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Abstract

Nuclear instance segmentation has played a critical role
in pathology image analysis. The main challenges arise
from the difficulty in accurately segmenting densely over-
lapping instances and the high cost of precise mask-level
annotations. Existing fully-supervised nuclear instance
segmentation methods, such as boundary-based methods,
struggle to capture differences between overlapping in-
stances and thus fail in densely distributed blurry regions.
They also face challenges transitioning to point supervision,
where annotations are simple and effective. Inspired by
natural mudslides, we propose a universal method called
Mudslide that uses simple representations to characterize
differences between different instances and can easily be
extended from fully-supervised to point-supervised. Con-
cretely, we introduce a collapse field and leverage it to con-
struct a force map and initial boundary, enabling a dis-
tinctive representation for each instance. Each pixel is as-
signed a collapse force, with distinct directions between ad-
jacent instances. Starting from the initial boundary, Mud-
slide executes a pixel-by-pixel collapse along various force
directions. Pixels that collapse into the same region are
considered as one instance, concurrently accounting for
both inter-instance distinctions and intra-instance coher-
ence. Experiments on public datasets show superior perfor-
mance in both fully-supervised and point-supervised tasks.

1. Introduction
Pathological slide analysis is widely regarded as the gold
standard for cancer diagnosis, treatment, and prevention.
Nuclear instance segmentation is a critical step in this pro-
cess, as it enables the accurate identification and analysis of
nuclei within pathology images. The morphology of nuclei,
including their shape, appearance, and density, provides in-
terpretable features that can be used as diagnostic and prog-
nostic indicators of cancer [18].

Nuclear instance segmentation presents unique chal-
lenges compared to natural image instance segmentation

Figure 1. An analogy between mudslide and nuclear instance
segmentation. (Top) Topographic map before and after the mud-
slide. The colored arrows indicate the collapse forces in differ-
ent directions. (Bottom) Nuclear instance segmentation process
in pathological images. The different layers on the left represent
different feature representations of nuclear instances, and the right
shows the result of instance segmentation.

tasks. Firstly, the densely packed distribution of nuclei of-
ten results in clustered overlapping instances. Secondly, the
blurry boundaries between touching or overlapping nuclei
make it difficult to distinguish individual instances. Third,
obtaining precise pixel-level annotations is time-consuming
and expensive for professional pathologists.

To address the first two challenges, many fully-
supervised methods based on deep learning have made sig-
nificant progress. Several algorithms based on constructing
innovative network architectures [8, 20, 23] have been ap-
plied to this task. Some contour-based techniques have been
investigated to enhance the accurate prediction of nucleus
boundaries [3, 9, 29] which aids in splitting the touched
and overlapped nuclei. However, these methods lack the
capability to characterize the differences among neighbor-
ing nuclear instances, making it difficult to accurately seg-
ment densely stacked overlapping nuclei. Moreover, their
applicability is hindered in scenarios where fine pixel-level
annotations are insufficient, as obtaining precise boundary
labels becomes a formidable task. Addressing the chal-
lenge posed by the scarcity of fine annotations, certain
point annotation-based methods have emerged [2, 19, 21],
leveraging the accessibility of coarse point labels. How-
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ever, these approaches frequently prioritize the acquisition
of pseudo-mask labels through design optimization meth-
ods, neglecting the differentiated representation of overlap-
ping instances.

Inspired by the mudslide in nature, we propose a simple
universal method, called Mudslide. This approach excels in
providing a differential representation of instances while re-
maining readily adaptable to the point-supervised domain.

As shown in Fig. 1, for a continuous geographical re-
gion, mudslides induced by external forces lead to the cre-
ation of distinct partitions within the area. The unaffected
section sets the partition boundary, while the collapsing seg-
ment forms a contiguous region. Analogously, this paral-
lels the process of nucleus instance segmentation, where
a method partitions the foreground with diverse instances
into distinct instance regions. Furthermore, the mudslide
collapse process concurrently considers the distinctions be-
tween regions and the coherence within each region. Vari-
ations in force directions acting on different regions induce
noticeable changes in adjacent areas. Internal forces within
a region, specifically the collapse of one soil mass exerting
force on neighboring soil masses, facilitate the clustering
and rationalization of soil masses in the same area. This
aligns with the objectives of nuclear instance segmentation.

