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Abstract

Low-light scenes are prevalent in real-world applica-
tions (e.g. autonomous driving and surveillance at night).
Recently, multi-object tracking in various practical use
cases have received much attention, but multi-object track-
ing in dark scenes is rarely considered. In this paper, we
focus on multi-object tracking in dark scenes. To address
the lack of datasets, we first build a Low-light Multi-Object
Tracking (LMOT) dataset. LMOT provides well-aligned
low-light video pairs captured by our dual-camera system,
and high-quality multi-object tracking annotations for all
videos. Then, we propose a low-light multi-object tracking
method, termed as LTrack. We introduce the adaptive low-
pass downsample module to enhance low-frequency compo-
nents of images outside the sensor noises. The degradation
suppression learning strategy enables the model to learn
invariant information under noise disturbance and image
quality degradation. These components improve the robust-
ness of multi-object tracking in dark scenes. We conducted
a comprehensive analysis of our LMOT dataset and pro-
posed LTrack. Experimental results demonstrate the supe-
riority of the proposed method and its competitiveness in
real night low-light scenes. Dataset and Code: https:
//github.com/ying-fu/LMOT

1. Introduction

Multi-object tracking (MOT) aims to locate and associate
multiple objects in video sequences. It is widely used in
many downstream applications, such as video recognition
[7, 32], autonomous driving [18], and surveillance [11]. Re-
cently, multi-object tracking in various practical use cases
has garnered much attention [8, 9, 18, 34, 42], greatly ad-
vancing the development of MOT. However, these works
are primarily tailored for high-quality inputs and overlook
the prevalent low-light scenes in real-world scenes. Moti-
vated by this, we study multi-object tracking in dark scenes.

Due to the physical limitations of existing cameras, ac-
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quiring high-quality videos under low-light conditions is
difficult. One inherent difficulty in capturing consecutive
video frames under such conditions is avoiding motion blur.
Current camera technology typically requires short expo-
sure times (usually just a few tens of milliseconds), but in
low-light scenarios, the sensor struggles to capture an ade-
quate number of photons within this limited duration. This
limitation inevitably leads to degradation in image quality
accompanied by higher noise levels. This presents two main
challenges for MOT under low-light conditions. The first
challenge is for collecting a low-light multi-object track-
ing dataset. Collecting and annotating a low-light MOT
dataset is difficult and expensive. MOT requires dynamic
object videos, but videos captured in low-light scenes have
extremely low brightness, making it hard to recognize and
annotate objects in the videos. The second challenge re-
volves around low-light multi-object tracking. The popular
tracking-by-detection paradigm [3, 10, 29, 30, 62] generally
consists of detector, motion-based association module, and
appearance-based association module. These modules typi-
cally require high-quality input images. The poor quality of
low-light images leads to severe performance degradation
for both detectors and appearance-based correlation mod-
ules. A simple approach is to cascade low-light enhance
modules [2, 23, 24, 47], but this introduces additional com-
putational costs. Furthermore, images optimized for visual
quality may be suboptimal for downstream tasks [6, 21, 27].

In this paper, we build a low-light multi-object tracking
dataset (LMOT), specifically designed to address the chal-
lenges of multi-object tracking in dark scenes. To this end,
we develop a dual-camera system that simultaneously cap-
tures well-lit and low-light video frames. The video pairs
are highly aligned in both spatial and temporal dimensions,
offering two key benefits. First, it enables us to annotate
on the well-lit videos, resulting in high-quality annotations.
Second, the well-lit videos can provide additional super-
vision information during the training phase, and strongly
enhance the performance in the dark scenes. After careful
annotation, we collect 32 video sequences (2.3× MOT17),
over 35K frames (3.1× MOT17), and over 815K bound-
ing boxes (2.8× MOT17). The RAW data is the output of
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the image sensor and is the input data of the image signal
processor (ISP). It saves all information from the image sen-
sor, which is crucial for capturing object information in dark
scenes [6, 52, 67]. Therefore, we collect RAW videos for
LMOT.

