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Abstract

Human facial action units (AUs) are mutually related
in a hierarchical manner, as not only they are associated
with each other in both spatial and temporal domains but
also AUs located in the same/close facial regions show
stronger relationships than those of different facial regions.
While none of existing approach thoroughly model such hi-
erarchical inter-dependencies among AUs, this paper pro-
poses to comprehensively model multi-scale AU-related dy-
namic and hierarchical spatio-temporal relationship among
AUs for their occurrences recognition. Specifically, we first
propose a novel multi-scale temporal differencing network
with an adaptive weighting block to explicitly capture facial
dynamics across frames at different spatial scales, which
specifically considers the heterogeneity of range and mag-
nitude in different AUs’ activation. Then, a two-stage strat-
egy is introduced to hierarchically model the relationship
among AUs based on their spatial distribution (i.e., local
and cross-region AU relationship modelling). Experimen-
tal results achieved on BP4D and DISFA show that our
approach is the new state-of-the-art in the field of AU oc-
currence recognition. Our code is publicly available at
https://github.com/CVI-SZU/MDHR.

1. Introduction

Facial Action Coding System (FACS) [11] specifies a set
of Facial Action Units (AUs) to describe multiple atomic
human facial muscle movements, which can comprehen-
sively and objectively describe various human facial ex-
pressions in an anonymous and concise manner [30]. Re-
cent studies frequently show that AUs are robust and effec-
tive low-dimensional facial descriptors for various human
behaviours understanding tasks, such as emotion [33, 51],
mental health [34, 44] and pain level [10] analysis. As a
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Figure 1. (a) hierarchical AU relationship; and (b) heterogeneous
range and magnitude of different AUs’ activation.

result, a large number of studies attempt to automatically
recognize AU occurrences from facial images or videos
[7, 8, 16, 41, 45, 46, 55].

Most of these approaches conduct AU recognition on
still face images. Since each AU usually occur in a specific
facial region, some recognize each AU based on a small
facial patch defined by automatically detected facial land-
marks [14, 18, 38]. However, they not only ignore con-
textual cues (i.e., AUs are mutually dependent [48]) obtain-
able from other facial regions for each AU’s recognition, but
also suffer from errors caused by facial landmark detection.
Consequently, other approaches jointly recognize multiple
AUs from the entire face, allowing informative contextual
cues [32, 36] to be utilized at the cost of including noises
introduced by irrelevant facial regions when recognizing a
particular AU. Specifically, transformer [13, 57] and graph-
based [29, 46] approaches have been widely extended to
model the relationship among AUs. However, most of these
employ the same strategy to model the relationship between
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every pair of AUs in the spatial domain(e.g., via transformer
encoder with the self-attention operation [13] and graph
edges learned by the same cross-attention operation [29]),
without giving explicit consideration to the natural hierar-
chical relationship among AUs (Problem 1). More specif-
ically, AUs corresponding to the same/close facial regions
frequently show stronger associations than AUs located in
different facial regions(illustrated in Fig. 1 (a)), as AUs lo-
calized to the same/close facial regions may be influenced
by some shared facial muscles [1].

Besides the spatial cues, some studies additionally model
temporal dynamic between facial frames to enhance AU
recognition performances [23, 24, 47]. A typical solution
is applying common temporal models (e.g., Long-Short-
Term-Memory (LSTM) [3, 18], Spatio-Temporal Graph
[37, 50] and 3D Convolution Neural Networks (CNNs) [5])
to process the extracted frame-level static facial/AU fea-
tures. However, these temporal modeling strategies are in-
sensitive to subtle facial muscle movements. While other
approaches [12, 43, 56] (e.g., optical flow and dynamic
image) can explicitly capture facial motions, they still fail
to consider that facial muscle movements corresponding
to different AUs’ activation could exhibit heterogeneity in
both range and magnitude (Problem 2), e.g., AU25 involves
large-scale deformations of the mouth region, while AU2
are represented by subtle muscle movements surrounding
eyebrows (illustrated in Fig. 1 (b)). In other words, fa-
cial dynamic of a certain spatial scale could contribute un-
equally to the recognition of different AUs.

