
ModaVerse: Efficiently Transforming Modalities with LLMs

Xinyu Wang
University of Adelaide

Bohan Zhuang
Monash University

Qi Wu
University of Adelaide

Figure 1. Comparative illustration of MLLM paradigms: (a) Multi-modal Pre-training, where new modules such as vision encoders and
decoders are integrated within the standard LLM framework. (b) Adaptor Training, illustrating the use of projection layers to connect
LLMs to pre-existing modules. (c) LLM as an Agent, highlighting the strategic application of prompts in conjunction with external tools.
(d) Adaptor+Agent (ours), transforming modalities with efficient language-based Input/Output (I/O) alignment. E, D, and L represent the
Encoder, Decoder, and Linear Layer respectively. T-to-x denotes a text-to-x generative model, where x can be Image, Video, and Audio.

Abstract

Humans possess the capability to comprehend diverse
modalities and seamlessly transfer information between
them. In this work, we introduce ModaVerse, a Multi-modal
Large Language Model (MLLM) capable of comprehend-
ing and transforming content across various modalities in-
cluding images, videos, and audio. Predominant MLLM
frameworks have largely relied on aligning latent spaces
of textual and non-textual features. This alignment pro-
cess, which synchronizes a language model trained on tex-
tual data with encoders and decoders trained on multi-
modal data, often necessitates extensive training of sev-
eral projection layers in multiple stages. Inspired by LLM-
as-agent methodologies, we propose a novel Input/Output
(I/O) alignment mechanism that operates directly at the
level of natural language. It aligns the LLM’s output with
the input of generative models, avoiding the complexities
associated with latent feature alignments, and simplifying
the multiple training stages of existing MLLMs into a sin-
gle, efficient process. By conducting experiments on sev-
eral benchmarks, we demonstrate that our approach at-
tains comparable performance with the state of the art while
achieving considerable efficiencies in data usage. The code
is available at https://github.com/xinke-wang/ModaVerse.

1. Introduction

Spanning from ancient inscriptions to contemporary on-
line encyclopedias, texts have served as the quintessential
medium for chronicling the expanse of human knowledge.
Such a vast accumulation of textual data provides a fertile
terrain for training Large Language Models (LLMs) [4, 31,
32, 43, 44]. Through extensive training on massive corpora,
LLMs undergo a transformative process, a phenomenon
captured by the concept where quantitative increases re-
sult in qualitative behavioral shifts [49], thus emerging with
human-like reasoning abilities. This enables them to com-
prehend and respond to human instructions with remarkable
precision. Such proficiency dramatically widens the scope
of LLM applications across various domains, such as chat-
bots, programming copilots, and robotic agents.

