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Figure 1. Sample videos produced by MicroCinema, our proposed text-to-video generation system. They showcase MicroCinema’s ability
to create coherent and high-quality videos, with precise motion aligned with text prompts. Image reference generated by Midjourney.

Abstract

We present MicroCinema, a straightforward yet effective
framework for high-quality and coherent text-to-video gen-
eration. Unlike existing approaches that align text prompts
with video directly, MicroCinema introduces a Divide-and-
Conquer strategy which divides the text-to-video into a two-
stage process: text-to-image generation and image&text-to-
video generation. This strategy offers two significant ad-
vantages. a) It allows us to take full advantage of the recent
advances in text-to-image models, such as Stable Diffusion,
Midjourney, and DALLE, to generate photorealistic and
highly detailed images. b) Leveraging the generated image,
the model can allocate less focus to fine-grained appear-

ance details, prioritizing the efficient learning of motion dy-
namics. To implement this strategy effectively, we introduce
two core designs. First, we propose the Appearance In-
jection Network, enhancing the preservation of the appear-
ance of the given image. Second, we introduce the Appear-
ance Noise Prior, a novel mechanism aimed at maintaining
the capabilities of pre-trained 2D diffusion models. These
design elements empower MicroCinema to generate high-
quality videos with precise motion, guided by the provided
text prompts. Extensive experiments demonstrate the supe-
riority of the proposed framework. Concretely, MicroCin-
ema achieves SOTA zero-shot FVD of 342.86 on UCF-101
and 377.40 on MSR-VTT.
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1. Introduction
Diffusion models [13, 37] have achieved remarkable suc-
cess in text-to-image generation, such as DALL-E [29], Sta-
ble Diffusion [32], Imagen [33], among others. They can
generate unseen image content based on novel text con-
cepts, showcasing impressive capabilities for image content
generation and manipulation. Consequently, researchers
have sought to extend the success of diffusion models to
text-to-video generation.

One prevalent strategy involves training large-scale text-
to-video diffusion models directly [14, 15, 36, 40]. These
models employ cascade spatiotemporal diffusion models to
learn from text and video pairs. While capable of producing
high-quality videos, they pose challenges due to substan-
tial GPU resource requirements and the need for extensive
training data. Recently, some works [5, 7] have presented
a cost-effective strategy. These methods entail the insertion
of temporal layers into a text-to-image model, followed by
fine-tuning on paired text and video data to create a text-
to-video model. However, videos generated using this ap-
proach may encounter issues related to appearance and tem-
poral coherence. We argue that maintaining appearance and
temporal coherence is crucial for effective video generation.

In this paper, we present a novel approach, named Mi-
croCinema, which employs a divide-and-conquer strategy
to address appearance and temporal coherence challenges
in video generation. The model features a two-stage gener-
ation pipeline. In the first stage, we generate a center frame,
which serves as the foundation for subsequent video clip
generation based on the input text. This design offers the
flexibility to utilize any existing text-to-image generator for
the initial stage, allowing users to incorporate their own im-
ages to establish the desired scene.

The second stage, known as image&text-to-video, con-
centrates on motion modeling. To achieve this, we leverage
the open-source text-to-image generation model called Sta-
ble Diffusion (SD) [32] and inject temporal layers into it to
obtain a three-dimensional (3D) network structure. The SD
model has been trained on the filtered large-scale LAION
dataset [35]. Its strong performance in generating high-
quality images demonstrates its ability to capture spatial
information within visual signals. To further enhance the
model’s ability to capture motion, we propose two core de-
signs for the image&text-to-video model.

First, we introduce an Appearance Injection Network to
inject the given image as a condition to guide the video gen-
eration. Concretely, it shares the structure of the encoder
and middle part of the 3D U-Net and feeds the learned fea-
ture into the main branch via dense injection in a multi-
layer manner. The dense injection operation better in-
jects the appearance into the main branch, thus releasing
the model from appearance modeling and encouraging the
model dedicated to motion modeling. Second, we propose

an appearance-aware noise strategy to preserve the pre-
trained capability of the SD model by modifying the i.i.d.
noise in the diffusion process. Specifically, we add an ap-
propriate amount of center frame to the i.i.d. noise without
altering the overall diffusion training and inference process.
This appearance-aware noise provides an intuitive cue to
the model to generate a video whose appearance is simi-
lar to the given center frame, thereby unleashing its motion
modeling capabilities.