In this paper, we propose a novel Multi-scale Dynamic
and Hierarchical Relationship (MDHR) modeling approach
for AU recognition, which: (i) hierarchically models spatio-
temporal relationship among AUs; and (ii) adaptively con-
siders facial dynamic at various spatial scales for each AU’s
recognition. Our MDHR consists of two key modules.
The Multi-scale Facial Dynamic Modelling (MFD) mod-
ule that adaptively emphasizes AU-related facial dynamic
at multiple spatial scales (i.e., computing differences be-
tween neighboring frames’ features maps output from dif-
ferent backbone layers), ensuring both obvious and sub-
tle AU-related facial dynamic can be captured in an effi-
cient manner (addressing Problem 2). Then, a Hierarchi-
cal Spatio-temporal AU Relationship Modelling (HSR)
module is introduced to hierarchically model relationship
among spatio-temporal AU features in a two-stage man-
ner, where the first stage individually models relationship
among AUs within the same/close facial region at both
feature extraction and AU prediction levels, and the sec-
ond stage explicitly learns the relationship between pairs
of AUs located in different facial regions via graph edges
(addressing Problem 1). The main contributions and nov-
elties of this paper are summarised as follows:
• The proposed MFD is the first module that adap-

tively/specifically considers facial dynamic correspond-
ing to each AU at each spatial scale, as each AUs’ activa-
tion exhibit heterogeneity in both range and magnitude.

• The proposed HSR is the first module that hierarchically
learns local and cross-regional spatio-temporal relation-
ship, while previous approaches fail to consider such hi-
erarchical relationship.

• Experimental results show that our MDHR is the new
state-of-the-art on the widely-used AU recognition bench-
mark datasets: BP4D [59] and DISFA [31], where the
proposed MFD and HSR modules positively and comple-
mentarily contributed to this decent performance.

2. Related Work
Static face image-based methods: Existing approaches
frequently predict AUs’ status based on static facial dis-
plays. Given the anatomical definition of AUs, many of
them [6, 13, 14, 18, 19, 42] attempted to recognize each
AU based on a face patch defined by automatically de-
tected facial landmarks or other prior settings. For ex-
ample, Zhao et al. [61] proposed a patch-based DRML
that learns AU representations robust to variations inher-
ent within local facial regions. EAC-Net [19] proposed a
cropping layer to learn individual AU’s representation from
small AU-specific areas. Furthermore, JAA-Net [38] jointly
conducted AU recognition and face alignment, where the
predicted facial landmarks are used to localize each AU re-
gion. To take global facial contextual cues into considera-
tion, alternative approaches [23, 29, 36, 39, 40] learn each
AU’s representation holistically from the full face image,
where spatial attention mechanisms have been widely ex-
plored. Shao et al. [36] employed adaptive channel-wise
and spatial attention strategy to enforce the model focus-
ing on AU-related local features from the global face. Li
et al. [20] proposed a self-diversified multi-channel atten-
tion to seek a more robust attention between the global fa-
cial representation and each target AU. As AUs are mu-
tually related [60], recent approaches [2, 13, 32, 57] also
specifically modelled the underlying relationship among
them. For exampple, LP-Net [32] applied LSTMs to capture
AU relationship. Jacob et al.[13] proposed a transformer-
style AU correlation network. In addition, graph-based
strategies have been frequently investigated to model AU
relationship[17, 26, 29, 46], where graph nodes have been
frequently used to represent target AUs while edges explic-
itly define the relationship between every pair of AUs.

Spatial-temporal methods: Since facial dynamic also
provide crucial cues for AU recognition [4], LSTM has been
frequently employed by early studies [4, 15] to model tem-
poral dynamic between static facial features extracted from
adjacent frames. To further explore spatio-temporal rela-
tionship among AUs, a Spatio-temporal Graph Neural Net-
work (GNN) [37] and a Heterogeneous Spatio-temporal Re-
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lation Learning Network (HSTR-Net) [47] have been pro-
posed, both of which first construct a set of spatial graphs
to model static AU relationship at the frame-level, and then
individually model each AU’s temporal dynamic by consid-
ering its corresponding spatial graph node features across
all frames. In addition, Li et al. [21] applied a transformer
to learn both spatial AU dependencies and temporal inter-
frame contexts by representing the inter-AU and inter-frame
correlations within a multi-head attention matrix. Besides
such standard temporal model-based feature-level dynamic
modelling, other solutions [12, 22, 43, 53, 54] also have
been investigated. For example, two auxiliary AU related
tasks (e.g., ROI inpainting and optical flow estimation) are
jointly conducted in [52] to enhance the regional features
and encode the facial dynamic into the global facial rep-
resentation, respectively. More recently, Yang et al. [56]
introduced a temporal difference network (TDN) that ex-
tract facial dynamic at a specific spatial scale. Despite the
progress made by approaches discussed above, to the best
of our knowledge, none of them has specifically modelled
AU-related multi-scale facial dynamic and the hierarchical
spatio-temporal relationship among AUs.

