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The person jogs around to the left and right

The man walks to the chair in a curve

A person jumps while grabbing 
something in the front of the sofa

The man walks forward then back

The man walks while 
holding onto the rail

This person kicks with his 
left foot while standing 

(a)

Walk to the door
Stand up from the table

Sit on the table

(b)

(c)

Figure 1. Language-guided human motion generation in 3D scenes via scene affordance. Employing scene affordance as an intermediate
representation enhances motion generation capabilities on benchmarks (a) HumanML3D and (b) HUMANISE, and significantly boosts the
model’s ability to generalize to (c) unseen scenarios.

Abstract
Despite significant advancements in text-to-motion syn-

thesis, generating language-guided human motion within 3D
environments poses substantial challenges. These challenges
stem primarily from (i) the absence of powerful generative
models capable of jointly modeling natural language, 3D
scenes, and human motion, and (ii) the generative models’ in-
tensive data requirements contrasted with the scarcity of com-
prehensive, high-quality, language-scene-motion datasets.
To tackle these issues, we introduce a novel two-stage frame-
work that employs scene affordance as an intermediate
representation, effectively linking 3D scene grounding and
conditional motion generation. Our framework comprises

an Affordance Diffusion Model (ADM) for predicting ex-
plicit affordance map and an Affordance-to-Motion Diffusion
Model (AMDM) for generating plausible human motions. By
leveraging scene affordance maps, our method overcomes
the difficulty in generating human motion under multimodal
condition signals, especially when training with limited data
lacking extensive language-scene-motion pairs. Our exten-
sive experiments demonstrate that our approach consistently
outperforms all baselines on established benchmarks, in-
cluding HumanML3D and HUMANISE. Additionally, we
validate our model’s exceptional generalization capabilities
on a specially curated evaluation set featuring previously
unseen descriptions and scenes.
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1. Introduction
Prior efforts in the field have investigated the integration of
diverse modalities, such as textual descriptions [3, 5, 6, 14,
24, 29, 67, 75, 76, 92, 93], audio signals [49, 51, 89], and 3D
scenes [4, 32, 37, 80–82] for guiding human motion genera-
tion. The significant strides in single-modality conditioned
motion generation have been complemented by the introduc-
tion of Human-Scene Interaction (HSI) through language
descriptions by Wang et al. [84], highlighting the demand
for controllable motion generation in diverse applications
such as animation synthesis [35], film production [78], and
synthetic data generation [97, 100]. However, the task of
effectively generating semantically driven and scene-aware
motions remains daunting due to two principal challenges.

The first challenge entails ensuring that generated motions
are descriptive-faithful, physically plausible within the scene,
and accurately grounded in specific locations. Though direct
application of conditional generative models like conditional
Variational Autoencoder (cVAE) [66, 80, 84] and conditional
diffusion models [14, 37, 76, 93] has been attempted, the
inherent complexity of marrying 3D scene grounding with
conditional motion generation presents a significant obstacle.
This complexity impedes the model’s ability to generalize
across various scenes and descriptions, making it challenging
to adapt specific motions (e.g., “lie down on the bed”) to
analogous actions in new contexts (e.g., “lie down on the
floor”) within unfamiliar 3D environments.

The second challenge arises from the generative models’
dependency on large volumes of high-quality paired data.
Existing HSI datasets [4, 9, 31] lack in both motion quality
and diversity, featuring a limited number of scene layouts
and, most critically, devoid of HSI descriptions. Although
the HUMANISE dataset [84] attempts to address this gap, it
is constrained by a narrow scope of action types and the use
of fixed-form utterances, limiting the generation of diverse
HSIs from varied and free-form language descriptions.

In response to these challenges, we propose to utilize the
scene affordance maps as an intermediate representa-
tion, as depicted in Fig. 1. This representation is calculated
from the distance field between human skeleton joints and
the scene’s surface points. The use of the affordance map
presents two primary benefits for the generation of language-
guided motion in 3D environments. First, it precisely de-
lineates the region grounded in the language description,
thereby significantly enhancing the 3D scene grounding es-
sential for motion generation, even in scenarios characterized
by limited training data availability. Second, the affordance
map, rooted in distance measurements, provides a sophis-
ticated understanding of the geometric interplay between
scenes and human motions. This understanding aids in the
generation of HSI and facilitates the model’s ability to gen-
eralize across unique scene geometries.