Therefore, drawing inspiration from the characteristics
of the muslide collapse process, we introduce Mudslide al-
gorithm to induce the collapse of the foreground region of
the nucleus and acquire instances. Specifically, we formu-
late a collapse field and leverage it to construct a force map
to allocate forces directed to the center of the instance to
individual pixels within the collapse field. This allocation
ensures that the force direction in adjacent regions of dis-
tinct nuclei exhibits pronounced disparities, facilitating the
distinctive representation of neighboring nuclei. Simulta-
neously, the forces within the same instance exhibit uni-
formity directed towards the center, enhancing a cohesive
representation within instances. Subsequently, we devise
a collapse algorithm commencing from the collapse bound-
ary, proceeding pixel-by-pixel along the force direction. Ul-
timately, pixels collapsing into the same region are deemed
components of the same instance. Due to the consideration
of external differences between instances and the internal
consistency within instances, Mudslide excels in accurately
segmenting overlapping instances. The simplicity of col-
lapse field design renders this approach easily extendable to
the domain of point supervision.

The contributions can be summarized as follows:
• We propose Mudslide, a novel nucleus instance segmen-

tation algorithm inspired by natural phenomenon of mud-
slide, which excels in achieving precise segmentation of
adjacent or overlapping nuclei.

• We propose a collapse field and generate a force map
along with an initial boundary to provide differentiated

representations for neighboring instances and enhance the
internal coherence within instances.

• Mudslide is a universal method that can be easily ex-
tended from full supervision tasks to point supervision
domains.

• We justify the superiority of our Mudslide on public nu-
clear datasets with state-of-the-art performance.

2. Related Works

2.1. Fully-supervised nuclei segmentation

Fully-supervised nuclear instance segmentation has been
widely studied and benefited from the application of deep
learning techniques [3, 7, 22]. One of the most influential
models in this field is the U-Net model proposed by Ron-
neberger et al. [23], which has become a benchmark model
for medical image segmentation and has inspired many sub-
sequent works. Qu et al. [20] proposed a full-resolution
convolutional neural network (FullNet), a full-resolution
convolutional neural network that avoids downsampling op-
erations in the network structure to improve localization ac-
curacy. Raza et al. [22] proposed Micro-Net, which utilizes
multi-resolution and weighted loss functions to achieve ro-
bustness against large internal/external variances in nucleus
size. He et al. [8] proposed Han-Net, a hybrid attention
nested U-shaped network that extracts informative features
from multiple layers to enhance segmentation performance.

Leveraging contour information for distinguishing inter-
acting or overlapping nuclei, Chen et al. [3] introduced the
integration of contour details into a multi-level Fully Con-
volutional Network (FCN), which resulted in the develop-
ment of a profound contour-aware network designed specif-
ically for nuclear instance segmentation. Following this,
Zhou et al. [29] introduced the Contour-Aware Information
Aggregation Network, which integrates spatial and textural
features between nuclei and contours. Additionally, He et
al. [9] proposed a Topology-Aware Loss to integrate mean-
ingful topology constraints into the model optimization pro-
cess for more precise boundary predictions.

Furthermore, certain studies [4, 6, 14, 16] have employed
distance maps to address the segmentation challenges posed
by contacting or overlapping nuclei. Naylor et al. [16] tack-
led the segmentation of touching nuclei by framing it as a
regression task involving intra-nuclear distance maps. Gra-
ham et al. [6] ntroduced the Hover-Net, which utilizes ver-
tical and horizontal distances between a nucleus pixel and
its center of mass to delineate nuclei. Additionally, He et
al. [7] proposed the Centripetal Directional Network (CD-
Net) for nuclear instance segmentation, integrating direc-
tional information into the network.