Yet, the advent of richer communication forms calls for
an evolution beyond the traditional confines of text. In the
era where a picture is worth a thousand words, the capa-
bility to interpret and integrate complex visual and auditory
data is invaluable. The pursuit of enabling LLMs to process
and generate information beyond textual data reflects the
natural progression of AI, aspiring to mimic the full breadth
of human communication. This has spurred the evolution
of Multi-modal LLMs (MLLMs), which are designed to
understand, transform, and produce content across various
modalities, such as images, audio, and video. This growing
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interest has prompted a proliferation of research and innova-
tion in the field [11, 17, 25, 40, 48, 50, 54, 56, 59]. Address-
ing the limitations of traditional text-only LLMs, multi-
modal pretraining, adaptor training, and LLM as an agent
emerge as three key paradigms for equipping LLMs with
multi-modal capabilities. Figure 1 compares the existing
paradigm’s overview schematic, assessing its performance
and efficiency across three dimensions. Specifically, Train-
ing Complexity refers to the volume of training data, com-
putational resources consumed, and the number of training
stages involved. Consistency denotes the extent to which
output is affected by modifications to inputs or prompts.
Flexibility pertains to the capacity for a variety of interpret-
ing and generating outputs under diverse conditions.
Multi-modal Pre-training (Figure 1 (a)) expands the tra-
ditional LLM framework to accommodate non-textual in-
puts and outputs by integrating additional modality en-
coders and decoders into the existing framework. Through
custom-designed pre-training tasks, the LLM learns to rep-
resent multiple modalities effectively, achieving superior
consistency and flexibility compared to existing paradigms.
However, adapting a text-based LLM, which has been pre-
trained on extensive textual data, to a multi-modal context
often requires significant fine-tuning or even complete re-
training. Therefore, this adaptation demands considerable
computational resources. For example, Emu [40] combines
Eva-CLIP [39], LLaMA [43], and Stable Diffusion [34] to
develop a foundational multi-modal model. This develop-
ment involves an intensive pre-training phase on a large-
scale dataset and the use of hundreds of GPUs.
Adaptor Training (Figure 1 (b)) offers a computation-
ally economical alternative. This strategy, demonstrated
by BLIP-2 [19] and MiniGPT-4 [59], is typically built
upon well-established LLMs and multi-modal encoders/de-
coders. It involves integrating these multi-modal modules
with the LLM by training a set of projection layers while
keeping the parameters of the LLM either frozen or fine-
tuned using parameter-efficient techniques like LoRA [13].
These layers translate non-textual representations, such as
image features, into the textual domain of LLMs, thus
avoiding extensive training but preserving flexibility. How-
ever, despite reducing training data volume and time, these
methods still require a complex training procedure. For
example, NExT-GPT [50] employs a three-step training
pipeline where the encode/decode-side projection layers
and the LLM adaptor are each trained in distinct stages.
This intricate setup substantially escalates the complexity
and leads to redundancy in the training process.
LLM as an Agent (Figure 1 (c)) demonstrates a training
free framework. These methods utilize the zero-shot infer-
ence capabilities of LLMs, emphasizing strategic prompt
crafting and workflow design. This approach guides the in-
terpreting and generation of multi-modal content through

interactions with external tools. For instance, Hugging-
GPT [36] has developed a four-step pipeline that prompts
OpenAI’s ChatGPT to select and execute models from the
HugingFace’s model zoo, thereby solving a variety of tasks.
However, it is crucial to recognize that these methods, lack-
ing targeted training, often rely on x-to-text or text-x mod-
els, for processing non-textual inputs. This reliance may
result in limited flexibility in handling diverse data types.
Additionally, the heavy dependence on the design of system
prompts and the reasoning capabilities of LLMs can further
lead to inconsistent results.

So far, each paradigm presents a specialized approach
for achieving functionality in MLLMs, each with its ad-
vantages and limitations. Considering these trade-offs, ex-
ploring the integration of their strengths into a cohesive
approach is compelling. Specifically, this paper proposes
Adaptor+Agent, an approach that aims to find a harmonious
balance between the efficiencies of the LLM-as-agent ap-
proaches and the flexibility of adaptor training methods.
Adaptor+Agent (Figure 1 (d)) aims to combine the ben-
efits of adaptor training with LLM-as-agent methods. As
shown in the figure, to maintain the flexibility of accept-
ing arbitrary combinations of input modalities, we train a
set of linear adaptors to map the input’s non-textual fea-
tures into the LLM’s textual space. This approach allows
the model to comprehend multi-modal inputs while preserv-
ing training efficiency by only tuning the adaptors. For
the output, we adopt an LLM-as-agent design, using es-
tablished text-to-x models for generating non-text outputs.
This strategy avoids the need for tuning additional output-
side projection layers, thus enhancing efficiency. The pri-
mary challenge in the Adaptor+Agent framework is align-
ing the LLM’s output with the text-to-x models’ input. To
address this, we introduce Input/Output (I/O) Alignment.
In contrast to previous adaptor-based approaches that focus
on feature-level alignment between the LLM and genera-
tive models, our I/O Alignment strategy prompts the LLM
to generate language-aligned meta-responses. These meta-
responses contain detailed instructions for activating the
generative models. We achieve this I/O Alignment through
an instruction-following tuning process. As a result, in a
single stage of tuning, the LLM is equipped to invoke ex-
ternal models for producing non-text outputs, thus bypass-
ing the complex feature-level alignment typically required
in the adaptor training paradigm.

In summary, the technical contributions of this paper are:

• We introduce a new Adaptor+Agent training paradigm for
Multi-modal Large Language Models that synthesizes the
strengths of both adaptor training and the LLM-as-Agent
approach. This integration effectively reaps the benefits
of training efficiency and model flexibility.