Expanding upon this intermediate representation, we pro-

pose a novel two-stage model aimed at seamlessly integrat-
ing the 3D scene grounding with the language-guided mo-
tion generation. The first stage involves the development of
an Affordance Diffusion Model (ADM), which employs
the Perceiver architecture [38, 39] to predict an affordance
map given a specific 3D scene and description. The sec-
ond stage introduces an Affordance-to-Motion Diffusion
Model (AMDM), comprising an affordance encoder and a
Transformer backbone, to synthesize human motions by con-
sidering both the language descriptions and the affordance
maps derived in the first stage.

We conduct extensive evaluations on established bench-
marks, including HumanML3D [29] and HUMANISE [84],
demonstrating superior performance in text-to-motion gen-
eration tasks and highlighting our model’s advanced gener-
alization capabilities on a specially curated evaluation set
featuring unseen language descriptions and 3D scenes. These
results underscore the utility of our approach in harnessing
scene affordances for enriched 3D scene grounding and en-
hanced conditional motion generation.

Our contributions are summarized as follows:
• We introduce a novel two-stage model that incorporates

scene affordance as an intermediate representation, bridg-
ing the gap between 3D scene grounding and conditional
motion generation, and facilitating language-guided hu-
man motion synthesis in 3D environments.

• Through extensive quantitative and qualitative evaluations,
we demonstrate our method’s superiority over existing
motion generation models across the HumanML3D and
HUMANISE benchmarks.

• Our model showcases remarkable generalization capabili-
ties, achieving impressive performance in generating hu-
man motions for novel language-scene pairs, despite the
limited availability of language-scene-motion datasets.

2. Related Work

2.1. Language, Human Motion, and 3D Scene

We seek to bridge the modalities of language, human motion,
and 3D scenes, an area where prior research has often fo-
cused on combining just two of these elements. In the realm
of 3D Vision-Language (3D-VL), tasks such as 3D object
grounding [1, 16, 41, 77, 98, 105], reasoning [7, 21, 57, 88],
and captioning [12, 13, 18, 36, 91] have intersected lan-
guage with 3D scenes. Recent advancements in this area
have focused on enhancing open-vocabulary scene under-
standing by integrating features from foundational models
like CLIP [68] into 3D scene analysis [40, 45, 63, 74]. The
interaction between language and human motion has been
explored through efforts to guide motion generation with
semantic cues, including text-to-motion [3, 6, 24, 29, 67]
and action-to-motion synthesis [28, 66].

Existing HSI works focus on populating static human
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figures into 3D scenes [15, 17, 33, 97] and generating
temporal human motions within these contextual environ-
ments [37, 43, 80–82]. A growing body of research [19, 56,
64, 65, 96, 101] has aimed at creating policies for continuous
motion synthesis in virtual spaces, treating the challenge as
a Reinforcement Learning (RL) task. The pioneering works
of Zhao et al. [100] and Wang et al. [84] ventured into the
simultaneous modeling of language, 3D scenes, and human
motion, integrating semantics (e.g., action labels and de-
scriptive language) into the generation of HSI, requiring
interactions to be both physically plausible and semantically
consistent. Following this, Xiao et al. [86] leveraged a Large
Language Model (LLM) to convert language prompts into
sub-task plans, represented as Chain of Contacts (CoC), to
facilitate motion planning within 3D scenes.

In our contribution, we present a novel two-stage frame-
work that employs scene affordance [26] as an interme-
diary to effectively bridge 3D scene grounding with con-
ditioned motion generation. This approach not only en-
hances multimodal alignment but also improves the gen-
erative model’s ability to generalize across scenarios, even
when trained on the limited paired data available in current
datasets [29, 31, 84].