3. Methodology
Overview: Given T consecutive facial frames S =
{f1, f2, · · · , fT } ∈ RT×C×H×W , our approach jointly
predicts multiple (N ) AUs’ occurrence at the tth facial
frame f t (t = 1, 2, · · · , T ) by taking not only the f t but
also its adjacent frames into consideration. As illustrated
in Fig. 2 and Algorithm 1, our MDHR starts with utiliz-
ing a backbone (e.g., CNN or Transformer) to jointly ex-
tract static facial features from ft and its adjacent frames
At = {f t−k, · · · , f t−1, f t+1, · · · , f t+k}. For each frame,
multi-scale static facial features are produced by L−1 back-
bone hidden layers and the output layer (the Lth layer).
Thus, L static facial feature sets corresponding to 2k + 1
frames Xl = {xt−k

l , · · · , xt
l , · · · , x

t+k
l |l = 1, 2, · · · , L}

are generated (line 2 in Algorithm 1). Then, these multi-
scale features are fed to the Multi-scale Facial Dynamic
Modelling (MFD) module, targeting at not only explic-
itly capturing facial dynamic at multiple spatial scales, but
also adaptively combining these multi-scale facial dynamic
features with the static feature xt

L (line 3 in Algorithm
1). Based on the spatio-temporal full face representation
Gt learned by MFD, a Hierarchical Spatio-temporal AU
Relationship Modelling (HSR) module further adaptively
models the hierarchical spatio-temporal relationship among
AUs in a two-stage manner, where the spatial distribution of
the target AUs on the human face is considered, resulting in
N individual AU representations V̂ t = {v̂t1, · · · , v̂tN} (line
4 in Algorithm 1). Finally, a Temporal Convolution Net-
works (TCN) [27] with similarity calculating (SC) strategy
[29] are employed to predict N AUs’ occurrences of the in-

put T frames as P 1, P 2, · · · , PT (P t = {pt1, · · · , ptN}, line
6 in Algorithm 1).

Algorithm 1 Pipeline of the proposed approach (MDHR)
Input : T consecutive facial frames S = {f1, · · · , fT }
Output: N AU’s predictions of each frame f t

1: for t = 1 to T do
2: Generating multi-scale static global representations

X1, X2 · · ·XL← Backbone(f t−k, · · · , f t · · · f t+k)
3: Generating global spatio-temporal features Gt ←

MFD(X1, X2 · · ·XL)
4: Generating hierarchical spatio-temporal

relationship-aware AU features V̂ t← HSR(Gt)
5: end for
6: Predicting N AUs of all frames P 1, P 2, · · · , PT ←

SC(TCN(V̂ 1, · · · , V̂ t, · · · , V̂ T ))

3.1. Multi-scale facial dynamic modelling

Inspired by the fact that facial muscle movements are con-
tinuous and smooth while each AU exhibit heterogeneity in
their range of motions and magnitudes [1], we propose a
novel MFD module to model the preceding and proceed-
ing temporal evolution of the target face at multiple spa-
tial scales. It includes a multi-scale Temporal Differecing
block that first computes differences between global facial
features extracted from every pair of neighboring frames at
multiple spatial scales. The obtained multi-scale facial dy-
namic features are then masked by a set of weighting ma-
trices learned by our adaptive weighting block, aiming to
emphasize the informative cues for target AUs at multiple
spatio-temporal scales.

Multi-scale Temporal Differecing block: This block
is made up of multiple Temporal Differecing (TD) layers
followed by convolution layers, which takes feature maps
Xl = {xt−k

l , · · · , xt
l , · · · , x

t+k
l |l = 1, 2, · · · , L} produced

by multiple (L−1) hidden layers and the output layer of the
backbone as the input, where xt

l ∈ RCl×Hl×Wl denotes the
feature map corresponding to the tth facial frame generated
from the lth backbone hidden layer (i.e., Cl, Hl, and Wl rep-
resent the channel, height and width of the xt

l , respectively).
Here, the lth TD layer conducts point-to-point subtraction
on feature maps produced by the lth hidden layer between
neighboring frames, aiming to capture facial dynamic at a
certain spatial scale. This can be formulated as:

dtl = xt
l − xt−1

l (1)