• To address the alignment challenges inherent in the
LLM-as-Agent methodology, we propose an I/O Align-
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Figure 2. Comparison of the overview schematic of recent proposed MLLMs. L represents linear projection layers.

ment strategy. This strategy diverges from conventional
feature-level alignment and instead operates at the natu-
ral language level, offering a more efficient alternative.

• Our final product, ModaVerse, demonstrates comparable
performance to the current state of the arts on several
widely used benchmarks while requiring fewer data and
training resources, thereby offering a more efficient op-
tion without compromising effectiveness.

2. Related Work

Multi-modal Pretrained MLLM. Multi-modal pertaining
is not a novel concept. Early efforts [21, 26, 37] have ex-
plored ways to extend the capabilities of language models to
comprehend visual content. These models achieved promis-
ing performance on specific vision-language tasks [3, 47]
but failed to generalize to more general scenarios. Re-
cent advancements, however, have revealed that simpler
model architectures can yield impressive outcomes when
subjected to extensive large-scale pretraining, thanks to ad-
vanced computational resources and diverse datasets. For
example, PaLI [6] demonstrates this by integrating a vi-
sion transformer with a language transformer and training
on an extensive dataset of 10 billion image-text pairs. Sim-
ilarly, CM3Leon [56] employs a straightforward decoder-
only transformer architecture, trained on 340 million image-
text pairs. This approach has enabled remarkable flexibility
in generating and modifying both text and images, show-
ing strong performance in image-to-text and text-to-image
conversions. In addition, to enable an LLM that can gener-
ate non-text content, Emu [40] combines a stable diffusion
model with the LLaMA as a decoder, trained on a diverse
corpus of 82 million image-text and video-text pairs. This

integration marks a significant stride in the field, showcas-
ing the growing versatility of LLM in multi-modal contexts.

Adaptor Trained MLLM: Leveraging recent advance-
ments in parameter-efficient fine-tuning techniques [13]
and data-efficient approaches [25], numerous studies have
explored the feasibility of training adaptors for aligning
features between LLMs and various non-textual modules.
Flamingo [1] represents a pioneering effort in freezing the
parameters of both visual encoders and LLMs, training a set
of gated cross-attention layers to integrate visual knowledge
into LLMs. However, it still necessitates extensive training
on a massive dataset. Another notable example is BLIP-
2 [18], which introduces a BERT-based Q-Former to trans-
late image features into textual representations, thereby en-
abling LLMs to comprehend image content. This innova-
tion has inspired subsequent research [5, 38], revealing that
the Q-Former structure can be further simplified to a sin-
gle linear layer, significantly reducing the number of train-
able parameters. However, these advances, while showing
considerable promise, have been predominantly applied to
image-text tasks. In an effort to create a more versatile
MLLM that can process a broader array of input types, sub-
sequent works [11, 38] replaced the dual-modality encoder,
CLIP [33], with the more versatile six-modality encoder,
ImageBind [11]. In addition, other works [9, 17, 50, 57]
try to align the output side of LLMs with generation mod-
els, enabling the utilization of latent features from LLMs
to guide generative models in producing non-textual con-
tent. For example, a concurrent study, NExT-GPT [50], in-
troduces a multi-stage training procedure. This procedure
includes a series of adaptors that align the LLM with en-
coders and generative models at the feature level. Our work
differs from NExT-GPT in that it aligns the generative mod-
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Figure 3. Overview of the Proposed ModaVerse Pipeline. In the input projection stage, multi-modal inputs I ′ are aligned to the LLM’s
space O1 using a series of trainable linear layers. During the meta-response generation stage, LLM is fine-tuned with a LoRA adaptor,
prompting the generation of a meta-response O2. In the final response generation stage, additional pretrained text-to-x models are utilized
to generate the ultimate multi-modal response O′ based on the parsed meta response.

els at the language level instead of the feature level, thereby
significantly reducing training complexity.
LLM-as-agent MLLM: The remarkable zero-shot infer-
ence capabilities of LLMs enable them to effectively uti-
lize external tools [27, 35, 36, 41, 55]. This potential facil-
itates the creation of specialized pipelines and associated
prompts, guiding LLMs to understand or produce multi-
modal content. For instance, HuggingGPT [30] has devel-
oped a multi-step pipeline. In this process, ChatGPT ini-
tially interprets human instructions and selects appropriate
models from a model zoo to accomplish the given tasks.
Subsequently, the outputs from these external models are
fed back into ChatGPT for parsing and generating the fi-
nal response. Another notable example is MM-React [55],
which introduces the integration of vision experts, such as
OCR, image captioning, and object detection models, to ex-
tend the LLMs’ ability to process visual content. For each
pair of input images and instructions, the LLM employs the
relevant vision expert to extract pertinent information from
the images, thereafter generating relevant responses.