2.2. Conditional Human Motion Generation

The past few years have marked significant advancements
in the domain of human motion modeling conditioned on
diverse signals [102], including past motion [8, 9, 50, 59,
87, 90], audio [49, 51, 89], action labels [28, 66], natural
language descriptions [3, 5, 6, 14, 24, 29, 67, 75, 76, 92, 93],
objects [11, 25, 52, 73, 95], and 3D scenes [4, 32, 37, 44, 80–
82]. These approaches, predominantly designed for single-
modal conditioning, encounter difficulties in scenarios ne-
cessitating the simultaneous consideration of both scene and
language cues. For example, methods that seek to align the
conditional signal’s latent space with that of human mo-
tions [2, 6, 67, 75] struggle in this intricate context due to
the distinct and complementary nature of 3D scenes and
language descriptions in motion generation. The former pro-
vides spatial boundaries while the latter offers semantic di-
rection, rendering direct alignment approaches less effective.

Moreover, attempts at directly learning the conditional
distribution with models such as cVAE [66, 80, 84] and
diffusion models [14, 76, 93] often lead to suboptimal out-
comes. This is attributed to the complex entanglement of the
joint distribution across the three modalities, which compli-
cates the development of an efficient multimodal embedding
space, particularly when data is scarce. In response, our re-
search proposes the utilization of scene affordance as an
intermediate representation. This strategy aims to simplify
the process of generating motion under multiple conditions,
thereby enhancing the model’s capacity to interpret and gen-
erate multimodal HSI more effectively.

2.3. Scene Affordance

The concept of “affordance,” initially introduced by Gib-
son [26], describes the potential actions that the environ-
ment offers for interaction. Early investigations into affor-
dances primarily focused on understanding scenes and ob-
ject affordances through 2D observations [23, 27, 30, 47,
48, 54, 61, 83, 103, 104]. Transitioning to 3D, initial HSI
research implicitly incorporated affordances in scene un-
derstanding [80–82, 84], with more recent work exploring
explicit 3D visual affordances [22, 60, 104]. These advance-
ments often represent affordances as contact maps for grasp-
ing [42, 46, 53, 55, 85] and scene-conditioned motion syn-
thesis [33, 80, 81, 94, 97]. In our approach, we redefine the
affordance map as a generalized distance field between hu-
man skeleton joints and surface points of 3D scenes. This
model first refines the affordance map using the provided 3D
scene and language description. It then utilizes the refined
affordance map’s grounding and geometric information to
improve the subsequent conditional motion generation.

3. Preliminaries

Diffusion Model Diffusion models [34, 70, 71] are a
class of generative models that operate through an iterative
denoising process to learn and sample data distributions.
They include a forward process and a reverse process.

The forward process starts with the real data X0 at
step 0, iteratively adds Gaussian noise ϵt, and converts
X0 to Xt over t steps in a Markovian manner. The one-
step forward process can be described as qpXt | Xt´1q “

N pXt;
?
1 ´ βtXt´1, βtIq, where tβt P p0, 1qu

T
t“1 is the

pre-defined variance schedule. When t Ñ 8, Xt is equiva-
lent to an isotropic Gaussian distribution. The entire forward
process is given by qpX1:T | X0q “

śT
t“1 qpXt|Xt´1q,

where T is the total number of diffusion steps.
In the reverse process, the diffusion model learns to

gradually remove noise for sampling from the Gaussian
distribution XT : pθpX0:T q “ ppXT q

śT
t“1 pθpXt´1 |

Xtq, pθpXt´1 | Xtq “ N pXt´1;µθpXt, tq,ΣθpXt, tqq,
where XT „ N p0, Iq, µθ and Σθ are estimated by the
models with learnable parameters θ.

For learning a conditional distribution pθpX0 | Cq,
the diffusion model can be adapted to include condi-
tion C in the reverse process: pθpXt´1 | Xt, Cq “

N pXt´1;µθpXt, t, Cq,ΣθpXt, t, Cqq.