Equipped with these designs, our framework can gener-
ate appearance-preserving and coherent videos with a given
image and text. Extensive experiments demonstrate the
superiority of MicroCinema. We achieve a state-of-the-
art zero-shot FVD of 342.86 on UCF101 [38] and 377.40
on MSR-VTT [51] when training on the public WebVid-
10M [4] dataset.

In summary, our contributions are presented as follows:
• We introduce an innovative two-stage text-to-video gen-

eration pipeline that capitalizes on a key-frame image
generated by any off-the-shelf text-to-image generator in
the initial stage. Subsequently, both the generated key-
frame image and text serve as inputs for the video gener-
ation process in the second stage.

• We propose an Appearance Injection Network structure
to encourage the 3D model to focus on motion modeling
during the image&text-to-video generation process.

• We introduce an effective and distinctive Appearance
Noise Prior tailored for fine-tuning text-to-image diffu-
sion models. This modification significantly elevates the
quality of video generation.

• In-depth quantitative and qualitative results are presented
to validate the video generation capability of our pro-
posed MicroCinema.

2. Related Work
The task of video generation involves addressing two fun-
damental challenges: image generation and motion mod-
eling. Various approaches have been employed for im-
age generation, including Generative Adversarial Networks
(GANs) [2, 3, 8, 34], Variational autoencoder (VAE) [12,
31] and flow-based methods [6]. Recently, the state-of-the-
art methods are built on top of diffusion models such as
DALLE-2 [30], Stable Diffusion [32], GLIDE [24] and Im-
agen [33], which achieved impressive results. Extending
these models for video generation is a natural progression,
though it necessitates non-trivial modifications.
Text-to-Video Models. Image diffusion models adopt
2D U-Net with few exceptions [26]. To generate tempo-
rally smooth videos, temporal convolution (conv) or atten-
tion layers are also introduced. Notably, in Align-your-
latents [5], 3D conv layers are interleaved with the existing
spatial layers to align individual frames in a temporally con-
sistent manner. This factorized space-time design has be-
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come the de facto standard and has been used in VDM [15],
Imagen Video [14], and CogVideo [17]. Besides, it creates a
concrete partition between the pre-trained two-dimensional
(2D) conv layers and the newly initialized temporal conv
layers, allowing us to train the temporal convolutions from
scratch while retaining the previously learned knowledge
in the spatial convolutions’ weights. More recent work
Latent-Shift [1] introduces no additional parameters but
shifts channels of spatial feature maps along the temporal
dimension, enabling the model to learn temporal coherence.
Many approaches rely on temporal layers to implicitly learn
motions from paired text and videos [5, 14, 15, 17, 36]. The
generated motions, however, still lack satisfactory global
coherence and fail to faithfully capture the essential move-
ment patterns of the target subjects.

Leveraging Prior for Text-to-Video Diffusion Models.
Generating natural motions poses a significant challenge in
video generation. Many attempts are focused on leverag-
ing prior into the text-to-video generation process. Con-
trolVideo [54] directly utilizes ground truth motions, repre-
sented as depth maps or edge maps, as conditions for video
diffusion models, demonstrating the importance of motion
in video generation. GD-VDM [19] involves a two-phase
generation process leveraging generating depth videos fol-
lowed by a novel diffusion Vid2Vid model that generates a
coherent real-world video in the autonomous driving sce-
nario. However, it is not clear whether it can be applied
to general scenes due to the lack of depth training data.
Make-Your-Video [49] utilizes a standalone depth estima-
tor to extract depth from a driving video, bypassing the need
for depth generation, to generate new videos. In Leo [46], a
motion diffusion model is trained to generate a sequence
of motion latents, fed to a decoder network to recover
the optical flows to animate the input image. Meanwhile,
other methods involve linear displacement of codes in la-
tent space [44], noise correlation [18], and generating tex-
tual descriptions for motion [16], serving as conditions for
video generation models. More recent work PYoCo [7] pro-
poses the video diffusion noise prior for a diffusion model
and cost-effectively fine-tuning the text-to-image model.