Thus, a dynamic feature map dtl ∈ RCl×Hl×Wl representing
the facial dynamic between f t and f t−1 at the lth spatial
scale are produced from the lth TD layer. As a result, L sets
of dynamic features Dl = {dt−k+1

l , · · · , dtl , · · · , d
t+k
l |l =

1, 2, · · · , L} are obtained to represent facial dynamic at L
different scales. After that, we introduce L step convolution
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Figure 2. The pipeline of our MDHR, where k is set to 1. The MFD module (Sec. 3.1) first computes facial dynamic at multiple spatial
scales based on feature maps output from multiple backbone hidden layers and the output layer. Then, the HSR module (Sec. 3.2) then
individually models the relationship among AUs located in the same and different facial regions (the Auxiliary branch is only used at the
training phase to make AU combination for each facial region (upper facial region is used as an example in the figure)). Finally, a TCN is
individually employed to process every AU feature’s sequence of all the input T frames.

layers to resize the dynamic features extracted at different
spatial scales as:

d̂tl = Conv2Dl(d
t
l) (2)

where the kernel size and stride of the lth Conv2D layer
Conv2Dl are set to 8/l, ensuring all produced dynamic fea-
tures d̂tl ∈ Rc,h,w to have the same shape. Finally, an aver-
age pooling is employed to process all re-shaped dynamic
features at each spatial scale along the temporal axis as:

d̄tl = Avg(d̂t−k+1
l , · · · , d̂tl , · · · , d̂t+k

l ) (3)

This way, multi-scale and equal-shape facial dynamic fea-
tures d̄t1, d̄

t
2, · · · , d̄tL of the target frame f t can be obtained,

where each d̄tl summarizes the temporal evolution of the f t

by considering its preceding and succeeding k frames.
Adaptive weighting block: Facial muscle movements

of large range and magnitude are typically associated with
feature maps produced from deep backbone layers while
subtle facial dynamic usually can be better described by
feature maps produced from shallow backbone layers [25].
Thus, instead of simply conducting element-wise summa-
tion or concatenation (i.e., equally treats all components of
all feature maps), we propose to adaptively learn L weight-
ing matrices for properly combining the obtained L-scale
dynamic features according to the target AUs’ typical and
unique spatio-temporal scales. In particular, the weight ma-
trix wt

l at each spatial scale is obtained by exploring the
underlying and internal cues from the obtained multi-scale

dynamic features, which can be formulated as:

wt
l = Softmax(Convl(Concat([d̄t1, d̄

t
2, · · · , d̄tL]))) (4)

where l = 1, 2, · · · , L. Specifically, multi-scale spatio-
temporal features d̄t1, · · · , d̄tL of the ft are first concatenated
along their channels, followed by 1 × 1 convolutions to re-
duce the number of its channels to one. This results in a
unique weighting matrix wt

l ∈ Rh×w to mask the spatio-
temporal feature at each spatial scale l. A Softmax function
is also applied to normalize the obtained weights such that∑L

l=1 w
t,i,j
l = 1 and wt,i,j

l ∈ [0, 1], where i and j index
the spatial dimensions. Consequently, each obtained weight
matrix wt

l is applied to the corresponding dynamic feature
map d̄tl by performing element-wise multiplication as:

xt
motion =

L∑
l=1

wt
l ∗ d̄tl (5)

where xt
motion represents the aggregated and adaptively

weighted multi-scale facial dynamic representation of the
ft, which is then combined with the spatial feature xt

L pro-
duced by the output layer via the element-wise summation:

Gt = xt
motion + xt

L (6)

In summary, the proposed MFD module adaptively incorpo-
rates AU-aware facial dynamic with static and global facial
cues into Gt for the fine-grained facial AU recognition.
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3.2. Hierarchical spatio-temporal AU relationship
modelling

Our HSR module hierarchically models the spatio-temporal
relationship among AUs by specifically considering their
spatial distribution on the face, as association among AUs
in the same/close facial region could be stronger than AUs
located in different facial regions [1]. It consists of two
stages: the local AU relationship modelling stage first
models the relationship among AUs located in the same fa-
cial region, and then the cross-regional AU relationship
modeling stage adaptively explore the relationship between
AU pairs of different facial regions.