Problem Definition We tackle the task of language-
guided human motion generation in 3D scenes. The 3D scene
is represented as an RGB point cloud S P RNˆ6, while the
language description is denoted as L “ rw1, w2, ¨ ¨ ¨ , wM s,
comprising M tokenized words. Our objective is to generate
motion sequences X “ txiu

F
i“1 that are both physically

plausible and semantically consistent with the given descrip-
tions, where each sequence consists of F frames. Diverging
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Figure 2. Overview of our method. To generate language-guided human motions in 3D scenes, our framework first predicts the scene
affordance map in accordance with the language description using Affordance Diffusion Model (ADM). Next, it generates interactive human
motions with Affordance-to-Motion Diffusion Model (AMDM) conditioned on the predicted affordance map.

from the redundant motion representation used by Guo et al.
[29], we parameterize the per-frame human pose using the
body joint positions of the SMPL-X body model [62], specif-
ically xi P RJˆ3, with J representing the total number of
joints utilized. For visualization purposes, these poses are
converted into body meshes by optimizing the SMPL-X pa-
rameters based on joint positions. Please refer to Appendix A
for additional details on the optimization process.

4. Method
We propose a novel two-stage model for generating plausible
human motions conditioned on the 3D scene and language
descriptions. Fig. 2 illustrates the model’s framework. The
first stage introduces an Affordance Diffusion Model (ADM)
to generate language-grounded affordance maps. The second
stage takes input as the generated affordance map and the
language description to synthesize plausible human motions
from Gaussian noise via the proposed Affordance-to-Motion
Diffusion Model (AMDM).

4.1. Affordance Map

The affordance map serves as an intermediate representation
that abstracts essential details of a 3D indoor scene to support
generalization, accurately ground interaction regions, and
preserve vital geometric information. In this work, we derive
such an affordance map from the distance field between the
points in a 3D scene S and the human skeleton joints across a
motion sequence X “ txiu

F
i“1. We calculate the ℓ2 distance

between each scene point and the skeleton joints per frame,

resulting in a per-frame distance field d P RNˆJ ; dpn, jq

measures the distance between the n-th scene point and the
j-th skeleton joint. Following Mao et al. [59], we transform
this distance field into a normalized distance map c P RNˆJ :

cpn, jq “ exp

ˆ

´
1

2

dpn, jq

σ2

˙

, (1)

where σ is a constant normalizing factor. This operation
assigns higher weights to points closer to the joints, thereby
aiding in stabilizing the training procedure.

To compute the affordance map C, we employ a max-
pooling operation over the temporal dimension of the per-
frame distance fields:

C “ max-poolpc1, c2, . . . , cF q. (2)

The resulting paired data is denoted as pC,X,S,Lq, with S
and L representing the scene’s point cloud and the associated
language description, respectively.

4.2. Affordance Diffusion Model

To learn the distribution of language-grounded affordance
maps, we introduce an Affordance Diffusion Model (ADM)
designed to process the 3D scene point cloud S and the cor-
responding language description L, generating an affordance
map C. This process is formalized as follows:

pθpC0:T | S,Lq “ ppCT q

T
ź

t“1

pθpCt´1 | Ct,S,Lq. (3)
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As depicted in Fig. 2, ADM’s architecture is based on the
Perceiver [38, 39], leveraging an attention mechanism to
efficiently extract point-wise features.

The Perceiver backbone within ADM consists of three
primary components: an Encode block, a Process block, and
a Decode block. Initially, the Encode utilizes an attention
module to encode the extracted point features along with
the noisy affordance map, termed as input features. We de-
note the concatenation of the language feature and diffusion
step embeddings as the latent features. In this configura-
tion, the input features act as the attention module’s key and
value, with the latent features acting as the query. Next, the
Process block refines the latent features through multiple
self-attention layers. Finally, the Decode block employs an-
other attention module, allowing the input features to attend
to the updated latent features, thereby achieving refined per-
point feature refinement. We forward these per-point feature
vectors into a linear layer for further processing. Contrary to
approaches that predict the added noise ϵt, our model directly
estimate the input signal [69, 76], allowing the end-to-end
training of ADM, denoted as Gθ, with a simple objective:

LMSE “ EC0,t

“

}C0 ´ GθpCt, t,S,Lq}
2
2

‰

. (4)