Additionally, we propose a low-light multi-object track-
ing method, termed as LTrack. The low-light video is char-
acterized by substantial sensor noise and poor image qual-
ity, which significantly degrades both shallow and deep
feature representations, leading to reduced tracking perfor-
mance. We observe that the sensor noise in low-light im-
ages exhibits a similarity to adversarial attacks [35, 43].
To address this issue, our main idea is to learn the invari-
ant semantic information under noise disturbance quality
degradation. We present the adaptive low-pass downsam-
ple module (ALD). It employs spatial low-pass convolution
to extract low-frequency components from images, exclud-
ing noises, and adaptively enhance the feature maps. We
also present the degradation suppression learning strategy
(DSL), which utilizes paired low-light videos to help the
model suppress the noise disturbance and encourage image
content response in the feature domain. We conduct a com-
prehensive analysis of our LMOT dataset and validate the
superiority of our LTrack in real-world night scenes.

In summary, our main contributions are as follows:

• We build the first low-light multi-object tracking dataset
using a carefully constructed dual-camera system. It pro-
vides well-aligned low-light videos in RAW format, and
high-quality MOT annotations for all videos.

• We propose a low-light multi-object tracking method. It
utilizes the adaptive low-pass downsample module and
the degradation suppression learning strategy to learn to
extract invariant features from low-light videos.

• We conduct a comprehensive analysis of our dataset and
the proposed method. Experimental results demonstrate
the superiority of the proposed method and its competi-
tiveness on real night scenes.

2. Related Work

In this section, we first review the current research status
of low-light enhancement and low-light datasets. Then, we
summarized the present research for multi-object tracking
and tracking in the dark scenes.

Low-light enhancement. Traditional methods for low-
light enhancement are primarily based on histogram equal-
ization and Retinex theory [20, 22, 25]. Recently, deep
learning has been explored for many low-level tasks [14,
44, 45, 51, 60, 61, 65, 66], and achieved superior results on
low-light enhancement [2, 4, 13, 15, 19, 24, 39, 53]. While
these methods are capable of recovering images with high
visual quality, they often require heavy computation and
may not consider downstream tasks, resulting in suboptimal

Camera
(Well-lit)

Camera
(Low-light)

Beam
Splitter

ND-Filter

Figure 1. Our dual-camera system. It consists of two cameras, a
beam splitter, and an ND-filter. Two cameras of identical models
are meticulously engineered to achieve pixel-by-pixel alignment
in the captured video data.

performance. In contrast, our approach focuses on directly
learning multi-object tracking from low-light images, thus
bypassing the low-light enhancement.

Low-light datasets. The long-short exposure is a widely
used method to collect paired low-light images, but can
only be used to collect low-light images for static scenes.
[4, 5, 49]. To capture dynamic scenes, some works de-
signed the mechatronic system. They obtain paired low-
light data by repeating the motion twice [13, 47]. However,
these mechatronic systems cannot be used to collect dy-
namic object videos in the wild. Jiang et al. [23] designed
a dual-camera system that simultaneously captures paired
well-lit and low-light videos, making it possible to capture
dynamic scenes and dynamic object videos for multi-object
tracking. Zou et al. [57] setup an optical system to collect
paired videos and event streams. These works explore vari-
ous ways to construct low-light datasets and inspire research
on high-level vision tasks in dark scenes, such as LOD [21]
for object detection, LIS [6] for instance segmentation, and
ExPose [27] for human pose estimation. These datasets pro-
vide paired low-light data only for image tasks, and cannot
be expanded for multi-object tracking in dark scenes.

Multi-object tracking datasets. MOT15 [26] is the first
large-scale benchmark for multi-object tracking. MOT17
[34] stands as one of the most widely applied MOT bench-
marks. MOT20 [9] focuses on very crowded scenes.
These three datasets are for pedestrians. KITTI [18]
and BDD100K [55] are for autonomous driving scenarios.
DanceTrack [42] focuses on dancing scenes and is char-
acterized by similar appearance and diverse motions. Re-
cently, SportsMOT [8] aims to track athletes and encourage
algorithms to promote both appearance and motion associa-
tion. These datasets explore multi-object tracking in various
practical use cases, but none of them consider multi-object
tracking in dark scenes.
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Figure 2. Two example videos from our LMOT dataset. It provides well-aligned low-light video pairs and MOT annotations for all videos.
The time interval between adjacent frames is 1s. The first row is the low-light video, the second row is the scaled low-light video and the
last row is the well-lit video. Our LMOT dataset is collected from city outdoor scenes.