The above models have achieved performance improve-
ments in nuclear segmentation. However, the challenge of
segmenting overlapping cell nuclei persists. To further en-
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Figure 2. The simple modeling of natural mudslide. (Left)
Schematic diagram of the force on a soil mass on the slope. The
green line represents the slope and the red dashed line represents
the soil mass. (Right) A mountain where the mudslide occurred.
The mudslide starts at the position pointed by the force indicated
by the red arrow and stops at the horizontal slope.

hance the model’s ability to distinguish instances, there is a
need for a distinct and differential representation of nucleus
instances.

2.2. Pointly-supervised nuclei segmentation

The pixel-wise annotation of nucleus instances incurs high
costs. Point annotation, as one of the most efficient labeling
manners, has garnered increasing attention in the field of
nuclear segmentation. Current approaches [2, 19, 21] pri-
marily transform point annotations into coarse pixel-level
labels, including Voronoi labels [25], cluster labels [19],
and pseudo edge maps [27]. These methods commonly
integrate prior knowledge about the shape and texture of
nuclei into these coarse pixel-level labels. However, these
techniques face challenges related to incomplete coarse la-
bels and imprecise boundary information. Several strategies
have been proposed to address the issues arising from these
coarse labels. These include multi-stage optimization for
refining segmentation in a bootstrapping manner [21, 25],
and the incorporation of additional constraints based on the
local contrast between nuclei and their surrounding cyto-
plasm. Additionally, some unique training strategies have
been employed to optimize pseudo-labels. [12]utilizes the
co-training method, optimizing mask labels through the si-
multaneous training of two models with mutual supervision.
[28] employs a collaborative knowledge-sharing approach,
sharing knowledge between a principal model and a very
lightweight collaborator model.

Despite the progress in the field of making full use of
point labels and generating accurate pseudo mask labels,
however, the problem of nucleus overlapping instance seg-
mentation in point-supervised prediction still needs further
attention.

Figure 3. The processing of Mudslide algorithm. (Left) The
instance map, the four-channel collapse field, the eight-directional
force map, and the initial boundary. Each color in the force map
represents a direction. (Right) Schematic diagram of the mudslide
collapse process performed on two adjacent nuclei.

3. Method
3.1. Natural Mudslide

Mudslide refers to the natural phenomenon where the soil or
rock mass on a slope, influenced by external forces such as
river erosion, rainfall, and seismic events, undergoes down-
hill movement collectively along the slope [5]. To simulate
the mudslide process, we simplify it as a continuous slid-
ing problem of soil mass on a slope [24]. This assumes
an arc-shaped sliding surface adhering to the Coulomb cri-
terion during soil movement, and the soil undergoes rigid
sliding. This allows the assessment of the stability of the
soil slope based on the magnitudes of the sliding moment
and anti-sliding moment.

As illustrated in Fig. 2, for the soil mass on the slope,
the sliding moment is generated by the gravitational force
W , while the resisting moment is provided by the frictional
force on the sliding surface. The sliding moment Ms and
resisting moment Mr are

Ms = W ∗ d, (1)

Mr = R ∗
∫ l

0

τdl, (2)

where d represents the lever arm of gravity, R and l are re-
spectively the radius and the length of the arc, and τ repre-
sents the shear force. Introducing the safety factor Fos [17]

Fos =
Mr

Ms
, (3)

if Fos > 1, the soil mass remains stable and will not col-
lapse. If Fos = 1, the soil mass is in a state of critical
equilibrium, and if Fos < 1, the soil mass undergoes col-
lapse.

Assuming each soil mass on the slope is in a critical state,
i.e., Fos = 1, if an external force F with moment MF is
applied tangentially along the slope surface such that

F ′
os =

Mr

M ′
s

=
Mr

Ms +MF
< Fos, (4)
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the corresponding soil mass undergoes collapse. This re-
sults in the application of a tangential force F ′ on the adja-
cent soil mass below, leading to a continued collapse of the
lower soil mass, ultimately forming a mudslide. The col-
lapse terminates when it reaches a horizontal slope surface.
In the end, the mudslide induces the collapse of soil mass
on the slope surface affected by external forces, while the
unaffected soil mass remains intact. This delineates distinct
regions on the slope.