Our proposed framework differs significantly from ex-
isting methods by employing a Divide-and-Conquer strat-
egy. In our approach, we first generate images and sub-
sequently capture motion dynamics along the temporal di-
mension. We also notice that a previous method Make-A-
Video [36] has adopted a similar approach. However, our
method introduces a novel model network design and incor-
porates an appearance-noise prior. This innovation ensures
the generated video not only maintains the appearance es-
tablished in the initial stage but also demonstrates superior
motion modeling capabilities, a feature notably absent in
Make-A-Video and concurrently related methods [20, 53].

3. MicroCinema

3.1. Overview

Our approach decomposes the text-to-video generation pro-
cess into two distinct stages. Initially, we employ prevalent
off-the-shelf text-to-image generation techniques to pro-
duce a key frame. Subsequently, both the key frame, acting
as the center frame, and the text prompts are used as input
to the image&text-to-video model to generate videos. We
argue that the image&text-to-video model in a two-stage
framework exhibits the potential for yielding more natural
videos compared to the single-stage text-to-video model.
This argument rests on the premise that by incorporating
the center frame as a condition, our approach mitigates the
model’s burden in learning complicated appearance.

In the image&text-to-video generation stage, we adopt
a cascaded approach to produce high-quality videos. First,
we use a base image&text-to-video model to generate low
frame rate videos from given image and text. Then, an
adapted temporal interpolation model, derived from the
base model, is employed to augment the frame rate. Finally,
an off-the-shelf spatial super-resolution model is incorpo-
rated to render high-definition videos. This paper focuses
on explaining the base model design and detailing its adap-
tation into the temporal interpolation model.
Base image&text-to-video model. Fig. 2 illustrates the
overall architecture of the base image&text-to-video model
in MicroCinema. This model is extended from the widely
recognized Stable Diffusion (SD) model [32]. Following
previous attempts [5, 36], we first extend the 2D U-Net
into a 3D structure. We first enhance the original model by
adding a 1D temporal convolution (conv) layer following
each 2D spatial conv layer, enhancing its ability to handle
temporal alignments. Additionally, we introduce a 1D tem-
poral attention layer after every 2D spatial attention layer.
These attention layers effectively capture long-range tem-
poral correspondence, complementing the functionality of
the 1D conv layers. To protect the strong capability of SD,
we zero-initialize all the convolution and attention tempo-
ral layers and add a skip connection to it. Based on these
modifications, we obtain a 3D model that can handle text-
to-video generation. The base image&text-to-video model
showcases two crucial innovations: the AppearNet and the
appearance noise prior. Both are designed to incorporate
appearance information from the key frame. A detailed ex-
planation of these technical advancements will be provided
in Sec. 3.2 and Sec. 3.3.
Temporal interpolation model. Our base model generates
videos at a resolution of 320× 320 pixels with a frame rate
of 2 frames per second (fps). To enhance temporal quality,
we train a temporal interpolation model designed for four-
fold temporal super-resolution (TSR). This TSR model mir-
rors the architecture of the base model with slight modifica-

8416



Figure 2. Overall architecture of our proposed diffusion-based image&text-to-video model in MicroCinema. The proposed AppearNet
aims to provide appearance information for video generation.

tions. The base model employs only one conditional image
(the center frame) while there are two conditional images
(the start and end frames) in the TSR model. Accordingly,
we alter the input of the AppearNet, shifting from duplicat-
ing the center frame to utilizing the interpolated latent rep-
resentations of the given first and last frames. Leveraging
this model consecutively on adjacent frames from previous
steps boosts the frame rate from 2 fps to 32 fps.

3.2. Appearance Injection Network

To enhance the model’s capability in handling reference
center frame, we introduce the Appearance Injection Net-
work, abbreviated as AppearNet, to the 3D network as de-
picted in Fig. 2. Inspired by ControlNet [5], we let Appear-
Net inherit the encoder and the middle part of the backbone
network. Let N be the frame length of the output video.
Then the center frame zc is replicated for N times to create
an image sequence, denoted as [zc, zc, . . . ,zc]. It is used
as input to the AppearNet to offer a robust appearance cue
for generating output video frames.