Dataset Format Videos Frames Length (s) Bbox Tracks

MOT17 [34] sRGB 14 11,235 463 292,733 1,342
MOT20 [9] sRGB 8 13,410 535 1,652,040 3,456
DanceTrack [42] sRGB 100 105,855 5,292 - 990
SportMOT [8] sRGB 240 150,379 6,015 1,629,490 3,401

KITTI [18] sRGB 21 8,000 - 47,000 917
BDD100K [55] sRGB 1,600 318,000 - 3,300,000 131,000
SWIR [36] SWIR - 7,309 - 57,221 -

LMOT RAW 32 35,120 1,756 815,550 4,090

Table 1. Comparison of statistics between existing MOT datasets
and our LMOT dataset

Object tracking in the dark. To track in low-light scenes,
some methods explore to use multi-modal information for
single-object tracking, such as event camera [58, 64], depth
[40, 54] and thermal [46, 59] devices. Park et al. [36] pro-
posed to use Short-Wave Infrared (SWIR) images for multi-
object tracking, since its advantages in terms of robustness
in low-light conditions. The common drawback of these
methods is that they require additional hardware equipment
and cannot be applied to the most widely used CMOS imag-
ing systems.

SORT [1] uses the Kalman Filter motion model and em-
ploys IoU for association. ByteTrack [62] enhances track-
ing performance by considering low-confidence bounding
boxes. OS-SORT [3] enhances SORT by restoring lost tar-
gets. Recently, Transformer has been explored for MOT
[16, 33, 41, 56, 63]. These methods have achieved high
performance in many practical scenarios, but they do not
consider dealing with low-light conditions. We focus on
multi-object tracking under low-light conditions. Based on
RAW videos, our method is highly practical with excellent
performance and does not require additional hardware.

3. Low-light Multi-object Tracking Dataset

In this section, we first introduce our dual camera system
and the details of collecting and annotating our low-light
multi-object tracking (LMOT) dataset. Then, we analyzed
the statistical characteristics of our LMOT dataset.

Dataset Split Videos Bbox Tracks Paired Well-lit

LMOT-dual
train 11 309,466 1533 ✓
val 4 131,781 626 ✓
test 11 312,742 1644 ✓

LMOT-real real 6 61,561 287

Table 2. Detailed statistics and data splits for LMOT.

3.1. Dataset Construction

Multi-object tracking requires dynamic scenes and object
video. To collect low-light videos for multi-object track-
ing, we build a dual-camera system [23], which is illus-
trated in Fig. 1. It can simultaneously capture paired low-
light and well-lit video pairs. Its main components include
a beam splitter, a neutral density (ND) filter, and two FLIR
Grasshopper3 GS3-U3-23S6C cameras. The beam splitter
divides the incoming light into two separate paths. This
arrangement allows one camera to capture well-lit images
directly, while the other camera records low-light images,
with the ND-filter attenuating the light intensity. To en-
sure temporal synchronization of the video frames, we em-
ploy the hardware interface to trigger the camera exposure
events. Moreover, to avoid frame loss, our dual-camera
system uses two independent hardware interfaces for data
transmission and is equipped with a high-speed solid-state
drive. Thanks to precise calibration, our dual-camera sys-
tem can capture paired low-light and well-lit videos in real
time for dynamic scenes and objects. More details about our
dual-camera system are given in supplementary materials.

We save the video frames in RAW format before the im-
ages are processed by the camera image signal processor
(ISP). In terms of camera settings, we set the exposure time
for both cameras to 10ms, and the frame rate is fixed at
20. This setting is feasible to avoid motion blur. We adjust
the gain level for well-lit cameras to achieve optimal im-
age quality. The gain for low-light cameras is consistently
set to the maximum value, to simulate low-light capturing
setup in real scenarios. We also collect a real low-light MOT
dataset (LMOT-real) to evaluate performance in real-world
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Figure 3. (a) Number of instances per category. LMOT consists of 6 categories, most of the instances are the person and car. (b) IoU on
adjacent frames. Compared to MOT17, KITTI, and DanceTrack, LMOT has a roughly average score. This indicates that LMOT has a
relatively normal movement speed. (c) Cosine distance of appearance features. The cosine distance is smaller under low-light conditions,
indicating that the appearance distinguishability is decreased under low-light conditions.

dark scenes. These videos are captured using a single cam-
era with the same camera settings.