3.2. Mudslide Segmentation

3.2.1 Mudslide Processing

Inspired by the natural mudslide mentioned in Sec. 3.1, we
propose a Mudslide algorithm for nuclear instance segmen-
tation. In natural landslide phenomena, the main issues
include the characteristics of the slope that collapses, the
forces acting on the soil mass on the slope, the location
where the collapse begins, and how the collapse occurs con-
tinuously. Corresponding to this, the Mudslide algorithm
primarily involves three steps: constructing a collapse field,
obtaining the force map and initial collapse boundary, and
executing the collapse.

Collapse field construction. In the first step, we initi-
ate the process by constructing a collapse field, representing
the initial slope surface of the mudslide. In image segmen-
tation, we assume that each pixel represents a soil mass, lo-
cated on a slope represented by the collapse field, and in
a state of critical equilibrium. For simplicity, we utilize
continuous normalized maps to characterize the collapse
field, where pixel values close to 1 signify higher slope
heights and values close to 0 indicate lower slope surfaces.
Specifically, for ease of model learning and inspired by [6],
we create a four-channel normalized map shown in Fig. 3.
This map contains four distance maps generated in hori-
zontal, vertical, and two diagonal directions, respectively,
with each map indicating the distance from each pixel to
the center of the nucleus in different directions. Pixel val-
ues are close to 0 when they are near the nucleus center and
gradually increase outward until they reach 1 at the nucleus
boundary. Thus, we construct a slope for the foreground
nuclei in the image, where the slope is flat in the middle of
each instance and steep around the edges, resembling the
terrain that is prone to mudslide collapse.

Force map and initial boundary obtaining. For the
second step, we generate a force map and initial bound-
ary from the collapse field. The force map assigns a force
F with different directions to each pixel, representing the
directions in which pixels are expected to collapse during
Mudslide. For two-dimensional images, we consider eight
directions of force: up, down, left, right, upper-left, upper-
right, lower-left, and lower-right (Fig. 3):

F = {
(
0
1

)
,

(
0
−1

)
,

(
−1
0

)
,

(
1
0

)
,(

−1
1

)
,

(
1
1

)
,

(
−1
−1

)
,

(
1
−1

)
}.

(5)

Then the force map can be expressed as a set of forces:

FM = {F (x, y) | x, y ∈ Z, F ∈ F}, (6)

where Z indicates the foreground of nuclei and x, y corre-
sponds to the coordinate of each pixel. Here, we assign a
force direction to each pixel that is approximately tangen-
tial to the slope. Since we assume that each pixel is in a state
of critical equilibrium, we consider the force magnitude to
be irrelevant to the collapse and therefore set the magnitude
of each force to 1.

To obtain the starting position of mudslide collapse, we
generate the initial boundary. We employ a straightforward
edge detection filter, such as Sobel operator, on the collapse
field to detect edges. The obtained edges are then utilized
as the initial boundary for mudslide collapse. This approach
is rational since, in our collapse field, there is a significant
gradient between instance boundaries, allowing the Sobel
operator to effectively identify them.

Mudslide collapse executing. After acquiring the force
map and the initial boundary, we commence the mudslide
collapse process. Originating from the initial boundary,
each pixel p applies an initial force (red arrows in 3) to the
directed pixel p′, which can be calculated by

p
′
= p+ F (p),

p = (x, y),

p
′
= (x

′
, y

′
).

(7)

The pixel p′ then undergoes collapse. Subsequently, the
collapsed pixel exerts a sustained force (yellow arrows in 3)
on the pointed pixel, initiating the collapse of more adjacent
pixels. This iterative process results in a sustained mudslide
collapse. Eventually, when all pixels directed to have un-
dergone collapse, those pixels collapsing to the same region
are identified as a single instance. Note that those pixels
that are never directed by forces from other pixels will not
collapse and the force assigned to them will be neglected
(gray arrows in 3), corresponding to the soil mass that is not
affected by the mudslide.

3.2.2 Application to Nuclear Instance Segmentation

The framework of applying Mudslide to nuclear instance
segmentation is illustrated in Fig. 4. Here, we unify the
pipelines for both fully supervised and point-supervised
scenarios, with the primary distinction lying in the labels
used for training.