We apply a multi-scale and dense fusion mechanism to
seamlessly integrate the outputs of the AppearNet into the
main branch. The multi-scale output of AppearNet is in-
jected into both the encoder and the decoder of the main
branch at the corresponding scales. In addition to the com-
monly used additive operation, we introduce an effective
strategy of de-normalization [25] to inject the feature into
the corresponding normalization layer of the main branch.
As shown in Fig. 3, at the j-th feature level, let hj

m denote

Figure 3. AppearNet injects multi-scale features into the main
branch to perform a dense fusion.

the activation map in the main branch. Before integration,
we perform 3D Group Normalization [48] on hj

m:

h̄j =
hj
m − µj

σj
. (1)

Here µj and σj are the means and standard deviations of
hj
m’s group-wise activations. For AppearNet feature inte-
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gration, let f j
a be the AppearNet embedding on this feature

level, we compute the output activation oj by denormaliz-
ing the normalized h̄j according to f j

a , formulated as

oj = (γj
a + 1)⊗ h̄j + βj

a, (2)

where γj
a and βj

a are obtained by convolving from the fea-
ture map f j

a . The computed γj
a and βj

a are multiplied and
added to h̄j in an element-wise manner. Equipped with this
design, our entire structure could better maintain the appear-
ance from a given center frame while possessing the ability
to generate videos based on text and image conditions.

3.3. Appearance Noise Prior

Fine-tuning from a text-to-image model proves to be a cost-
effective approach for acquiring a video generation model.
However, this process presents challenges due to the transi-
tion of the output space from images to videos. In the con-
text of a typical T2I diffusion model, it tends to generate
appearance-irrelevant images from a sequence of indepen-
dent noise (sampled from N (0, I)). In video generation, a
sequence of independent noise should ideally yield a video
with a coherent appearance. Therefore, the fine-tuning pro-
cess may potentially compromise the capability of the orig-
inal 2D T2I model. Our focus lies in preserving the effec-
tiveness of the original 2D T2I model during the fine-tuning
process for the image&text-to-video model.

For our proposed image&text-to-video model, the model
should expand the given center image to a sequence of
frames, which have a similar appearance to the center
frame. Consequently, the output video is predominantly de-
termined by the center frame rather than the sampled noise
in the original diffusion process. To address this, we mod-
ify the noise distribution to align with the appearance of
the given center frame. Leveraging the denoising prop-
erty of the diffusion model, we introduce Appearance Noise
Prior by adding an appropriate amount of the center frame
into the noise, in order to generate appearance-conditioned
frames.

Let ϵ = [ϵ1, ϵ2, . . . , ϵN ] denote the noise corresponding
to a video clip with N frames, ϵi represents the noise added
to the ith frame. zc is the latent tensor of center frame, ϵin
is the randomly sampled noise from N (0, I). The training
noise for our model is defined as:

ϵi = λzc + ϵin, (3)

where λ is the coefficient that controls the amount of the
center frame.

Consequently, the diffusion process of our model can be
expressed in the following form, the t-step noisy input of
the diffusion model is:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ (4)

where z0 is the latent tensors of an input video and ᾱt is the
same as defined in DDPM [13].

Table 1. Comparison on the zero-shot text-to-video generation
performance on UCF-101[38] and MSR-VTT[51]

Methods UCF-101[38] MSR-VTT[51]
FVD ↓ IS ↑ FVD ↓ CLIPSIM ↑

Using WebVid-10M and additional data for training
Make-A-Video [36] 367.23 33.00 - 0.3049
VideoFactory [42] 410.00 - - 0.3005
ModelScope [41] 410.00 - 550.00 0.2930
Lavie [45] 526.30 - - 0.2949
VidRD [9] 363.19 39.37 - -
PYoCo [7] 355.19 47.76 - 0.3204