4.3. Affordance-to-Motion Diffusion Model

In the subsequent stage, our framework employs an
Affordance-to-Motion Diffusion Model (AMDM) to gen-
erate plausible human motions, leveraging both the language
descriptions and the previously generated affordance maps:

pϕpX0:T | C,S,Lq “ ppXT q

T
ź

t“1

pϕpXt´1 | Xt,C,S,Lq. (5)

The architecture of the model is illustrated in Fig. 2. The
AMDM comprises an encoder specifically for the affordance
map and a Transformer backbone that integrates multimodal
features to facilitate motion generation. Utilizing a Point
Transformer architecture [99], the affordance map encoder
extracts feature maps of varying cardinalities, which are fur-
ther processed by U-net decoder layers; the Transformer
backbone stacks self-attention and cross-attention layers. We
concatenate the noisy motion sequence with language fea-
tures and diffusion timestep embeddings and forward this
concatenation to the Transformer backbone. In each cross-
attention layer, the concatenation attends to the affordance
features to fuse multimodal information. A linear layer fi-
nally maps the fused features into the motion space.

Similar to ADM, we train the AMDM, denoted as Gϕ, by
optimizing a mean squared error objective:

LMSE “ EX0,t

“

}X0 ´ GϕpXt, t,C,S,Lq}
2
2

‰

. (6)

4.4. Implementation Details

In our implementation, we use a frozen CLIP-ViT-B/32 to
extract text features in both stages. The normalization factor

σ is set to 0.8. The Transformer models are constructed using
the native PyTorch implementation. Both ADM and AMDM
undergo training to convergence using the AdamW optimizer
with a fixed learning rate of 10´4. For the training of ADM,
we leverage 2 NVIDIA A100 GPUs, assigning a batch size
of 64 per GPU. The training of AMDM is conducted on
4 NVIDIA A100 GPUs, with a batch size of 32 per GPU.
Refer to Appendix C for further implementation details.

5. Experiments
To demonstrate the efficacy of our methods, we conducted
evaluations using the HumanML3D [29], HUMANISE [84],
and a uniquely compiled evaluation set specifically curated
for examining the generalization capability.

5.1. Datasets

We evaluate our model on HumanML3D [29], a modern
text-to-motion dataset derived from annotating AMASS [58]
motion sequences with sequential-level descriptions. As Hu-
manML3D lacks 3D scenes, we augment it by adding a floor
to support the training and evaluation of our two-stage model.
We use the original motion representation and train-test splits
in the task setting.

We also evaluate our model on HUMANISE [84], distin-
guished as the first extensive and semantic-rich HSI dataset
that aligns motion sequences from AMASS with the 3D
scene from ScanNet [20]. The synthesized results are auto-
matically annotated with descriptions from Sr3D [1]. We
exclude spatially referring descriptions and segment scenes
into chunks while retaining the original motions and splits.

To probe the model’s generalization prowess, we curate a
novel evaluation set that comprises 16 scenes from diverse
sources, including ScanNet [20], PROX [31], Replica [72],
and Matterport3D [10], along with 80 HSI descriptions
crafted by Turkers. Furthermore, we construct a training
set that connects language, 3D scene, and motion by incor-
porating data from HumanML3D, HUMANISE, and PROX.
We leverage the annotations to unify the representation as
joint positions across different datasets; we augment the Hu-
manML3D by randomly positioning furniture [79] around
the motion to boost 3D scene awareness. This consolidated
dataset comprises 63,770 HSIs, with 48,470 featuring lan-
guage annotations. Refer to Appendix E for more details.

5.2. Metrics and Baselines

Metrics For the evaluation on HumanML3D, we adopt
the metrics proposed by Guo et al. [29], including Diversity,
measuring the variation within generated motions; Multi-
Modality, quantifying the average variation relative to text
descriptions; R-Precision and Multimodal-Dist, assessing
the relevance between generated motions and language de-
scriptions; and FID, evaluating the discrepancy between the
distributions of generated results and the original dataset. On
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Table 1. Quantitative results of generation on HumanML3D. “Real” denotes the results computed with GT motions. “Ñ” indicates
metrics that are better when closer to “Real” distribution. Our model uses Perceiver in ADM and encoder-based architecture in AMDM.