Specifically, we employ a dual-branch architecture,
where one branch is dedicated to predicting a binary map
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Figure 4. The overall framework of the proposed Mudslide. The network contains two basic prediction branches: the binary branch and
the collapse field branch. During training, the difference between fully- and point-supervised is the type of ground truth. During testing,
both branches’ predictions are employed for the Mudslide algorithm.

for the nuclear foreground, and the other branch focuses
on predicting the collapse field. The collapse field con-
sists of four channels, corresponding to horizontal, verti-
cal, and two diagonal directions. The segmentation model
adopted is the Trans-UNet architecture from [10]. In fully
supervised training, the binary map labels are the ground
truth representing the nuclear foreground, while the col-
lapse field labels are constructed from both the foreground
and instance ground truth. For point-supervised training, we
leverage point labels and the original input image to gen-
erate a cluster map [19] and Voronoi map [25] as pseudo-
labels for foreground prediction, which is commonly ob-
served in point-supervised tasks. Subsequently, we use the
predicted foreground and point labels to generate collapse
field labels.

We utilize cross-entropy loss as the binary classification
loss and employ mean squared error loss and mean squared
gradient error loss as the collapse field loss:

LB = λBCE
LCE , (8)

LCF = λCFMSE
LMSE + λCFMSGE

LMSGE . (9)

Then the overall loss function is

L = LB + LCF . (10)

It’s worth noting that in point-supervised training, the

cross-entropy loss comprises two terms, corresponding to
cluster and Voronoi:

LBpoint = λBCE
LCEcluster

+ λBCE
LCEvoronoi . (11)

During the inference process, we first combine the fore-
ground and collapse field predictions to construct the col-
lapse field, ensuring subsequent mudslide acts on the nu-
clear foreground regions. Subsequently, as detailed in
Sec. 3.1, we utilize the collapse field to obtain the initial
boundary and force map, initiating the mudslide collapse
process. Ultimately, this process yields the nuclear instance
segmentation results.

4. Experiment
4.1. Experimental Settings

Datasets. I) CPM17 [26] contains 64 H&E stained
histopathology images with 7,570 annotated nuclear bound-
aries. It is from the MICCAI 2017 Digital Pathology Chal-
lenge [26] and images on two different scales: 500×500
and 600×600. This is a dataset for a single-class segmen-
tation task. II) NuInsSeg [15] contains 665 image patches
with more than 30,000 manually segmented nuclei from 31
human and mouse organs. It is one of the biggest fully
manually annotated datasets of nuclei in Hematoxylin and
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Eosin (H &E)stained histological images with the scale of
512×512. This is also a dataset for single-class segmenta-
tion task.

Evaluation Metrics. We use four instance-level eval-
uation metrics to measure the instance segmentation per-
formance of the comparison models, which are: Detection
Quality (DQ), Segmentation Quality (SQ), Panoptic Quality
(PQ), and the Aggregated Jaccard Index (AJI).

Implementation details. The proposed Mudslide is
trained and tested using the open-source software library
Pytorch 1.8.0 on NVIDIA Tesla V100 with CUDA 10.1.

In order to build the dataset used for training, the CPM17
dataset is divided into multiple patches as it has an inconsis-
tent original image size. We generate 512 training patches
in the size of 256x256, thus allowing the network to be
uniform and fully trained. In addition, we randomly di-
vide NuInsSeg into training set and test set with the pro-
portion of 80% and 20%, respectively. Moreover, for point-
supervised tasks, we leverage the annotations of nucleus in-
stances to generate a central point for each instance, serving
as the point label. In the training phase, we apply a series
of data augmentation methods, which include random flip,
random rotation, random color, random crop, and Gaus-
sian blur. The training epoch is set as 300, and the initial
learning rate is set as 10−3. The weights of each loss are
λBCE

= 1, λCFMSE
= 2.5, λCFMSGE

= 8.

4.2. Ablation Study

We performed ablation studies on the CPM17 and NuInsSeg
datasets to validate the efficacy of the proposed Mudslide
method. All the following experiments were conducted un-
der the setting of fully supervised tasks.