Our LMOT dataset contains a variety of city outdoor
scenes, including roads, overpasses, pedestrians, and inter-
section. The overpass scenes take an overhead shot of ob-
jects, while all other scenes are captured from the perspec-
tive of pedestrians. To account for the impact of camera
motion, we introduce arbitrary horizontal rotations and ver-
tical random movements to the camera. Fig. 2 shows two
sampled video sequences from our LMOT dataset.

We annotate six types of moving objects, including car,
person, bicycle, motorcycle, bus, and truck. The annotated
labels include bounding boxes, identifications, and visibility
status. For partly occluded objects, a full box is annotated.
For a fully occluded object, an estimated box is annotated.
Each object has a unique ID throughout the entire video.
Thanks to well-aligned low-light and well-lit videos, we can
annotate well-lit videos to simultaneously obtain labels for
low-light videos. This greatly reduces the annotation diffi-
culty and enhances quality. Lastly, we carefully review all
the annotation results.

3.2. Dataset Statistic

LMOT is a large-scale dataset that focuses on multi-object
tracking in dark scenes. We compare the statistics of LMOT
with existing MOT datasets in Tab. 1. It can be seen that
LMOT is approximately three times larger than MOT17
[34]. Compared to large-scale datasets such as DanceTrack
[42], SportsMOT [25], KITTI [18] and BDD100K [55], the
scale of LMOT is still considerable. It should be empha-
sized that these datasets are not for multi-object tracking
in dark scenes and only provide sRGB images. Compared
to SWIR, our LMOT dataset has approximately 5× frames
and 14× bounding boxes. The detailed statistics and data
splits for LMOT are shown in Tab. 2.

We present the number of instances for each category in
Fig. 3 (a). The majority of instances are persons and cars.
As shown in Fig. 3 (b), the average IoU on adjacent frames
of LMOT is lower than MOT17 and DanceTrack, but higher
than KITTI. This indicates that the motions in LMOT are

fast but within normal range. Following [42], we use cosine
distance of appearance features 1 to evaluate the appearance
similarity. From Fig. 3 (c), we can see that the cosine dis-
tance of appearance features under low-light conditions is
smaller than that under well-lit conditions. In other words,
the appearance of objects will deteriorate under low-light
conditions, making them harder to distinguish.

4. Low-light Multi-object Tracking

In this section, we peresnt our low-light multi-object track-
ing method (LTrack). Our main idea is to learn the invari-
ant semantic information under noise disturbance quality
degradation. The overall framework can be seen in Fig. 4.

4.1. Formulation and Motivation

In low-light scenes, the camera can capture only a small
number of photons in a single exposure. Thus, the po-
tential sensor noise is highlighted, resulting in significant
degradation to the image quality [50]. We observed that
directly feeding low-light images to the network without
any special design leads to the feature map degradation and
significantly reduces the performance of the model (see in
Sec. 5.2). A direct solution is to apply low-light enhance-
ment techniques, which focus on learning a mapping func-
tion from low-light images to clean well-lit images. Since it
is a highly ill-posed problem, learning such a mapping func-
tion requires considerable computing and storage overhead.
Although DNN-based methods have achieved excellent per-
formance in low-light enhancement, images enhanced for
visual quality may be suboptimal for downstream tasks.

In this work, we perform multi-object tracking from low-
light images, bypassing the low-light enhancement. Lever-
aging RAW videos, the network obtains more original scene
information compared to sRGB. To enhance the perfor-
mance and robustness of the multi-object tracking model,
our main idea is to earn the invariant semantic informa-
tion under noise disturbance quality degradation. Thus, we
present the adaptive low-pass downsampling (ALD) module

1We use UniTrack [12] to extract appearance features.
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Figure 4. The overall framework of the proposed low-light multi-object tracking method, termed as LTrack. It employs adaptive low-pass
downsample module and degradation suppression learning strategy, enabling the model to learn invariant features from low-light videos.

to enhance the low-frequency components of images and
filter out high-frequency noise. We also propose the degra-
dation suppression learning strategy (DSL), which utilizes
paired low-light videos to help the model suppress image
noise disturbance and encourage image content response in
the feature domain.