Local AU Relationship Modelling: This stage specif-
ically models relationship among AUs located in the same
facial regions at both their features extraction level and pre-
diction level. It builds on the assumption that constraining
each AU feature’s extraction to its spatially correlated facial
regions could partially avoid the negative impacts/noises
caused by irrelevant facial regions [19]. Particularly, it first
divides the spatio-temporal facial feature Gt ∈ Rc×h×w ex-
tracted by MFD module into three subsets corresponding to
three slightly overlapped facial regions: (1) the upper re-
gion encompassing eyebrows and eyes; (2) the middle re-
gion containing the nose and cheeks; and (3) the lower re-
gion covering the mouth and chin (Illustrated in Fig. 1).
This is achieved by directly slicing the feature Gt along the
height dimension as:

Gt
up, G

t
mid, G

t
low = Gt[0 :

3

7
h], Gt[

2

7
h :

5

7
h], Gt[

4

7
h : h]

(7)
where the height h of the Gt is 7 in our implementation,
thus we empirically choose this best partition setting. Af-
ter that, N AU-specific Feature Extractors (AFE) (each is
made up of a convolution layer with kernel size of 1 × 1
and a Global Average Pooling (GAP) layer) are employed,
where the nth extractor learns a local relationship-aware fea-
ture vtn ∈ R1×b (b denotes the dimension of an AU vector)
from its corresponding sliced regional feature (Gt

up, G
t
mid

or Gt
low), representing the nth AU’s status at the tth frame.

Consequently, each AU feature is extracted in the context of
its spatially adjacent AUs (i.e., modelling AU relationship
of the same facial region at the feature extraction level).

In addition, the spatio-temporal relationship among AUs
of the same facial region are also modelled at their predic-
tion level, where an auxiliary branch (Aux) is added at the
training phase. It is trained to predict an AU occurrence
combination Y t

sub = {ytsub,1, · · · , ytsub,2Nsub
} (i.e., Y t

sub is a
one-hot vector and Nsub is the number of the target AUs
in the corresponding sub-region) from each sliced regional
feature Gt

sub ∈ {Gt
up, G

t
mid, G

t
low}, which jointly describes

all AUs’ occurrence status within each facial region. Math-

ematically, this process can be formulated as:

P t
sub = σ(FCsub(GAP(Gt

sub))) (8)

where σ denotes the Softmax function and FCsub denotes a
fully connected layer. As a result, training this branch en-
forces the network encoding underlying local AU relation-
ship to each sliced regional feature, allowing AFE to extract
enhanced AU-relevant features from regional features.

Cross-regional AU relationship modeling: Besides
spatially adjacent AUs, each AU’s activation may also as-
sociate with AUs located in other facial regions [17]. Con-
sequently, this stage aims to enhance the recognition per-
formance by additionally capturing such cross-regional AU
spatio-temporal dependencies within the given face image.
It treats each local relationship-aware spatio-temporal AU
feature vtn extracted in the previous stage as a node, and
adaptively connects it with all activated AU nodes belong-
ing to other facial regions (i.e., AU activation status are de-
cided by AU predictions of the first stage). This edge con-
nection definition is inspired by the finding that activated
AUs usually have more influences on other AUs [29]. As a
result, the relationship of each cross regional AU pair is ex-
plicitly represented through a graph edge, and further mod-
elled via a Graph Attention Network (GAT) [49] layer as:

etn,m = LeakyReLU
(
rT

[
Wvtn ∥Wvtm

])
v̂tn = ϕ

 ∑
m∈Nt

n

αt
n,mWvtm


Subject to: αt

n,m =
exp

(
etn,m

)∑
q∈Nt

n
exp

(
etn,q

)
(9)

where etn,m is a graph edge defines the impacts of the mth

AU node to the nth AU node in the tth frame; W ∈ Rb×b de-
notes a shared linear transformation applied to every node
feature; ∥ is the concatenation operation; ϕ is an activa-
tion function and r ∈ R2b denotes the weight of an atten-
tion operation.N t

n is the set of the neighbours of the cur-
rent node. Subsequently, N local and global hierarchical
relationship-aware AU features V̂ t = {v̂t1, v̂t2, · · · , v̂tN} are
generated to describe N target AUs in the tth frame.

3.3. Loss function

As AU recognition constitutes a multi-label binary classifi-
cation task, with most AUs inactivated the across majority
of frames (please refer to Supplementary Material for de-
tails), an asymmetric loss function [29] is employed. Given
the input consecutive T facial frames with N target AUs,
the loss function LAU for supervising all AUs’ recognition
(i.e., output by the TCN/SC layers) is defined as:

LAU = −
N∑

n=1

T∑
t=1

wn[y
t
n log(p

t
n)+ptn(1−ytn) log(1−ptn)]

(10)
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Method
AU Avg.