Model
R-Precision Ò

FID Ó MultiModal Dist. Ó Diversity Ñ MultiModality Ò
Top 1 Top 2 Top 3

Real 0.511˘.003 0.703˘.003 0.797˘.002 0.002˘.000 2.974˘.008 9.503˘.065 -

Language2Pose [3] 0.246˘.002 0.387˘.002 0.486˘.002 11.02˘.046 5.296˘.008 7.676˘.058 -
T2M [29] 0.457˘.002 0.639˘.003 0.740˘.003 1.067˘.002 3.340˘.008 9.188˘.002 2.090˘.083

MDM [76] 0.319˘.005 0.498˘.004 0.611˘.007 0.544˘.044 5.566˘.027 9.559˘.086 2.799˘.072

Ours 0.341˘.010 0.514˘.016 0.625˘.011 0.352˘.109 5.455˘.073 9.772˘.117 2.835˘.075

MDM: [76] 0.418˘.005 0.604˘.005 0.707˘.004 0.489˘.025 3.631˘.023 9.449˘.066 2.873˘.111

Ours: 0.432˘.007 0.629˘.007 0.733˘.006 0.352˘.109 3.430˘.061 9.825˘.159 2.835˘.075

Table 2. Quantitative results of human motion generation on HUMANISE dataset. Bold indicates the best result.

Model goal dist.Ó APDÒ contactÒ non-collisionÒ quality scoreÒ action scoreÒ

cVAE [84] 0.422˘.011 4.094˘.013 84.06˘.716 99.77˘.004 2.25 ˘ 1.26 3.66 ˘ 1.38
one-stage @ Enc 0.326˘.013 5.510˘.019 76.11˘.684 99.71˘.014 2.60 ˘ 1.24 3.88 ˘ 1.32
one-stage @ Dec 0.185˘.014 4.063˘.020 86.43˘.845 99.76˘.006 3.09 ˘ 1.34 4.18 ˘ 1.16

Ours @ Enc 0.156˘.006 2.597˘.008 95.86˘.323 99.69˘.007 3.46 ˘ 1.15 4.47 ˘ 0.84
Ours @ Dec 0.156˘.006 2.459˘.009 96.04˘.298 99.70˘.005 3.55 ˘ 1.19 4.44 ˘ 0.85

HUMANISE, we follow the evaluation protocol of Wang
et al. [84] and Zhang et al. [97], utilizing metrics of goal dist.
to determine grounding accuracy, Average Pairwise Distance
(APD) for the diversity of motions, and physics-based met-
rics like contact and non-collision scores. Human perceptual
studies further evaluate the quality and action score of the
generated motions. To evaluate ADM, we further introduce
three grounding metrics, i.e., min dist., pelvis dist., and all
dist., to quantify the accuracy of the affordance map in guid-
ing interactions, based on distances from the joints to target
objects within the scene. We also employ these metrics on
the novel evaluation set. Due to unique motion represen-
tations, we retrain the motion and text feature extractors as
follows Guo et al. [29] for consistent metric calculations. All
evaluations are conducted five times to ensure robustness,
with a 95% confidence interval indicated by ˘. For quality
and action scores, mean and standard deviation are reported.

Baselines For evaluations on HumanML3D, we in-
clude the following baselines: Language2Pose [3], T2M [29],
and MDM [76]. For HUMANISE, we utilize the cVAE-
based approach by Wang et al. [84], hereafter referred to
as cVAE. To evaluate scene affordances and our two-stage
model architecture, we implement an one-stage diffusion
model variant that directly processes the scene point cloud,
bypassing the affordance map generation; this variant repli-
cates the AMDM’s architecture. Moreover, we examine an
encoder adaptation of AMDM that integrates the concate-
nated features from the three modalities (human motion,
affordance map, and language description) directly into self-

“:” indicates adjustments following bug fixes in the evaluation code, de-
tailed at https://github.com/GuyTevet/motion-diffusion-model/issues/182.

attention layers, serving additional baselines. The designa-
tions @ Enc and @ Dec refer to encoder and decoder vari-
ants, respectively. For affordance map generation in the
first stage, we explore two additional architectural variations
of ADM, MLP and Point Transformer, to further understand
their impact on performance. Further details of baseline mod-
els’ architecture are available in Appendix B.