Using WebVid-10M only for training
LVDM [10] 641.80 - 742.00 0.2381
CogVideo [17] 701.59 25.27 1294 0.2631
MagicVideo [55] 699.00 - 998.00 -
Video LDM [5] 550.61 33.45 - 0.2929
VideoComposer [43] - - 580 0.2932
VideoFusion [23] 639.90 17.49 581.00 0.2795
SimDA [50] - - 456.00 0.2945
Show-1 [52] 394.46 35.42 538.00 0.3072
MicroCinema (Ours) 342.86 37.46 377.40 0.2967

For training, we adhere to the stable diffusion training
setting and use noise prediction with the following loss
function:

Lθ = Eqt(z0,zt)

[
∥fθ(zt, t,z

c, c)− ϵ∥2
]
, (5)

where t is the time step, zc is the reference image input, c
is the text input, z0, zt are the ground-truth video and noisy
input, fθ(zt, t,z

c, c) represents the output of the model.,
respectively. Our appearance noise prior employs the same
inference strategy as previous methods, differing only in
the initiation of noise, which aligns with our formulation.
This consistency allows for the direct application of exist-
ing ODE sample algorithms. For a thorough understanding
of the proofs, please refer to the supplementary materials.

4. Experiments
Datasets. MicroCinema is trained using the public
WebVid-10M dataset [4], comprising ten million video-text
pairs. This dataset exhibits a wide spectrum of video mo-
tions, ranging from near-static sequences to those with fre-
quent and abrupt scene changes. Text captions are automat-
ically sourced from alt text, resulting in some noise. There-
fore, we perform a filtering process which excludes video-
text pairs with a low CLIP score or with excessively high or
low motions.
Evaluation metrics. The quantitative evaluations are con-
ducted on UCF-101 [38] and MSR-VTT [51] benchmark
datasets under the zero-shot setting. On UCF-101, Frechet
Video Distance (FVD) [39] and Inception Score (IS) [34]
are reported to validate the temporal consistency, where
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Figure 4. Comparison with Make-A-Video and Video LDM. Reference images generated by DALL-E 2 (top) and Midjourney (bottom).
The generated videos from our model shows a clear and coherent motion.

10K or 2K video clips are generated using a sentence tem-
plate of the category names. On MSR-VTT, Frechet Video
Distance (FVD) [11] and CLIPSIM [36, 47] are provided
to assess the quality of generated frames and the semantic
correspondence, where CLIPSIM is computed by averag-
ing the cosine similarity of CLIP embeddings [28] between
generated frames and captions. We utilized captions from
the MSR-VTT validation set, comprising 2.9K entries, to
generate the video clips. The condition images are gener-
ated with SDXL model [32] on all evaluations unless other-
wise specified.

4.1. Comparison with State-of-the-Arts

Implementation details. MicroCinema generates video
from text in a two-stage process. In the first stage, we
employ a SOTA T2I model SDXL [27] to generate an im-
age according to the text. Then in the second stage, the
image&text-to-video generation model is built upon the
pre-trained weights of Stable Diffusion 2.1. Temporal layer
is zero initialized. During training, the learning rate for the
temporal modules is set to 2e-5, while the learning rate for
the spatial model is 10 times smaller than that of the tempo-
ral modules. The output of the image&text-to-video model
yields a video clip with a spatial resolution of 320x320, con-
sisting of 9 frames at a rate of 2fps. The model is trained

on the filtered WebVid dataset for one epoch, employing the
same diffusion noise schedule as SD2.1.
Quantitative evaluation. We evaluate zero-shot text-to-
video generation performance on both UCF101 and MSR-
VTT. In the case of UCF101, we produce 10K samples us-
ing simple clip captions. For MSR-VTT, we generate 2.9K
samples using the captions provided within the MSR-VTT
dataset. Tab. 1 presents a quantitative comparison between
MicroCinema and alternative text-to-video models. These
models are categorized into two groups based on whether
they leverage additional data beyond WebVid-10M. As data
is of paramount importance to the training of video gener-
ation model, we can observe that the methods in the first
group (with additional data) achieve superior overall per-
formance compared to those in the second group. Remark-
ably, despite being exclusively trained on the WebVid-10M
dataset, our proposed MicroCinema, with its innovative de-
sign, achieves the most outstanding performance among
all methods on both datasets. It achieves the lowest FVD
values of 342.86 on UCF101 and 377.40 on MSR-VTT.
Notably, MicroCinema surpasses methods employing addi-
tional data and notably outperforms those relying solely on
the WebVid-10M dataset by a considerable margin.
Qualitative evaluation. Fig. 4 compares the video clips
generated by MicroCinema and two other methods, known