4.2. Adaptive Low-pass Downsampling

The downsampling operation reduces the feature size while
preserving the most important information. The noise in
low-light images introduces high-frequency disturbance to
the feature maps, which can mislead the preservation of ob-
ject information. To weaken the impact of high-frequency
noises and enhance the low-frequency part of the feature
map, we introduce spatial low-pass convolution (SConv)
to extract low-frequency features from the noised feature
maps. The softmax function is used to constrain the origi-
nal convolution kernel to be low-pass as

K̂i,j =
exp(Ki,j)∑
p,q exp(Kp,q)

(1)

where K and K̂ are the origin convolution kernel and low-
pass convolution kernel. We initialize the spatial low-pass
convolution kernel using a standard Gaussian kernel. The
kernel size is set to 5 to obtain more spatial information.
Then, the obtained low-frequency features are adaptively
weighted and fused into the original features. We use global
average pooling to obtain channel descriptors for both ori-
gin features and low-frequency features. These descriptors
are then fed into a fully connected layer to compute the
weight values.

4.3. Degradation Suppression Learning

Given that a low-light image and well-lit image pair share
the same content, the model should exhibit identical feature
responses to them. However, the low-light image results in
shallow features full of noise, and the deep feature exhibits

lower responses to objects (as shown in Fig. 5). To address
this, our idea is to suppress image noise in shallow features
and use well-lit images to help model learning disturbance
invariant information from low-light images. The degrada-
tion suppression loss can be expressed as

LDS =
∑
l

||Fwell
l − Flow

l ||22 (2)

where Fwell
l and Flow

l denotes l-th feature map correspond-
ing to well-lit and low-light image, respectively. To further
suppress the noise in shallow features, we also introduce the
Total Variation (TV) loss [38] to features as

LTV =
∑
l

||GrowFlow
l ||22 + ||GcolFlow

l ||22 (3)

where Grow and Gcol are the first derivative matrix to
role and column. The TV loss adds spatial smoothing con-
straints to features, which helps model learning to extract
noise invariant features. Both the well-lit and low-light im-
ages are used to train the model by a common detection loss
Ldet(·). The total loss is LTotal, i.e.,

LTotal = Lwell
det + αLlow

det + βLDS + γLTV (4)

where is the Lwell
det and Llow

det are the detection loss for well-
lit and low-light images, α and β are loss weights. We set
α, β and γ to 1, 1 and 0.01, respectively.

5. Experiments

5.1. Experiment Setup

Dataset Split. In structuring our dataset, we randomly split
the videos into training, validation, and testing sets, con-
sisting of 11, 4, and 11 videos respectively. We also pro-
vide LMOT-real dataset that is captured in real-world night
scenes with 6 videos. Detailed dataset split and statistical
information are shown in Tab. 2.
Evaluation Metrics. Following [8, 42], we recommend us-
ing HOTA [31] as the main evaluation metric to simulta-
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Figure 5. Visualization of shallow and deep features for well-lit
and low-light images. It can be seen that, under low-light con-
ditions, the shallow feature is full of noise, and the deep feature
exhibits lower responses to objects.

neously evaluate the performance of detection and associa-
tion. We also employ AssA and IDF1 [37] to evaluate asso-
ciation performance, MOTA, and Deta to evaluate detection
performance. There are two ways to combine metrics for all
classes into a single score. One is by averaging metrics over
the class values, and the other is by over the detection val-
ues. To avoid possible result bias caused by some categories
with fewer samples (such as Bus and Truck), we combine
scores by averaging over the detection values.

Implementation Details. Following ByteTrack [62] and
OC-SORT [3], we use YOLOX [17] as our detector. The
trackers are pre-trained on the COCO [28] dataset and then
trained on our LMOT dataset for 24 epochs. We apply
data augmentation strategies including random flip, scale
jitter of resizing, and Mosaic. We also use the physical-
based noise model [50] for RAW image augment. We use
SGD optimizer with weight decay 10−4 and cosine learning
rate schedule, the initial learning rate is 10−4 and gradu-
ally reduces to 10−5. We apply linear interpolation as post-
processing to all trackers, with the maximum gap set to 20.