Figure 2 presents a schematic overview of recently pro-
posed MLLMs. It demonstrates the characteristic of adaptor
training, wherein all models incorporate additional projec-
tion components, such as a linear layer or a Q-former, ei-
ther before or after the LLM. These components are utilized
to align textual and non-textual representations between the
LLM and encoders/decoders. In contrast, multimodal pre-
training methods usually feature a more straightforward and
concise architecture. They direct the LLM itself to learn
multimodal features, thus avoiding the projection structures
between different modules. Furthermore, LLM-as-agent
methods employ an external model zoo to assist in process-
ing or producing non-textual content, without integrating
trainable modules into the system. In comparison, the pro-
posed Adaptor+Agent paradigm follows an adaptor struc-
ture on the encoder side, where linear projection layers are
trained to align the input features with the LLM’s textual
space. On the decoder side, the LLM is treated as an agent

to invoke external models for generating non-text content.

3. ModaVerse
3.1. Pipeline Overview

Figure 3 illustrates the comprehensive framework of the
proposed ModaVerse, which contains three functional
blocks, including input projection, meta-response genera-
tion, and final response generation.
Input Projection: To adapt a text-based LLM into an
MLLM capable of interpreting non-textual inputs, it is es-
sential to align the LLM’s textual features with various
modalities during the input phase. Recent research [5, 38,
59] has demonstrated the feasibility of aligning these dif-
ferent modalities using a single linear layer. Following this,
we employ ImageBind [11] as a unified encoder, which pro-
cesses inputs from diverse data types, including images,
videos, and audio, converting them into a specific embed-
ding. Subsequently, for each modality, we learn a set of lin-
ear projection layers to map these encoded representations
into the LLM’s text space. As a result, ModaVerse gains the
capability to comprehend multi-modal inputs.
Meta Response Generation: Since the foundational LLM
is pre-trained exclusively on text-only data, it lacks the ca-
pability to directly generate non-text outputs. To address
this limitation, we treat the foundational LLM as an agent,
designed to produce only meta-responses. As depicted in
Figure 3, the meta-response comprises formatted informa-
tion that includes the invocation details. For instance, ac-
cording to the meta-response, the system might activate a
text-to-image model to create an image based on the prompt
“A photo of a cat”. This design circumvents the need for
training an additional output-side projection layer to align
the LLM’s feature space with that of generative models,
thereby simplifying the training process.
Final Response Generation: This block incorporates sev-
eral replaceable text-to-x models to generate the final re-
sponse, which may include images [34], videos [28], and
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audio [23]. Based on the invocation details parsed from
the meta-responses, one or more models will be activated
to produce the non-textual output.

So far, the Adaptor+Agent paradigm has become clear.
In this paradigm, the input projection is designed with a
set of linear adaptors that map multimodal features to the
LLM’s textual space. The LLM itself is treated as an agent,
invoking external models to generate the final responses.
The benefits of such a design are:
• Training adaptors during the input phase preserve the de-

tails in the input data, while simultaneously reducing the
training volume compared to full multimodal pretraining.

• Treating the LLM as an agent during the output phase not
only decouples it from external generative models, en-
abling a plug-and-play approach but also eliminates the
need for additional projection layers. This means that
running generative models during the training stage is un-
necessary, thereby reducing training complexity.