8419



Figure 5. Human evaluation between VideoLDM and ours.

as Make-A-Video and Video LDM. Compared to the other
two methods, our approach can generate noticeable and ac-
curate motion.
Human evaluation. We Randomly selected 40 out of 54
text-video pairs from the VideoLDM, we ensured fairness
by cropping appropriate region from VideoLDM videos into
square shapes to match our videos and prevent informa-
tion leakage. Ten university students, unfamiliar with both
VideoLDM and our results, evaluated these pairs based on
Motion Quality, Text Alignment, Visual Quality, and Over-
all Preference. Our results, depicted in the Fig. 5, con-
clusively show superior performance of our approach over
VideoLDM across all evaluated aspects.

4.2. Ablation Studies

We conduct ablation studies to validate our design choices
concerning appearance injection and shifted noise training.
For efficiency purposes, we adopt several different settings
from the experiments used for system comparison. First,
models employing different options are trained using a 1M
subset of the filtered WebVid-10M dataset. Each model un-
dergoes training for 64K steps (equivalent to one epoch)
with a batch size set at 16. Second, during inference, we
directly generate 17 frames without using the TSR module.
Third, for the zero-shot FVD and IS evaluation on UCF101,
we uniformly select 2K samples instead of using the entire
10K test set. It’s notable that while using this smaller 2K-
sample test set, the absolute FVD values are higher com-
pared to those derived from the larger 10K-sample test set
for the same model.

4.2.1 Appearance Injection

In an image&text-to-video model, the most important de-
sign choice is how to inject the appearance information into
the primary U-Net of the generation model.
Concatenation (Concat). A common approach in related
work [5, 20] is to direct concatenation of the latent features
from the reference image to the noise input of the U-Net.
Addition to Decoder (Add-to-Dec). Our approach, how-
ever, adopts an AppearNet, akin to ControlNet for structure
control. In the vanilla ControlNet, embeddings from the
ControlNet are added to the decoder of the U-Net. We em-
ploy a similar operation in this setting.
Addition to Encoder and Decoder (Add-to-EncDec).
Considering that the reference image contains more appear-

Table 2. Ablation study on UCF-101 for appearance injection
methods.

Method Zero-Shot IS (↑) FVD (↓)

Concat Yes 15.83 688.92
Add-to-Dec Yes 27.90 589.59
Add-to-EncDec Yes 27.25 525.02
Add-to-EncDec-SPADE Yes 29.63 508.56

ance details than the structural information in ControlNet,
we propose injecting appearance into both the encoder and
the decoder of the U-Net. This improvement is expected to
elevate generation quality through a more comprehensive
integration of appearance features.
Addition to Encoder and Decoder with SPADE (Add-
to-EncDec-SPADE). Expanding further, we integrate the
SPADE technique, commonly used in image generation
models, by infusing information into the GroupNorm lay-
ers of the U-Net. This final design constitutes the core of
our method, MicroCinema.

Tab. 2 presents a comparative analysis of the zero-shot
FVD performance among these four design choices. The
results clearly demonstrate that our final model achieves the
most superior performance.

4.2.2 Appearance Noise Prior

Another key mechanism we propose for injecting appear-
ance information into the image&text-to-video generation
network is the Appearance Noise Prior. One crucial and in-
tricate parameter within this mechanism is the proportion,
denoted by λ, determining the addition of the reference im-
age to the noise input of the diffusion model. Selecting an
optimal value for λ involves balancing potential harm to
the pre-trained image generation model and the advantages
gained from additional information.

Figure 6. UCF-101 Zero shot FVD across different λ and γ.