5.2. Analysis under low-light conditions

We analyze the impact of low-light conditions on multi-
object tracking using the LMOT validation set. It should be
emphasized that the low-light and well-lit video pairs are
perfectly aligned in LMOT.

Impact to detectors. We first analyze the impact of lighting
conditions on the detector. We select YOLOX as the detec-
tor since it is widely used in MOT areas [3, 8, 62]. We train
the detector using well-lit images (WL), low-light images
(LL), and all the images (AL). Then, test them on both well-
lit and low-light images. The results are shown in Tab. 3.
From the table, we can see that the model trained by well-
light images achieves the best result on well-light images,
but its performance significantly decreased on low-light im-
ages. Further, we visualized the feature maps under these
two lighting conditions in Fig. 5. It can be seen that both
the shallow feature and deep features of the low-light image
are significantly degraded due to the sensor noises. We also

Training data Well-lit Low-light

WL LL mAP mAR AP50 mAP mAR AP50

✓ 37.0 45.0 65.5 3.1 4.8 6.6
✓ 23.0 30.8 40.8 16.9 23.7 30.3

✓ ✓ 28.7 35.2 49.1 17.9 24.1 32.2

Table 3. Analysis on LMOT validation set for detector (YOLOX
[17]). WL and LL indicate the well-lit and low-light, respectively.
It shows that it is hard to detect objects under low-light conditions.

Cond. Mot. App. HOTA AssA IDF1 MOTA DetA

- ✓ 86.1 79.5 72.9 82.6 93.4
WL ✓ 87.3 77.1 82.5 98.8 98.4
WL ✓ ✓ 83.7 78.0 85.6 96.8 90.0
LL ✓ 53.8 32.1 40.0 67.3 90.2
LL ✓ ✓ 83.4 77.5 85.0 96.0 89.8

Table 4. Analysis on LMOT validation set for different association
models. Cond, Mot, and App indicate the light condition, motion,
and appearance, respectively. The detection boxes are ground-
truth boxes. It indicates that appearance information is effective
for association under well-lit conditions, but dose not as effective
under low-light conditions.

observed that using low-light images can largely improve
the performance of the decoder under low-light conditions,
and use all images to achieve the best performance. But this
result is much lower than that under well-lit conditions.
Impact to association modules. We analyze the impact
of low-light conditions on the object association modules.
Motion and appearance are important for object associa-
tion. Both of them rely on detection boxes to locate the
objects. To separate the impact of the detector, we use the
ground-truth boxes as the detection boxes. The results are
shown in Tab. 4. It can be seen that using only appearance
matching under well-lit conditions achieves the best result
while using only appearance matching under low-lit condi-
tions results in very poor performance. This indicates that
the objects in LMOT have obvious visual distinguishabil-
ity, but the distinguishability is significantly reduced under
low-light conditions. In Fig. 6, we visualize the appearance
feature of objects in the LMOT dataset under both well-lit
and low-light conditions. We can observe that under well-
lit conditions, LMOT is very distinguishable in the feature
space. However, under low-light conditions, this discrimi-
nation of LMOT decreased significantly.

5.3. Results on LMOT dataset

We compare the proposed method with potential low-light
multi-object tracking methods. We first train three baseline
models using low-light videos, well-lit videos, and both of
them, without any modifications to baseline trackers. They
are denoted by Base-low, Base-well, and Base-all. The sec-
ond type of method is tracking after low-light enhancement.
These methods use low-light enhancement methods as pre-
processing module. Both the enhanced videos and well-lit
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Method ByteTrack[62] OC-SORT[3] Detection Params FLOPS
HOTA AssA IDF1 HOTA AssA IDF1 mAP AP50 AP75 (M) (G)

Base-low 28.0 42.9 10.9 28.8 40.3 34.3 18.8 32.4 18.9 99.00 793.29
Base-well 13.5 36.8 32.9 13.8 31.7 12.0 5.5 9.7 5.5 99.00 793.29
Base-all 28.1 42.6 32.9 28.9 39.8 34.6 19.0 32.5 19.1 99.00 793.29