Instance separation methods. Table 1 shows the com-
parison of segmentation performance obtained using differ-
ent instance separation methods. We apply four different
methods to the predictions of the same model: the tradi-
tional watershed method [1], boundary partition method,
HVmap segmentation method from Hover-Net [6], and our
proposed method.

Specifically, the watershed method involves segmenting
instances using the watershed algorithm on the binary prob-
ability map predicted by the model. The boundary sepa-
ration method refers to predicting boundaries by adding an
additional boundary prediction branch to the model and us-
ing the boundaries to directly separate different instances.
The HVmap algorithm is an instance separation method in
HoverNet that utilizes horizontal and vertical distance maps
for segmentation.

The experimental results indicate significant variations
in model performance based on different instance sepa-
ration methods. Traditional methods such as watershed
and boundary separation exhibit subpar performance. The
HVmap approach, utilizing horizontal and vertical maps,

Method
CPM NuInsSeg

DQ ↑ SQ ↑ PQ ↑ AJI ↑ DQ ↑ SQ ↑ PQ ↑ AJI ↑
Watershed 0.797 0.730 0.582 0.694 0.601 0.735 0.461 0.502
Boundary 0.837 0.734 0.614 0.714 0.640 0.753 0.491 0.532
HVMap 0.879 0.810 0.713 0.737 0.786 0.754 0.596 0.638
Ours 0.883 0.808 0.714 0.740 0.788 0.756 0.599 0.647

Table 1. Comparison of different adjacent instance separation
methods, including the watershed algorithm, boundary partition,
HVmap and our method.

bound collapse
CPM17 NuInsSeg

DQ ↑ SQ ↑ PQ ↑ AJI ↑ DQ ↑ SQ ↑ PQ ↑ AJI ↑
0.772 0.710 0.548 0.610 0.587 0.703 0.414 0.497

✓ 0.877 0.807 0.707 0.733 0.775 0.752 0.582 0.630
✓ ✓ 0.883 0.808 0.714 0.740 0.788 0.756 0.599 0.647

Table 2. Ablation studies of components in Mudslide algo-
rithm, where bound indicates initial boundary, and collapse in-
dicates mudslide collapse processing.

enhances the differentiation between instances and achieves
better results. Furthermore, our method, with more explicit
instance differentiation representation and a more rational
instance acquisition process, outperforms other methods.
This underscores the superiority of our Mudslide approach.

The ablation of components of Mudslide algorithm.
We conducted ablation experiments on the key steps of the
mudslide algorithm. Here, we considered two components:
whether to use the initial boundary and whether to perform
mudslide collapse. In Table 2, we explored three com-
parative experiments: a baseline approach with no addi-
tional components, relying solely on binary map partition-
ing based on connected regions; a scenario involving only
the initial boundary extracted from the collapse field; and
a comprehensive application of both the initial boundary
and mudslide collapse, representing our full-fledged mud-
slide algorithm for instance segmentation. These experi-
ments aim to scrutinize the individual contributions of each
component to the overall segmentation performance.

The experimental results indicate that incorporating an
initial boundary leads to performance gains of 16% PQ and
12% AJI for the CPM dataset and 17% PQ and 14% AJI for
NuInsSeg. Furthermore, the additional mudslide collapse
results in a performance boost of 7% PQ and 7% AJI for
the CPM dataset and 16% PQ and 17% AJI for NuInsSeg.
These findings underscore the substantial benefits of each
component within the mudslide method for enhancing in-
stance segmentation outcomes.

Force map construction methods. As a crucial man-
ifestation of distinct instance differentiation, the construc-
tion of the force map is pivotal in the Mudslide algorithm.
Therefore, we consider three methods for building the force
map: direct prediction, collapse field segmentation, and col-
lapse field extraction.
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Method
CPM NuInsSeg

DQ ↑ SQ ↑ PQ ↑ AJI ↑ DQ ↑ SQ ↑ PQ ↑ AJI ↑
predict 0.874 0.807 0.707 0.735 0.777 0.751 0.587 0.633
segment 0.864 0.808 0.701 0.728 0.772 0.753 0.582 0.629
extract 0.880 0.807 0.711 0.739 0.784 0.755 0.592 0.643

Table 3. Comparison of different force map construction meth-
ods.