3.2. I/O Alignment

Consider a text-based LLM: I → O with its input and
output sets defined as I = O = {text}, the objective of
ModaVerse is to discover an efficient transformation that
extends LLM to a multimodal model capable of handling
I ′ = O′ = {text, image, video, audio}, described as fol-
lows:  P : ImageBind(I ′) → O1,

LLM ′ : O1 → O2,
M : O2 → O′

(1)

Each line of this equation corresponds to a stage depicted
in Figure 3. The first line denotes a trainable projection P
from the multimodal feature - extracted by ImageBind [11]
from the input I ′ - into the textual space of the LLM, O1.
The second line involves tuning a LoRA [13] adaptor to
prompt the adapted LLM, defined as LLM ′, to generate
a meta-response O2 from the input feature O1. Finally, the
third line, where M represents the frozen, established text-
to-x model zoo, utilizes the parsed meta-response to gener-
ate the final multimodal outputs O′. To achieve these objec-
tives, we propose an instruction-following I/O Alignment.
This alignment aims to simultaneously fit the I ′ → O1 and
O1 → O2 alignments. As such, the trainable components,
as depicted in Figure 3, consist of three linear layers and
the LoRA adaptor. Specifically, the I/O Alignment involves
two primary components: the construction of instructions,
and the tuning of linear and LoRA adaptors.

To implement I/O Alignment, two issues must be ad-
dressed. First, since an exact representation of O1 is not di-
rectly obtainable, existing adaptor-based methods typically
train a direct mapping from I ′ → O2, using captions from
paired datasets as O2 to learn the projections, framing the
process as a multi-modal captioning task. However, in our

case, O2 is a meta response rather than just the text descrip-
tions of I ′. That is, given instructions and accompanying
multi-modal inputs, the expected output should specifically
identify which model to use and how to use it. For exam-
ple, given the instruction, ‘Generate an image for an ani-
mal based on the provided audio clip of its vocalization’,
along with an accompanying audio clip that records a cat’s
meowing, the expected invocation information should be
as follows: ‘{model: “text-to-image”, prompts: “a photo
of a cat”}’. Therefore, simply using x-to-text datasets to
train the projection layers under an image captioning task
is not possible to facilitate such purposes. The second is-
sue is the language-level misalignment due to the different
training corpora of LLMs and generative models. For in-
stance, to describe a landscape image, an LLM tends to
produce coherent, literary paragraphs, whereas a text-to-
image model typically prefers concise, descriptive prompts
accompanied by attributes such as “4k” and “masterpiece”.
Thus, I/O Alignment should also achieve O1 → O2, en-
suring language-level alignment between the meta-response
and the input prompts required by generative models.

To address the issues mentioned above, I/O Alignment
employs an instruction-following training approach. The
adaptors are trained with an input that includes both a lan-
guage instruction and accompanying multi-modal elements,
with the aim to produce a meta-response that details the fol-
lowing invocation. We utilize training datasets from gener-
ative models to create pairs of instructions and their corre-
sponding ground truths (see Section 3.3 for the instruction
generation procedure). This method is beneficial for sev-
eral reasons: 1. Instruction-following tuning compels the
LLM to fully comprehend multi-modal inputs, thereby aid-
ing in aligning the input projection layers between multi-
modal input and LLM. 2. The training datasets of gener-
ative models typically provide both non-textual data, such
as images, videos, or audio, and their corresponding textual
descriptions, thereby offering a solid foundation of aligned
data samples. 3. Most open-source generative models are
trained on the same publicly available datasets. Aligning the
meta-response with the text descriptions from these datasets
means it is possible to seamlessly switch between genera-
tive models, thus facilitating a plug-and-play approach.

Based on this, we generate different types of instructions
to fulfill the above objectives, which are as follows:
Input-side Alignment Instruction focuses on aligning the
LLM’s capability to comprehend inputs comprising com-
binations of various modal data, such as text+image, im-
age+video, or image+audio+video. For instance, when pre-
sented with a combination of image, audio, and video in-
puts, the instruction “Describe the given image, audio, and
video” directs the MLLM to sequentially describe the con-
tent in the image, followed by the audio, and then the video.
Output-side Alignment Instruction aims to align the
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Method Type Input Output Stage I Stage II Stage III
Data GPU Time Data GPU Time Data GPU Time

Emu [40] pretrain T,I,V T,I 82M 128×2d 24M 32× 1.28M 16×16h
LLaVA [25] adaptor T,I T 595k 8×20h 158k 8×10h N/A N/A
BLIP-2 [18] adaptor T,I T 129M 16×6d 129M 16×3d N/A N/A