LLFlow [48] 28.8 42.9 34.0 29.4 41.0 35.0 22.4 38.3 22.6 116.42 8755.91
SDSD [47] 29.1 41.1 35.5 29.3 36.9 36.8 19.8 36.2 19.3 103.30 1136.39

DNF [24] 27.6 40.9 33.0 28.1 36.4 35.3 19.1 35.6 18.2 101.83 907.33
SMOID [23] 28.0 39.7 33.9 28.7 36.7 35.6 19.1 35.5 18.2 120.88 7286.17

RAOD [52] 26.1 42.9 29.5 26.1 42.9 29.5 18.3 31.3 18.4 99.07 897.04

LTrack (Ours) 29.4 43.2 35.2 29.8 39.0 36.7 23.4 40.6 23.5 100.43 800.92

Table 5. Experimental results on LMOT dataset. Base-low, Base-well and Base-all indicate the baseline model trained on low-light, well-lit
and all of them, respectively. The number of parameters and prediction latency of each method are reported along with the accuracy

(a) Well-lit (b) Low-light

Figure 6. Visualization of appearance features of LMOT dataset
using t-SNE. The same object is coded by the same color. It indi-
cates that the appearance of objects under well-lit is distinguish-
able, but significantly reduced under low-light conditions

videos are used for training. We select four different low-
light enhancement techniques for comparison. LLFlow [48]
and SDSD [47] are low-light enhancement methods based
on RGB images, while DNF [24] and SMOID [23] are
based on RAW low-light enhancement methods. LLFlow
and DNF take images as input, SDSD and SMOID take
videos as input. The RAW object detection method is also
trained together on well-lit and low-light videos. Its output
bounding boxes are directly fed to the tracker. We test all
the potential methods on two state-of-the-art trackers Byte-
Track [62] and OC-SORT [3]. We also show mAP, AP50,
and AP75 to highlight the detector performance.

From Tab. 5 we can see that, the proposed LTrack
achieves the best HOTA and is highly competitive on all
metrics. For example, the proposed method improves
HOTA 1.3 with almost the same parameters and compu-
tation as base methods. This strongly proves the effec-
tiveness of the proposed method. Compared with tracking
after low-light enhancement, these methods have a large
amount of additional parameters and computation but still
perform worse than the proposed method. For example,
LLFlow delivers 8 times FLOPS but still performs worse
than our LTrack. In addition, We observed that there is

Method HOTA AssA IDF1 MOTA Det

Base-low 32.5 33.4 39.3 42.4 27.1
Base-well 28.0 30.4 34.1 36.9 23.3
Base-all 34.6 38.1 40.0 44.8 30.2

LLFlow[48] 33.6 38.0 38.4 43.1 29.7
SDSD[47] 31.6 34.2 36.7 38.8 27.5

DNF[24] 33.2 39.0 36.9 44.4 30.1
SMOID[23] 31.2 34.1 36.6 41.2 26.9

RAOD[52] 32.2 33.5 39.4 40.9 26.5

LTrack (Ours) 35.1 38.9 40.4 45.2 30.7
Table 6. Experimental results on LMOT-real datase with OC-
SORT[3]. The best result are shown in boldface

no significant difference in results between RAW-based im-
age enhancement methods and RGB-based image enhance-
ment methods. This is not consistent with what our method
has observed. The reason may be that low light enhance-
ment focuses on image quality restoration and may mislead
downstream tasks. As for RAOD [52], it has almost the
same number of parameters and computational load as our
method, but its performance is much lower than the pro-
posed LTrack. Despite addressing HDR scenes through a
preprocessing module for RAW input, it does not perform
well under low-light conditions.

5.4. Results on Real World

To validate the performance of our method in real-world
low-light scenes at night, we evaluate all methods on
LMOT-real dataset, using OC-SORT [3]. As shown in
Tab. 6, the proposed LTrack performs much better than all
comparison methods. Both the methods of tracking after
low-light enhancement and the RAW detection method en-
counter generalizability problems and are not even better
than Base-all. This strongly demonstrates the robustness of
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DSL ALD HOTA AssA IDF1 MOTA DetA

28.1 42.6 32.9 23.8 18.7
✓ 29.0 42.4 35.0 25.8 20.1

✓ 28.3 42.4 33.1 24.6 19.3
✓ ✓ 29.4 43.2 35.2 26.1 20.3

Table 7. Ablation on adaptive low-pass downsampling (ALD) and
degradation suppression learning (DSL).