In the first approach, we have the model predict the force
map directly. Specifically, we augment the model with a
branch that outputs nine channels, allowing it to learn the
force map’s eight directions and the background region.
Subsequently, we obtain the force map by employing the
argmax function to the predicted probability map. In the
second approach, we perform segmentation on the collapse
field. Here, we use a two-channel collapse field correspond-
ing to the horizontal and vertical directions. By segmenting
the collapse field based on angles, we categorize it into eight
regions, representing the eight directions of the force map.
In the third approach, we predict a four-channel collapse
field for horizontal, vertical, and two diagonal directions.
Then, we directly employ argmax to extract the direction of
force that each pixel should possess.

The results presented in Table 3 indicate that the force
map extracted through four-channel collapse fields per-
forms the best. The direct prediction follows with slightly
lower performance, while the force map obtained by split-
ting the two-channel collapse field performs the least favor-
ably.

The four-channel collapsing field extraction method out-
performed direct prediction by 4% PQ and 4% AJI on
CPM17, and outperformed the two-channel segmentation
method by 6% PQ, and 11% AJI. On the NuInsSeg dataset,
it outperformed direct prediction by 5% PQ, and 1% AJI,
and outperformed the two-channel segmentation method by
10% PQ, and 14% AJI. These results suggest that the four-
channel collapsing field can better capture and characterize
the differences between cell nucleus instances, resulting in
greater differences between adjacent instances and better in-
stance segmentation results.

Initial boundary generation methods. Regarding the
issue of generating and selecting initial boundaries, we con-
sidered two methods: direct generation from the binary pre-
diction map and generation from the collapsing field.

Specifically, for the first method, we first obtained the bi-
nary probability map predicted by the model’s binary clas-
sification branch and then selected a threshold of 0.5 to seg-
ment the predicted foreground and background regions of
the nucleus. Then, we used the part of the pixels that con-
tacted the background, i.e., the edge of the foreground, as
the initial boundary. For the second method, we first ob-
tained the four-channel collapsing field predicted by the
model and then used some edge extraction methods, such as

Method
CPM NuInsSeg

DQ ↑ SQ ↑ PQ ↑ AJI ↑ DQ ↑ SQ ↑ PQ ↑ AJI ↑
binary map 0.880 0.807 0.711 0.739 0.784 0.755 0.592 0.643
collapse field 0.883 0.808 0.714 0.740 0.788 0.756 0.599 0.647

Table 4. Comparison of different initial boundary generation
methods.

using the Sobel operator to extract the regions with higher
gradients in the collapsing field as the initial boundary.

As shown in Table 4, the method of generating ini-
tial boundaries using the collapsing field outperforms the
method of using only the binary prediction map. Specifi-
cally, on the CPM dataset, the collapsing field method im-
proved performance by 3% PQ, and 1% AJI compared to
the binary map method. On the NuInsSeg dataset, it im-
proved performance by 7% PQ, and 4% AJI. As antici-
pated, the construction of the initial boundary is crucial in
our Mudslide collapse algorithm, as it determines the algo-
rithm’s starting position. Obtaining foreground edges di-
rectly from a binary image makes it challenging to capture
the boundaries between adjacent instances. Although the
Mudslide algorithm can capture this difference to some ex-
tent, its performance is not as effective as constructing a bet-
ter initial boundary. The initial boundary extracted through
the collapse field takes into account the differentiated repre-
sentations between cell nuclei, effectively separating nuclei
to a certain degree and proving to be a superior boundary.

4.3. Fully-Supervised Nuclei Segmentation

In Table 5, the proposed Mudslide is compared with the
state-of-the-art fully-supervised nuclear instance segmen-
tation models on CPM17 and NuInsSeg. Our Mudslide
achieves 0.714 PQ and 0.740 AJI on the CPM17 dataset,
and 0.599 PQ and 0.647 AJI on the NuInsSeg dataset, re-
spectively. The Mudslide achieves competitive results for
fully-supervised nuclei segmentation tasks.