NExT-GPT [50] adaptor T,I,V,A T,I,V,A 13M+ - 13M+ - 20k+ -
ModaVerse adaptor+agent T,I,V,A T,I,V,A 2M 4×20h N/A N/A N/A N/A

Table 1. Comparison of training complexity of ModaVerse with recent MLLMs. ‘N/A’ indicates stages that are not required, while ‘-’
denotes that the data was not disclosed by the authors. ‘T’, ‘I’, ‘V’, ‘A’ are the abbreviations of text, image, video, and audio, respectively.

LLM’s ability to generate meta-responses that include in-
vocation details, such as the selected model and prompts.
For example, the instruction “Generate an image based on
the provided audio of an animal sound” teaches the model
to utilize a text-to-image model to generate an image, po-
tentially with a prompt like “A photo of a cat”.
Reasoning Boosting Instruction is designed to preserve
and enhance the LLM’s reasoning capabilities through a
diverse range of topics. For instance, an instruction like
“Where might this audio clip have been recorded?” requires
the LLM to make a reasoned inference based on the input
data, thereby strengthening its reasoning skills.

3.3. Instruction Generation and Training

In this section, we introduce how to generate the instruction
invocation pairs used in I/O Alignment.

1 {"instruction": ["Generate an image of
an animal based on the provided
vocalization.", "cat_meowing.wav", ]

2 "invocation": [("text-to-image", "A
photo of a cat"), ]}

As demonstrated in the code block above, an instruction-
invocation pair consists of two parts: the instruction, which
represents the input, and the invocation, which represents
the expected output of the LLM. To obtain these forms of
data samples, we constructed them from two sources. The
first source utilizes components of existing instruction tun-
ing works, such as LLaVA [25], VideoChat [20], and In-
structBLIP [24]. However, it should be noted that the in-
structions in these works primarily fall into two categories:
Input-side Alignment Instructions and Reasoning Boosting
Instructions. Thus, to generate Output-side Alignment In-
structions, which are crucial for the success of ModaVerse,
we created specific templates to assist the OpenAI ChatGPT
API in producing new instructions on a large scale. Specif-
ically, each query sent to the ChatGPT API comprises three
components: Seed Examples, Candidate Descriptions, and
Language References.
Seed Examples consist of a set of standard instruction in-
vocation pairs, randomly selected from a manually crafted
collection. These examples serve as guides for the Chat-

GPT API, demonstrating how to generate samples in the
given format and providing an illustration of the task.
Candidate Descriptions comprise randomly selected text
descriptions from the paired datasets, which include de-
scriptions of images, audio, and videos. These descriptions
aim to mimic the true inputs, while the ChatGPT API is re-
quested to generate appropriate instructions and invocation
details based on these candidates and seed examples.
Language References include text descriptions randomly
selected from the training set of generative models. These
samples serve as a guide for the ChatGPT API to learn the
language style of the prompts used in the generative models,
helping to generate language-aligned invocation details.

For training, we use Vicuna [7] as the foundation LLM,
the trainable parts of the proposed ModaVerse (see Figure 3)
consist only of three linear layers and the LoRA adaptor of
the LLM. Table 1 compares the training complexity of Mo-
daVerse with that of some recently proposed MLLMs. It
shows that the proposed method enjoys lower training com-
plexity.

4. Experiments

4.1. Quantitative Results

To evaluate the proposed ModaVerse, we follow previ-
ous works [42] to assess the model’s understanding abil-
ity (x→text) and its generation ability (text→x), where x
can be image, audio, and video. Tables 2 and 3 illus-
trate the text-to-image and image-to-text performance on
the COCO caption dataset [22]. The results demonstrate
that our method achieved an 11.28 FID score in the image
generation task, comparable to recent methods. In terms
of image understanding capability, the proposed ModaV-
erse outperforms the any-to-any diffuser CoDi [42] in both
B@4 and METEOR metrics, though it is slightly lower
than NExT-GPT [50] and OFA [46]. The text-to-audio and
audio-to-text performances on the AudioCaps dataset [15]
are showed in Tables 4 and 5. The proposed method out-
performs NExT-GPT and is narrowly eclipsed by CoDi.
In audio captioning, our approach secures the second-best
performance, rivaling the state-of-the-art models. Tables 6
and 7 showcase the text-to-video and video-to-text perfor-
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Method FID (↓)
CogVideo [8] (NeurIPS’21) 27.10
GLIDE [29] (ICML’22) 12.24
CoDi [42] (NeurIPS’23) 11.26
SD [34] (CVPR’22) 11.21
NExT-GPT [50] (arXiv’23) 11.28
ModaVerse 11.24

Table 2. Text-to-image performance on COCO-caption [22].

