described in Section 1, the representations of future en-
vironments play a crucial role in lookahead exploration.
In this section, we compare several popular representa-
tion strategies for future environments. (1) The most usual
single-view representations [4], which rely on single-view
visual observation of the current location to perceive can-
didates. (2) NeRF-based rendering methods [24] that focus
on rendering RGB pixels for future view images and ex-
tract features via the CLIP model. (3) Image Generation
method [20, 39] that imagine the panoramic RGBD images
for candidate locations. (4) Our proposed hierarchical neu-
ral radiance representation model (HNR).
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Methods
Val Seen Val Unseen Test Unseen

TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑ TL↓ NE↓ OSR↑ SR↑ SPL↑
CM2 [13] 12.05 6.10 50.7 42.9 34.8 11.54 7.02 41.5 34.3 27.6 13.9 7.7 39 31 24

WS-MGMap [7] 10.12 5.65 51.7 46.9 43.4 10.00 6.28 47.6 38.9 34.3 12.30 7.11 45 35 28
Sim-2-Sim [21] 11.18 4.67 61 52 44 10.69 6.07 52 43 36 11.43 6.17 52 44 37

CWP-RecBERT [16] 12.50 5.02 59 50 44 12.23 5.74 53 44 39 13.31 5.89 51 42 36
GridMM [44] 12.69 4.21 69 59 51 13.36 5.11 61 49 41 13.31 5.64 56 46 39

Reborn [2] 10.29 4.34 67 59 56 10.06 5.40 57 50 46 11.47 5.55 57 49 45
Ego2-Map [17] - - - - - - 4.94 - 52 46 13.05 5.54 56 47 41

DREAMWALKER [39] 11.6 4.09 66 59 48 11.3 5.53 59 49 44 11.8 5.48 57 49 44
ScaleVLN [43] - - - - - - 4.80 - 55 51 - 5.11 - 55 50
BEVBert [3] - - - - - - 4.57 67 59 50 - 4.70 67 59 50
ETPNav [4] 11.78 3.95 72 66 59 11.99 4.71 65 57 49 12.87 5.12 63 55 48
HNR (Ours) 11.79 3.67 76 69 61 12.64 4.42 67 61 51 13.03 4.81 67 58 50

Table 1. Evaluation on the R2R-CE dataset.

Methods
Val Seen Val Unseen Test Unseen

NE↓ SR↑ SPL↑ NDTW↑ SDTW↑ NE↓ SR↑ SPL↑ NDTW↑ SDTW↑ NE↓ SR↑ SPL↑ NDTW↑ SDTW↑
CWP-CMA [16] - - - - - 8.76 26.59 22.16 47.05 - 10.40 24.08 19.07 37.39 18.65

CWP-RecBERT [16] - - - - - 8.98 27.08 22.65 46.71 - 10.40 24.85 19.61 37.30 19.05
Reborn [2] 5.69 52.43 45.46 66.27 44.47 5.98 48.60 42.05 63.35 41.82 7.10 45.82 38.82 55.43 38.42
ETPNav [4] 5.03 61.46 50.83 66.41 51.28 5.64 54.79 44.89 61.90 45.33 6.99 51.21 39.86 54.11 41.30
HNR (Ours) 4.85 63.72 53.17 68.81 52.78 5.51 56.39 46.73 63.56 47.24 6.81 53.22 41.14 55.61 42.89

Table 2. Evaluation on the RxR-CE dataset.

# Representation Methods NE↓ OSR↑ SR↑ SPL↑
1 Single View 4.71 64.71 57.21 49.15
2 NeRF Rendering 4.79 65.14 56.55 48.61
3 Image Generation 4.68 66.01 58.35 50.96
4 HNR 4.42 67.48 60.74 51.27
5 Ground truth 4.13 71.29 63.13 54.59
6 HNR w/o Lregion 4.55 66.78 60.20 50.74
7 HNR w/o Positional embeddings 4.78 64.87 56.17 48.91

Table 3. Comparison among different candidate location represen-
tation methods on the val unseen split of the R2R-CE dataset.

Comparisons among different representation methods.
For fair comparisons, rows 2-4 in Table 3 adopt the same
lookahead VLN model shown in Section 3.3 for navigation
planning but use different methods for future environments
prediction. Traditional single-view representation (row 1)
is restricted to a limited observable view and is difficult
to comprehensively represent future environments due to
the visual occlusions. The lookahead exploration strategy
(rows 2-4) helps evaluate the agent’s future paths by antic-
ipating the future environment for better navigation plan-
ning. NeRF-based RGB rendering method [24] has a low
image reconstruction accuracy in unseen environments due
to the visual occlusions and high information redundancy
of RGB images, resulting in undesirable performance gains.
The image generation method [39] has better performance
gains than NeRF Rendering in unseen environments but is
still inferior to our HNR model. To avoid the difficulty of
pixel-level prediction, the proposed HNR model takes the
CLIP embeddings as the prediction objective and predicts

multi-level semantics through hierarchical encoding.

Upper bound of our lookahead exploration strategy.
The ground truth (GT) representations (row 5) are extracted
from the actual future view images via the CLIP model. It
demonstrates the upper bound of our lookahead VLN model
with GT future view prediction and also confirms the effec-
tiveness of the lookahead exploration strategy.