We further carry out a qualitative visualization analysis
of our method and different existing methods. Compared
to all the other methods in Fig. 5, our Mudslide achieves
superior instance segmentation results for nuclear instance
segmentation, especially in some regions where nuclei are
densely distributed with a large amount of overlap, where
our instance segmentation is more accurate. The results,
both quantitative and qualitative, unequivocally establish
the competitiveness of our Mudslide algorithm in accu-
rately segmenting densely packed and overlapping nuclear
instances.

4.4. Pointly-Supervised Nuclei Segmentation

In Table 6, we extend the proposed Mudslide from fully-
supervised to point-supervised nuclear segmentation task
and compare it with the state-of-the-art point-supervised
nuclear instance segmentation models on CPM17 and
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Figure 5. Visualization of instance segmentation results with different methods. (a) Input image; (b) Ground Truth; (c) U-Net [23]; (d)
DIST [16]; (e) FullNet [20]; (f) Hover-Net [6]; (g) Our Mudslide.

Method
CPM NuInsSeg

DQ ↑ SQ ↑ PQ ↑ AJI ↑ DQ ↑ SQ ↑ PQ ↑ AJI ↑
UNet [23] 0.778 0.734 0.578 0.643 0.635 0.688 0.436 0.508
DCAN [3] 0.732 0.740 0.545 0.561 0.563 0.644 0.363 0.435
DIST [16] 0.663 0.754 0.504 0.616 0.703 0.728 0.512 0.542
FullNet [20] - - 0.661 0.668 0.712 0.760 0.541 0.562
HoverNet [6] 0.854 0.814 0.697 0.705 0.743 0.764 0.568 0.611
CDNet [7] - - - 0.733 - - - 0.640
CellViT [10] 0.879 0.810 0.713 0.737 0.786 0.754 0.596 0.638
Ours 0.883 0.808 0.714 0.740 0.788 0.756 0.599 0.647

Table 5. Performance comparisons on fully-supervised nuclear
segmentation.

NuInsSeg. Our Mudslide achieves 0.529 PQ and 0.581
AJI on the CPM17 dataset, and 0.456 PQ and 0.558 AJI
on the NuInsSeg dataset, respectively. In the task of nu-
clear instance segmentation with only point annotations, our
method can also achieve competitive results.

Although methods relying solely on point annotations
still have ample room for improvement compared to fully
supervised approaches, our approach has already surpassed
other methods in the realm of point annotations.

5. Conclusion

This paper proposes a novel universal approach for nu-
clear instance segmentation, called Mudslide, which is in-
spired by the natural phenomenon of mudslides. To enhance

Method
CPM NuInsSeg

DQ ↑ SQ ↑ PQ ↑ AJI ↑ DQ ↑ SQ ↑ PQ ↑ AJI ↑
PENet [27] 0.440 0.722 0.319 0.290 0.476 0.630 0.300 0.355
C2FNet [25] 0.429 0.630 0.271 0.421 0.405 0.580 0.235 0.400
S2Label [11] 0.654 0.698 0.459 0.503 0.613 0.667 0.409 0.496
SPN+IEN [13] 0.704 0.689 0.488 0.543 0.688 0.660 0.454 0.523
SCNet [12] 0.716 0.685 0.496 0.554 0.694 0.655 0.456 0.526
Ours 0.747 0.703 0.529 0.581 0.707 0.689 0.487 0.558

Table 6. Performance comparisons on point supervised nuclear
segmentation.

the model’s capability to differentiate between adjacent in-
stances, we devise a collapsing field, and generate a force
map along with an initial boundary, offering distinct repre-
sentations for different instances and a unified representa-
tion for the same instance. We also propose Mudslide col-
lapse algorithm that mimics the natural process by segment-
ing through the iterative collapse of individual pixels. Our
collapse fields are simple and easily extendable to point-
supervised tasks. The experimental results on public nu-
clei datasets demonstrate that Mudslide outperforms state-
of-the-art methods.
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