Method B@4 (↑) METEOR (↑) CIDEr (↑)
Oscar [21] (ECCV’20) 36.58 30.4 124.12
BLIP-2 [19] (ICML’23) 43.7 — 145.8
OFA [46] (ICML’22) 44.9 32.5 154.9
CoDi [42] (NeurIPS’23) 40.2 31.0 149.9
NExT-GPT [50] (arXiv’23) 44.3 32.9 156.7
ModaVerse 43.9 31.8 151.4

Table 3. Image-to-text performance on COCO-caption data [22].

Method FD (↓) IS (↑)
DiffSound [53] (TASLP’23) 47.68 4.01
AudioLDM-S [23] (ICML’23) 29.48 6.90
AudioLDM-L [23] (ICML’23) 23.31 8.13
CoDi [42] (NeurIPS’23) 22.90 8.77
NExT-GPT [50] (arXiv’23) 23.58 8.35
ModaVerse 23.40 8.22

Table 4. Text-to-audio performance on AudioCaps [15].

Method SPIDEr (↑) CIDEr (↑)
AudioCaps [15] (NAACL’19) 0.369 0.593
BART [10] (DCASE’21) 0.465 0.753
AL-MixGen [16] (ArXiv’22) 0.466 0.755
CoDi [42] (NeurIPS’23) 0.480 0.789
NExT-GPT [50] (arXiv’23) 0.521 0.802
ModaVerse 0.494 0.792

Table 5. Audio-to-text performance on AudioCaps [15].

Method FID (↓) CLIPSIM (↑)
CogVideo [12] (NeurIPS’21) 23.59 0.2631
MakeVideo [14] (ICML’23) 13.17 0.3049
Latent-VDM [34] (CVPR’22) 14.25 0.2756
Latent-Shift [2] (arXiv’23) 15.23 0.2773
CoDi [42] (NeurIPS’23) — 0.2890
NExT-GPT [50] (arXiv’23) 13.04 0.3085
ModaVerse 13.35 0.3014

Table 6. Text-to-video performance on MSR-VTT [52].

Method B@4 (↑) METEOR (↑)
ORG-TRL [58] (CVPR’20) 43.6 28.8
GIT [45] (TMLR’22) 54.8 33.1
mPLUG-2 [51] (ICML’23) 57.8 34.9
CoDi [42] (NeurIPS’23) 52.1 32.5
NExT-GPT [50] (arXiv’23) 58.4 38.5
ModaVerse 56.5 35.2

Table 7. Video-to-text performance on MSR-VTT [52].

mances on MSR-VTT [52]. Our method achieved a 13.35
FID score and a 0.3014 CLIPSIM score in video generation,
demonstrating parity with top-tier methods. Similarly, our
approach shows competitive results in video-to-text tasks,
as evidenced by its B@4 and METEOR scores.

Although our method does not outperform all state-of-
the-art methods (including two concurrent arXiv submis-
sions) across the six benchmarks, it is important to note the
efficiency of the proposed ModaVerse. First, our method is
capable of converting a variety of modalities, whereas some
state-of-the-art methods, such as SD [34] and OFA [46], are
specifically designed for single-route conversions like text-
to-image. Second, as Table 1 illustrates, ModaVerse bene-
fits from a more efficient training paradigm. It requires less
data and fewer computational resources. Specifically, in
contrast to NExT-GPT which necessitates three stages to in-
dependently train the projection layers, our method stream-
lines this process into a single stage. Regarding training
data, our approach uses less than 2% of the data volume
required by Emu [17] and BLIP-2 [18].