5.3. Results on HumanML3D

Tab. 1 showcases the quantitative results on HumanML3D,
where our method notably excels in the FID metric, outper-
forming all baselines. Specifically, against MDM [76], our
method demonstrates enhanced performance in R-Precision,
FID, and MultiModal Dist., while preserving a comparable
level of diversity, even in the absence of auxiliary geometric
losses. Given that MDM stands as a leading diffusion model
in motion generation with a Transformer backbone similar
to ours, these findings underscore the benefits of integrating
scene affordance into text-to-motion synthesis by enriching
movement details such as joint trajectories, evidenced even
with a simple floor augmentation to the language-motion
dataset. Appendix D provides qualitative results of the pre-
dicted affordance maps and generated motions.

5.4. Results on HUMANISE

Quantitative Results Quantitative evaluations pre-
sented in Tab. 2 affirm our method’s capability in produc-
ing high-fidelity human motion sequences that are well-
grounded conditioned on scenes and language instructions,
outperforming both the cVAE and one-stage diffusion model
baselines. Notably, our model surpasses these baselines
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Figure 3. Qualitative results on HUMANISE dataset. The bottom-right figure provides a top-down view. Zoom in for better visualization.

across goal dist., contact, quality, and action scores, signal-
ing a pronounced advancement in generating human motion
that aligns accurately with scene and language instructions.
Note that the diminished diversity in the APD metric mainly
stems from the enhanced precision in motion generation
within our model, which effectively grounds motions in the
3D scene with desired semantics and interactions, as op-
posed to the motions with potential physical implausibility,
incorrect semantics or inadequate grounding observed in the
baselines methods.

Qualitative Results Visualizations in Fig. 3 reveal that
the cVAE model often fails to accurately ground the target
object, indicating limited scene-aware capabilities. More-
over, the one-stage model’s lack of scene geometry aware-
ness can result in human-scene collisions and non-contacts.

Affordance Generation Evaluation Grounding dis-
tance metrics, detailed in Tab. 3, illustrate that among the
three variants, the MLP lags in grounding accuracy when
compared to the Perceiver and Point Transformer models.
This discrepancy might arise from the MLP’s isolated pro-
cessing of individual scene points, which limits their in-
formation exchange. In contrast, the Perceiver consistently
excels, presumably due to its effective integration of point
and language features through cross-attention mechanisms.

5.5. Results on Novel Evaluation Set

Results The performance on the uniquely curated eval-
uation set, featuring new scenes and language descriptions
from Turkers, is summarized in Tab. 4. Our approach ex-

Table 3. Quantitative results of affordance map generation. We
report the three distance metrics to evaluate the grounding accuracy.

Arch. of ADM min dist. Ó pelvis dist. Ó all dist. Ó

G.T. 0.736 0.923 1.039

MLP 0.904˘.003 1.335˘.008 1.513˘.008

Point Trans. 0.878˘.008 1.090˘.008 1.204˘.009

Perceiver 0.756˘.007 1.005˘.005 1.086˘.007

hibits considerable enhancements in FID while maintaining
comparable R-Precision and Multimodal-Dist, suggesting
a robust capability to synthesize plausible human motions
aligned with the given language instructions. Notably, our
method generates a wider variety of human motions, as evi-
denced by improved scores in metrics MultiModality when
compared to baseline methods. These results underscore
our approach’s efficacy in producing physically plausible
and semantically consistent human motions conditioned on
scenes and language instructions, validated through contact,
quality, and action scores. Fig. 4 presents qualitative results
generated with unseen language descriptions and 3D scenes.