1 2 4 6 7 10 12 14 15 17 23 24

Static
image-based

EAC-Net [19] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
JAA-Net [35] 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0
ARL [36] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1
SMA-Net [20] 56.5 45.1 57.0 79.5 79.5 84.5 86.4 66.1 55.8 64.2 48.7 56.8 64.9

Static AU
relationship modeling

SRERL [17] 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9
FAUDT [13] 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
FAN-Trans [57] 55.4 46.0 59.8 78.7 77.7 82.7 88.6 64.7 51.4 65.7 50.9 56.0 64.8
ME-GraphAU [29] 52.7 44.3 60.9 79.9 80.1 85.3 89.2 69.4 55.4 64.4 49.8 55.1 65.5

Spatio-temporal

STRAL [37] 48.2 47.7 58.1 75.8 78.1 81.6 87.6 60.5 50.2 64.0 51.2 55.2 63.2
HSTR-Net[47] 55.5 49.5 61.9 76.6 80.2 84.2 87.4 62.6 54.8 64.1 47.1 52.1 64.7
KS [21] 55.3 48.6 57.1 77.5 81.8 83.3 86.4 62.8 52.3 61.3 51.6 58.3 64.7
WSRTL [52] 59.7 51.7 61.6 80.3 80.9 85.2 89.7 67.8 52.2 63.4 51.4 46.9 65.9

Ours (ResNet-50) 58.3 50.9 58.9 78.4 80.3 84.9 88.2 69.5 56.0 65.5 49.5 59.3 66.6
Ours (Swin-B) 54.6 49.7 61.0 79.9 79.4 85.4 88.5 67.8 56.8 63.2 50.9 55.4 66.1

Table 1. F1 scores (in %) achieved for 12 AUs on BP4D dataset. The best and the second best results of each column are indicated with
bold font and underline, respectively.

Method
AU Avg.

1 2 4 6 9 12 25 26

Static
image-based

EAC-Net [19] 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
JAA-Net [35] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
ARL [36] 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7
SMA-Net [20] 53.4 54.2 64.0 57.0 47.0 76.6 92.0 55.2 64.2

Static AU
relationship modeling

SRERL [17] 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
FAUDT [13] 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
FAN-Trans [57] 56.4 50.2 68.6 49.2 57.6 75.6 93.6 58.8 63.8
ME-GraphAU[29] 54.6 47.1 72.9 54.0 55.7 76.7 91.1 53.0 63.1

Spatio-temporal

STRAL[37] 52.2 47.4 68.9 47.8 56.7 72.5 91.3 67.6 63.0
HSTR-Net[47] 54.3 50.8 70.1 66.6 59.6 68.0 97.9 69.8 62.9
KS [21] 53.8 59.9 69.2 54.2 50.8 75.8 92.2 46.8 62.8
WSRTL [52] 57.3 51.8 74.3 49.8 44.8 79.3 94.6 64.6 64.6

Ours (ResNet-50) 61.4 57.7 70.9 57.1 48.3 75.7 91.5 56.7 64.9
Ours (Swin-B) 65.4 60.2 75.2 50.2 52.4 74.3 93.7 58.2 66.2

Table 2. F1 scores (in %) achieved for 8 AUs on DISFA dataset. The best and second best results of each column are indicated with bold
font and underline, respectively.

where ptn and ytn are the nth AU’s prediction and the corre-
sponding ground-truth for the frame f t, respectively; a wn

is calculated for each AU based on the training set to allevi-
ate label imbalance issue; the ptn at the beginning of the sec-
ond term ptn(1−ytn) log(1−ptn) dynamically down-weights
the contribution of negative samples (inactive AUs), as inac-
tive AUs significantly outnumber active ones in the training
set. Besides, a cross-entropy loss is utilized to individu-
ally supervise regional AU combination predictions of all
frames produced by the first stage of the HSR module as:

Lsub =

T∑
t=1

∑
sub={up,mid,down}

CE(P t
sub, Y

t
sub) (11)

where P t
sub and Y t

sub denote the AU combination predic-
tion and the corresponding ground-truth of a facial region

in the frame f t and CE denotes the cross-entropy function.
By predicting such AU combinations consisting of multi-
ple AUs located in the same facial region, the network is
encouraged to model underlying dependencies among spa-
tially adjacent AUs in each facial region. Consequently, the
overall loss function for training the proposed network com-
bines the two loss functions described above as:

L = LAU + λLsub (12)

where λ balances the contribution of the two losses.