Quantitative evaluation. This set of ablation studies aims
to empirically identify the most effective parameter for use
with Appearance Noise Prior. Alongside λ, which we test at
values of 0 (no Appearance Noise Prior), 0.03, and 0.1. Be-
sides, according to our formulation, an appropriate amount
of appearance may also help during the inference stage.
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Figure 7. Qualitative ablation studies of Appearance Injection Network (AIN) and Appearance Noise Prior (ANP).

Therefore, we also explore the impact of adding extra γzc

to ϵ during the inference stage. Therefore, the sampling
noise during the inference stage is (λ + γ)zc + ϵn, where
ϵn is sampled from N (0, I). Fig. 6 shows the FVD scores
across various combinations of (λ, γ). We find that the low-
est FVD score occurs when λ = 0.03 and γ = 0.02. No-
tably, this configuration leads to a substantial reduction in
FVD compared to the baseline (λ = 0, γ = 0), dropping
from 692 to 508, alongside a notable increase in IS from
18.5 to 29.6.
Human evaluation. We generated samples with or without
appearance noise prior (ANP) for 20 prompts, and another
10 students are invited to the study. Their preferences, plot-
ted in the Fig. 8, show the effect of ANP.

Figure 8. Human evaluation of appearance noise prior.

4.2.3 Qualitative Ablation Studies

Fig. 7 qualitatively confirms the standalone effectiveness of
Appearance Injection Network and Appearance Noise Prior.
Yet, their combination yields the best results.

4.3. Control in Image&Text-to-Video Model

Our image&text-to-video model relies on both a reference
image and a text prompt for conditioning. Our findings em-
phasize that the reference image’s quality profoundly influ-
ences the resultant video quality. Consequently, both the
text caption and the text-to-image model used to gener-
ate the reference image significantly impact the system’s
performance. We simplify our experiments by using the
base image&text-to-video model without using the tempo-
ral super-resolution component. In this setup, we adopt the
resulting model to generate 17 frames with 10K samples on
UCF101 for evaluating IS and FVD.

Tab. 3 illustrates the influence of various prompts on the
model’s generated outputs. We utilize the state-of-the-art
SDXL model for text-to-image generation. Within the table,

Table 3. Evaluation on UCF-101 using different text prompts.
SDXL is used as the first stage model.

Method Prompt IS (↑) FVD (↓)

MicroCinema Simple 29.79 374.05
MicroCinema LLaVA-1.5 32.07 336.40

Table 4. Evaluation on UCF-101 using different text-to-image
models. Prompts generated by LLaVA-1.5 are utilized.

Method Frist Stage Model IS (↑) FVD (↓)

MicroCinema SD-2.1 31.25 412.53
MicroCinema SDXL 32.07 336.40

“simple” denotes a straightforward prompt created by con-
necting “a video of” with the motion tag, while “LLaVA-
1.5” signifies a generated caption via the LLaVA-1.5 model
[21, 22] using the key frame as input. Results indicate that
a well-crafted prompt correlates with higher-quality videos
generated by the model. Moreover, we assess the impact
of employing different Text-to-Image (T2I) models. Tab. 4
underscores the substantial influence of T2I models on the
FVD and IS of the generated videos. Notably, the design of
MicroCinema affords us the flexibility to integrate various
T2I models for generating the first-stage reference image,
with potential performance enhancements stemming from
advancements in text-to-image models.

5. Conclusion
We presented MicroCinema, an innovative text-to-video
generation approach that employs the Divide-and-Conquer
paradigm to tackle two key challenges in video syn-
thesis: appearance generation and motion modeling.
Our strategy employs a two-stage pipeline, utilizing
any existing text-to-image generator for initial image
generation and subsequently introducing a dedicated
image&text-to-video framework designed to focus on
motion modeling. To improve motion capture, we propose
an Appearance Injection Network structure, complemented
by an appearance-aware noise prior. Experimental results
showcase MicroCinema’s superiority, achieving a state-of-
the-art zero-shot Frechet Video Distance (FVD) of 342.86
on UCF101 and 377.40 on MSR-VTT. We anticipate our
research will inspire future advancements in this direction.
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