Region level semantic alignment. As shown in Table 3,
without the training objective Lregion of region-level se-
mantic alignment (row 6) in Section 3.2.3, the performance
of the HNR model has degraded. Hierarchical encoding
and multi-level semantic alignment help HNR integrate sur-
rounding contexts and predict features of empty regions
caused by visual occlusions.

Quality analysis of future environment prediction. As
illustrated in Figure 5, we evaluate the quality of predicted
representations by comparing the embeddings’ cosine sim-
ilarity between the predicted future views and ground truth.
We observe a downward trend in cosine similarity as the
distance between candidate location and agent increases.
Combining Table 3 and Figure 5, it’s obvious that the bet-
ter quality of future environmental representations makes
the higher navigation performance gains. Using region-
level alignment, our HNR method has the best represen-
tation quality and its cosine similarity is above 0.8 overall,
supporting the lookahead exploration well within 5 meters.

Positional embeddings in region level encoding. The
positional embeddings calculated by Equation 6 represent
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the spatial relationships for region feature encoding. With-
out the position and orientation of the k-nearest features rel-
ative to the sampled point (row 7) in Table 3, MLPfeature

network cannot accurately estimate the volume density and
fails to perceive spatial relations in the 3D environment, re-
sulting in a significant performance decrease.

Number of k-nearest features. Table 4 shows the effect
of the number of k-nearest features on performance. We
observe an upward trend in performance as the number of
aggregated k-nearest features increases. Although the many
more aggregated features make the region semantic predic-
tion more accurate, the performance gains of the number
over 4 are marginal, so we finally take the K value as 4 for
lower computational cost.

Sparse sampling and k-nearest features search. Ta-
ble 5 illustrates two important strategies used in our HNR
to improve computational efficiency. The first one is the
sparse sampling strategy described in Section 3.2.2, the
MLPfeature is not used to aggregate features in empty
areas of the feature cloud. Due to the high proportion
of empty space in 3D indoor environments, this strategy
can greatly reduce the redundant calculation. To paral-
lelly search the k-nearest features of all sampled points,
the KD-Tree algorithm is adopted in HNR, as described
in Section 3.2.2. Since the k-nearest features search has
a heavy computational cost in our HNR model, we use the
CUDA implementation of KD-Tree algorithm [14] to ac-
celerate it, much faster than other nearest neighbor search
methods [30] (i.e., w/o KD-Tree) in Table 5.

Performance analysis of the lookahead exploration. In
this part, we analyze different future path evaluation strate-
gies and navigation supervision methods. As shown in Ta-
ble 6, Slookahead indicates that the VLN model uses the
scores of the lookahead nodes to evaluate the future paths,
and Scandidate indicates the usage of the candidate node
scores, as shown in Equation 15. Soft target and Hard target
are two different types of navigation supervision described
in Section 3.3.3. In Table 6, row 1 has the lowest perfor-
mance without the lookahead exploration strategy. Row 2
doesn’t use the lookahead node scores to evaluate the future
paths and gain marginal performance improvement, con-
firming the necessity of the lookahead node representation.
The performance of row 5 is superior to rows 3-4, show-
ing the Soft target supervision is the better navigation su-
pervision. The lookahead node closest to the destination
(i.e., Hard target) is not sure of the highest semantic match
score with the instruction due to visual occlusions and pre-
diction noise, compulsively overfitting the Hard target com-
promises the navigation performance.
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Figure 5. Average cosine similarity between predicted future
views and ground truth at different distances between candidate
locations and agent, on the val unseen split of the R2R-CE dataset.

Number of nearest features NE↓ OSR↑ SR↑ SPL↑
1 4.68 65.63 57.86 49.21
2 4.57 66.99 59.49 50.81
4 4.42 67.48 60.74 51.27
6 4.37 67.70 60.58 51.30

Table 4. The effect of different numbers of nearest features in the
HNR model on the val unseen split of the R2R-CE dataset.

HNR w/o Sparse sampling w/o KD-Tree

87.3 Hz (11.5 ms) 5.9 Hz (169.5ms) 23.1 Hz (42.3 ms)

Table 5. Runtime analysis measured on one RTX 3090 GPU.

# Slookahead Scandidate Soft Hard NE↓ OSR↑ SR↑ SPL↑
1 4.71 64.71 57.21 49.15
2 ✓ ✓ 4.71 66.43 57.75 49.54
3 ✓ ✓ ✓ 4.81 65.85 56.72 48.41
4 ✓ ✓ ✓ ✓ 4.62 67.92 59.87 50.03
5 ✓ ✓ ✓ 4.42 67.48 60.74 51.27

Table 6. Ablation study of the lookahead VLN model.

5. Conclusion
In this paper, we propose a lookahead exploration method
for continuous vision-language navigation. Our proposed
HNR model predicts multi-level future environmental rep-
resentations through volume rendering and hierarchical en-
coding, supervised by CLIP embeddings. With predicted
future representations, the lookahead VLN model con-
structs the navigable future path tree and selects the opti-
mal path branch via efficient parallel evaluation. Extensive
experiments demonstrate the accuracy of the HNR model’s
representations and the excellent performance of the looka-
head VLN model. The lookahead exploration method helps
navigation planning by predicting the future outcome of ac-
tions, which has great research potential for VLN and Em-
bodied AI tasks.
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