Data Type HOTA AssA IDF1 MOTA DetA

sRGB 29.2 42.7 34.9 26.4 20.5
RAW 8-bit 29.0 42.3 34.5 26.1 20.2
RAW 10-bit 29.3 42.9 34.8 26.5 20.4
RAW 12-bit 29.4 43.2 35.2 26.1 20.3

Table 8. Results of different image format and dynamic range on
LMOT test set.

Methods HOTA AssA IDF1 MOTA DetA

Gaussian-Possion 29.9 43.1 35.7 26.6 21.1
Physical-based [50] 30.4 44.1 36.0 26.6 21.2
LMOT (Ours) 35.1 38.9 40.4 45.2 30.7

Table 9. Results with low-light synthesis methods and LMOT
dataset on LMOT-real set.

our LTrack in real-world dark scenes.

5.5. Exploration and Discussion

In this section, we conduct extensive analysis and discus-
sion on LMOT datasets and the proposed method.

Ablation Study. We conduct ablation experiments to vali-
date the effectiveness of our improvements, the results are
shown in Tab. 7. It can be seen that all improvements con-
tribute effectively to enhanced performance. Among them,
the degradation suppression learning strategy demonstrates
the most significant effect, resulting in an approximate 1-
point enhancement in HOTA. The best results are achieved
when employing all strategies simultaneously. This demon-
strates the effectiveness of all our contributions.

RAW vs. sRGB. We analyze the impact of input data for-
mats, the results are shown in Tab. 8. The 12-bit RAW
format achieves significantly better results than sRGB. Be-
cause the RAW format saves much more potential informa-
tion and is helpful for MOT in low-light scenes. We also
observed that higher bitwidth is beneficial for performance,
which has also been observed in other vision tasks [21, 52].

LMOT vs. Synthetic data. We compare our LMOT dataset
with the synthetic low-light data to further demonstrate the
value of LMOT. We apply the Gaussian-Possian based and
Physical-based [50] low-light data synthesis method to syn-
thesize low-light videos from well-lit videos. We train
our LTrack on these types of data and evaluate their per-
formance in real low-light scenes using LMOT-real. As

Categories HOTA AssA IDF1 MOTA DetA

Person 24.2 30.8 29.9 25.1 19.2
Bicycle 16.9 40.3 15.6 8.9 7.1
Car 37.5 53.3 47.2 33.7 26.5
Motorcycle 19.8 35.0 22.6 15.2 11.4
Bus 44.3 59.9 51.8 36.7 32.9
Truck 6.9 15.6 6.4 3.2 3.1

Table 10. Results of the proposed method for different categories
on LMOT test set.

shown in Tab. 9, the tracker trained on our LMOT dataset
has much better performance in real night scenes, which
strongly demonstrates the value of our LMOT dataset.

Analysis on different category. We also analyze the per-
formance for different categories. From Tab. 10, we can see
that cars and buses achieved the best performance because
they have regular shapes and larger areas. Trucks exhibited
the poorest performance, because they have the fewest in-
stances, making it challenging for the model to learn accu-
rate identification. The person achieves relatively average
scores. Bicycles and motorcycles have close scores since
they have similar appearance and motion patterns.

6. Conclusion

In this work, we investigate the multi-object tracking in the
dark scenes. We build a new low-light multi-object track-
ing (LMOT ) dataset, which provides well-aligned low-light
video pairs and high-quality multi-object tracking annota-
tions. We observed that low-light images are significantly
degraded by the sensor noises, which also degrades the
feature maps and significantly deteriorates the model per-
formance. To learn the invariant semantic formation un-
der noise disturbance and quality degradation, we present
the adaptive low-pass downsample module and degradation
suppression learning. These improvements greatly enhance
the robustness of our method in real-world low-light scenes.
Limitations. We focus on multi-object tracking in the dark
scenes. But we do not consider other degradation environ-
ments in the real world, such as rainy and foggy days. In our
future work, we will consider exploring multi-object track-
ing in more real-world scenarios, promoting the develop-
ment of MOT in real-world applications.
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