4.2. Qualitative Results

Since publicly available datasets are limited to certain com-
mon modality combinations, such as image-to-text and text-
to-video, this limitation may not comprehensively capture

the full extent of ModaVerse’s capabilities. Therefore, Fig-
ure 4 showcases various qualitative results of ModaVerse
across different modalities. For instance, examples (a), (c),
(f), and (l) emphasize the model’s conditioned generative
abilities. In addition, examples (g), (h), and (i) demonstrate
its proficiency in answering questions with inputs from a va-
riety of modalities. Moreover, examples (d) and (e) demon-
strate the potential for style transfer.

4.3. Limitations and Failure Cases

In exploring the capabilities of ModaVerse, Figure 5 in-
cludes some challenging scenarios where the model’s per-
formance can be further enhanced. Specifically, Example
(a) illustrates a current limitation of the model in image edit-
ing tasks, where it fails to retain the original background and
layout of the input images. Instead of modifying the exist-
ing image, the model generates an entirely new one. This
limitation highlights a specific challenge in our approach,
particularly for tasks that require fidelity to the original im-
age’s resolution and details. However, this can potentially
be addressed by integrating an additional editing model into
the model zoo at the final response generation stage, a de-
velopment we leave for future work. Another notable case
is Example (b), where, in the absence of language clues
at the input phase, the model tends to produce random, ir-
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(a) Audio+Text→Image 

Generate an image of an 
animal based on the 
provided audio clip of its 
vocalization.

(b) Image+Text→Audio 

Generate an audio for this 
scenario.

(sound of the waves)

(sound of cats meowing)

(c) Audio+Text→Video 

Generate a video based 
on the sound in the 
provided audio clip.

(sound of water flowing)

(d) Image+Text→Image 

Generate a cartoon image 
for this fruit.

(e) Image+Text→Video 

Generate a video based 
on the style of this image.

(f) Video+Text→Audio 

Generate an appropriate 
sound clip for this video.

(sound of burning 
firewood)

(g) Video+Text→Text 

Who is he?

Spider Man

(h) Image+Text→Text 

What is the name of this 
stature?

Statue of Liberty

(i) Audio+Text→Text 

What is the weather 
like now?

(sound of rain)

It’s raining

(j) Audio+Text→Audio

Generate a piece of 
music in the similar style. 

(k) Video+Text→Image 

Show an image of the food 
cooking in the video.

(techno music)

(l) Video+Text→Video 

Create a video of the 
animal in this video while 
it is eating.

(techno music)

Figure 4. Qualitative examples of the proposed ModaVerse interpreting and producing data presented in combinations of various modalities.
Blue and Red dashed boxes represent input and output respectively.

Edit the red apple in 
this image to green.

(sound of dog barking)

(a) Image Editing (b) Irrelevant Output

Figure 5. Failure cases of ModaVerse. (a) The model can only gen-
erate entirely new images and cannot modify the original pixels.
(b) The model tends to generate irrelevant outputs in the absence
of language instructions during the input phase.

relevant outputs. This issue arises because the instruction-
following trained model relies on given language instruc-
tions for reasoning out the expected response. Without such
clues, it may struggle to produce appropriate responses.

5. Conclusion
In this paper, we have presented ModaVerse, a MLLM capa-
ble of interpreting and generating data in various modalities.
This model diverges from existing MLLM frameworks by
adopting a synergistic approach that merges adaptor train-

ing with the LLM-as-agent methodology. By employing
adaptors, ModaVerse effectively aligns the text-based LLM
with multi-modal inputs through a set of linear projection
layers. This enhances its capability to interpret a diverse ar-
ray of input modalities. On the output side, instead of train-
ing additional projection layers to align the output space
with generative models, we treat the LLM as an agent. This
agent produces a meta-response containing invocation de-
tails, which are then parsed to activate generative models
for generating the final response. This integrative Adap-
tor+Agent training paradigm not only streamlines the com-
plex multi-stage feature alignment process but also signifi-
cantly boosts the efficiency of the training process, offering
an alternative for the training of MLLMs. For future work,
we aim to address the current framework’s limitations and
weaknesses, such as preserving the original layout informa-
tion of inputs, thereby broadening its applicability to sce-
narios requiring original information, like image and video
editing.
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