Failure Cases Fig. 5 depicts typical failure cases en-
countered by our model. For instance, challenges arise with
test scenarios of unseen human-scene interactions, resulting
in accurately generated motions in the correct space (e.g.,
hand washing near a tap) but inaccurate interactions (e.g.,
failure to align the body appropriately facing the sink). The
model also fails with language descriptions of high complex-
ity exceeding its current capabilities.
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Table 4. Qualitative results on our novel evaluation set. “Real” indicates that we compute these metrics as a reference using the language-
motion pairs within the test set of HumanML3D. Of note, our novel evaluation set does not contain ground truth motions.

Model
R-Precision

(Top 3)Ò
FIDÓ

MultiModal
Dist.Ó

DiversityÑ MultiModalityÒ contactÒ non-collisionÒ
quality
scoreÒ

action
scoreÒ

Real 0.875˘.002 0.000˘.000 3.342˘.004 9.442˘.301 - - - - -

one-stage @ Enc 0.500˘.044 11.848˘1.634 5.954˘.235 8.395˘.850 4.966˘.321 46.64˘4.024 99.88˘.018 1.94 ˘ 1.15 2.61 ˘ 1.45
one-stage @ Dec 0.403˘.044 12.268˘.900 6.611˘.227 8.049˘.708 5.031˘.423 26.75˘4.264 99.93˘.023 1.44 ˘ 0.83 1.96 ˘ 1.27

Ours @ Enc 0.478˘.069 7.887˘1.189 6.226˘.261 7.935˘.857 5.159˘.356 71.98˘2.542 99.83˘.006 2.06 ˘ 1.23 2.63 ˘ 1.47
Ours @ Dec 0.428˘.023 12.027˘3.164 6.412˘.204 7.603˘.715 4.966˘.353 88.63˘2.975 99.82˘.015 1.99 ˘ 1.24 2.49 ˘ 1.40

“A man dances on the bed happily.”“A person wanders in the room around the table.”
Figure 4. Qualitative comparisons on generalization evaluation set. The first row is generated by the one-stage diffusion model and the
second row is generated by our model. Our method can generate natural and accurately grounded human motions in unseen 3D scenes.

“A person is washing his hands 
with the tap.”

“A person gets up from one bed 
and lies down on another bed.”

Figure 5. Failure cases. Our model fails while facing entirely
unfamiliar HSIs or too complex descriptions.

5.6. Ablation Study

We further examine the impact of different ADM architec-
tures on motion generation in the second stage of HUMAN-
ISE, utilizing an encoder-based AMDM. As outlined in
Tab. 5, both Perceiver and Point Transformer yield superior
goal dist. outcomes compared to the MLP, echoing findings
from Tab. 3. Furthermore, these architectures enhance the
physical realism, as indicated by improved contact scores,
with Perceiver models having higher collision rates relative
to Point Transformers, echoing observations in Fig. 3.

6. Conclusion

We introduced a novel two-stage model that leverages scene
affordance as an intermediate representation to bridge the
3D scene grounding and subsequent conditional motion gen-
eration. The quantitative and qualitative results demonstrate

Table 5. Ablation of the architectures of AMDM. The Perceiver
architecture slightly outperforms the Point Transformer in the met-
rics of goal dist. and contact score.

Arch. of ADM goal dist.Ó contactÒ non-collisionÒ

G.T. 0.017 90.79 99.84

MLP 0.394˘.010 73.96˘.434 99.84˘.005

Point Trans. 0.164˘.010 94.39˘.408 99.82˘.008

Perceiver 0.156˘.006 95.86˘.323 99.69˘.007

promising improvements in HumanML3D and HUMANISE.
The model’s adaptability was further validated on a uniquely
curated evaluation set featuring unseen scenes and language
prompts, showcasing its robustness in novel scenarios.

Limitations (i) The reliance on diffusion models con-
tributes to slower inference times, marking a significant draw-
back for future work. (ii) Although employing affordance
maps mitigates the challenges posed by the scarcity of paired
data for training in 3D environments, data limitation remains
a critical hurdle. Future initiatives should focus on devising
strategies to overcome this persistent challenge.
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