4. Experiments
4.1. Experimental setup

Datasets: Our MDHR is evaluated on two AU recognition
benchmark datasets: BP4D [59] and DISFA [31]. BP4D is
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made up of 328 facial videos containing around 140,000
frames collected from 23 females and 18 males. Mean-
while, DISFA contains 27 facial image sequence (totally
130, 815 frames) recorded from 12 females and 15 males
who were asked to watch Youtube videos. Each frame in
BP4D and DISFA is annotated with occurrence labels cor-
responding to 12 and 8 AUs, respectively.
Implementation details: We follow previous approaches
[38, 60] to apply MTCNN [58] to crop and align a 224 ×
224 face region from each frame, and conduct subject-
independent three-folds cross-validation for each dataset,
where the reported results are achieved by averaging the val-
idation results of three folds. We pad k frames that same to
the first frame / last frame at the beginning / end of each face
video to ensure all frames can be processed by our model.
AdamW [28] optimizer with β1 = 0.9, β2 = 0.999 is em-
ployed for training and the λ in Eq. 12 is set to 0.01. A
cosine decay learning rate scheduler is utilized, with an ini-
tial value of 0.0001. Both backbones are pre-trained on
ImageNet [9]. All our experiments are conducted using
NVIDIA A100 GPUs based on the open-source PyTorch li-
brary. More detailed model, training/validation, and dataset
settings are provided in the Supplementary Material.
Metrics: Following previous AU recognition studies [5,
22, 38], a common metric: frame-based F1 score (F1 =
2 P ·R
P+R ), is employed to evaluate the performance of our

MDHR, which takes both recognition precision P and re-
call rate R into consideration.

4.2. Comparison with state-of-the-arts

Table 1 and Table 2 compare our approach with previous
state-of-the-art AU recognition methods, including eight
static image-based methods [13, 17, 19, 20, 29, 35, 36, 57]
(where four methods specifically conduct AU relationship
modeling) and four spatio-temporal methods [21, 37, 47,
52]. It can be observed that our MDHR achieved new
SOTA results on both datasets, with F1-scores of 66.6%
(ResNet50 backbone) and 66.2% (Swin-Transformer back-
bone) on BP4D and DISFA, respectively. Particularly, it
has clear advantages over all static image-based methods,
e.g., outperformed previous state-of-the-art static AU rela-
tionship modelling method [29] with 1.1% (ResNet) and
0.6% (Swin-Transformer) improvements on BP4D, as well
as 1.8% (ResNet) and 3.1% (Swin-Transformer) improve-
ments on DISFA, respectively. Meanwhile, our approach is
also superior to previous spatio-temporal methods, achiev-
ing 0.7% and 1.6% higher F1 results over the best model
WSRTL [52] on BP4D and DISFA, respectively.

These results suggest that: (i) the proposed MDHR is
effective and robust in AU recognition, as it achieved both
best and the second best performances on both datasets un-
der two backbone settings; (ii) jointly modelling spatio-
temporal relationship among AUs could lead to additional

Backbone MFD
HSR

TCN F1-score
AFE Aux CRM

✓ 63.3
✓ ✓ 64.6
✓ ✓ 64.1
✓ ✓ ✓ 64.5
✓ ✓ ✓ ✓ 65.1
✓ ✓ ✓ 65.3
✓ ✓ ✓ ✓ 65.7
✓ ✓ ✓ ✓ ✓ 66.3
✓ ✓ ✓ ✓ ✓ ✓ 66.6

Table 3. Average AU recognition F1 scores (%) achieved by var-
ious settings using ResNet50 backbone on BP4D dataset, where
AFE, Aux, and CRM denote the AU-specific feature extractor,
the added auxiliary branch and the Cross-regional AU relationship
modelling block, all of which belong to the HSR module.

performance gains compared to approaches [29, 46] that
only consider their spatial relationship; and (iii) our MDHR
can better capture AU-related spatio-temporal cues over ex-
isting spatio-temporal AU recognition approaches [47, 52].
We didn’t compare approaches that utilized additional face
datasets to train AU models [56] despite our MDHR still
clearly outperformed them.

4.3. Ablation studies

We perform ablation studies on BP4D dataset to demon-
strate various aspects of our approach, where the default
setting employs the ResNet as the backbone and asymmet-
ric loss (Eqa. 10) for the model training. We further pro-
vide more ablation results (e.g., the influence of the number
of adjacent frames k, statistical analysis, model complexity
analysis, etc.) in the Supplementary Material.

Contribution of each component: Table 3 compares
contributions of different modules. Firstly, our MFD mod-
ule brought 1.3% absolute improvement, highlighting the
effectiveness of the MFD in capture AU-related spatio-
temporal facial behaviour cues. Meanwhile, individually
employing the HSR module boosting the F1 score from
63.3% to 65.1%, validating the importance of modelling hi-
erarchical spatio-temporal relationship among AUs. Specif-
ically, the use of AU-specific feature extractors to individ-
ually learn each AU from its sliced facial region improved
the F1 score from 63.3% to 64.1%, and the auxiliary branch
also contributes additional 0.4% improvement. Finally, we
found that combining our MFD and HSR module with the
TCN resulted in the best performance, which validates that
these two modules can learn complementary AU-related
cues to further enhance AU recognition performance.

Analysis of the MFD module: Table 4 investigates our
MFD module based on the system (baseline) that combines
the backbone and AU-specific feature extractors. It is clear
that even using facial dynamic learned from the outputs of
a single and two backbone layers can consistently benefit
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Layer 1 Layer 2 Layer 3 Layer 4

t-k t+kt
0

1

Figure 3. Visualization of adaptive weight matrices learned by the
MFD module. The weight matrices learned for feature maps of
shallow layers (layer 1 and 2) emphasized subtle motions (e.g.,
subtle eyebrow and cheek motions), while large check and mouth
movements are captured in deeper layers (layer 3 and 4).

Method baseline Alone Combination Sum Cat AW

layer 1 ✓ ✓ ✓ ✓ ✓ ✓
layer 2 ✓ ✓ ✓ ✓ ✓
layer 3 ✓ ✓ ✓ ✓ ✓
layer 4 ✓ ✓ ✓ ✓ ✓

F1-score 64.1 64.3 64.7 64.6 64.8 64.7 64.9 64.9 65.3

Table 4. Results of different MFD module settings, where the left
part displays results achieved by computing facial dynamic at dif-
ferent layers and their combinations (combined using our adaptive
weighting), while the right side displays results of two other fusion
strategy applied to combine facial dynamic of all scales, and AW
denotes adaptive weighting.

the recognition, while combining dynamic of all scales re-
sulted in the largest improvement. This suggests that facial
dynamic extracted by our MFD at different spatial scales
contain complementary and useful cues for AU recogni-
tion., i.e., our MFD can emphasize each AU-related cues
at its most related spatial scales (illustrated in Figure 3).
Although simply adding or concatenating unweighted dy-
namic features of all spatial scales can already lead to per-
formance gains, our adaptive weighting block still show
clear advantage over them, suggesting that it can effectively
consider the importance of each spatial scale on different
AUs’ recognition.

AU relationship modeling method F1-score

Fully-connected 64.6
Aux + Locally connected 64.2

Aux + Cross-regional fully-connected 64.9
Aux + Fully connected 64.8

Aux + Connecting cross-regional activated AUs 65.1

Table 5. Results of different edge connection strategies.

Analysis of the HSR module: Table 3 first demonstrates
that not only the HSR module brought clear improvements
but also both of its local and cross-regional AU relation-
ship modelling blocks can improve AU predictions, i.e., all
its block (e.g., AFE, Aux and CRM) positively contributed
to the final performance. Figure 4 further visualizes the

Ground Truth

AU2 AU1

AU6

AU10

AU14 AU12

AU4

AU9

AU25

AU26

0.2
0.10.2

0.1 0.3

0.1

0.6

0.1

0.2

0.1

Backbone + AFE Backbone + AFE + Aux Backbone + HSR

Figure 4. Visualization of AU predictions under three HSR set-
tings, where white solid and hollow dots denote activated and in-
activated AUs. The green dotted circles denote the local AU re-
lationship modelling, while the yellow lines/weights denote the
graph edges describing the association between AUs. It can be ob-
served that the local relationship modelling can effectively model
dependencies between AUs in the same region to make better pre-
dictions (e.g., AU2 and AU26 in column 3), while additionally use
cross-regional AU relationship modelling can further utilize the
learned relationship cues to improve AU predictions in different
facial regions (e.g., AU6 and AU9 in column 4).

impact of these blocks. Additionally, Table 5 compares
different AU graph edge connection settings of the cross-
regional AU relationship modelling block, where the setting
that connects each activated AU to all other AUs located in
different facial region achieved the superior performance to
other edge settings, i.e., this setting can effectively model
cross-regional AU relationship. Importantly, the HSR is not
sensitive to different edge connection settings when cross-
regional AU relationship is considered.

5. Conclusion
This paper proposes a novel MDHR that not only com-
putes facial dynamics at different spatial scales as AUs
could exhibit heterogeneity in their ranges and magnitudes,
but also models hierarchical spatio-temporal relationships
among AUs. Results show that the proposed two modules
can effective capture AU-related dynamics and their rela-
tionships, making our MDHR becoming the new SOTA AU
recognition method. The main limitations are that our fa-
cial region slicing strategy could be potentially improved
and more advanced graph edge learning strategies could be
applied to HSR for better modelling relationships.
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