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Abstract

Recent studies have noted an intriguing phenomenon

termed Neural Collapse, that is, when the neural networks

establish the right correlation between feature spaces and

the training targets, their last-layer features, together with

the classifier weights, will collapse into a stable and sym-

metric structure. In this paper, we extend the investiga-

tion of Neural Collapse to the biased datasets with im-

balanced attributes. We observe that models will easily

fall into the pitfall of shortcut learning and form a biased,

non-collapsed feature space at the early period of train-

ing, which is hard to reverse and limits the generalization

capability. To tackle the root cause of biased classifica-

tion, we follow the recent inspiration of prime training, and

propose an avoid-shortcut learning framework without ad-

ditional training complexity. With well-designed shortcut

primes based on Neural Collapse structure, the models are

encouraged to skip the pursuit of simple shortcuts and nat-

urally capture the intrinsic correlations. Experimental re-

sults demonstrate that our method induces better conver-

gence properties during training, and achieves state-of-the-

art generalization performance on both synthetic and real-

world biased datasets.

1. Introduction
When the input-output correlation learned by a neural

network is consistent with its training target, the last-layer
features and classifier weights will attract and reinforce
each other, forming a stable, symmetric and robust struc-
ture. Just as the Neural Collapse phenomenon discovered
by Papyan et al. [24], at the terminal phase of training on
balanced datasets, a model will witness its last-layer fea-
tures of the same class converge towards the class centers,
and the classifier weights align to these class centers cor-
respondingly. The convergence will ultimately lead to the
collapse of feature space into a simplex equiangular tight
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Figure 1. Illustration of (a) Neural Collapse phenomenon on bal-
anced datasets, where the simplex ETF structure maximizes the
class-wise angles, and (b) Biased classification on datasets with
imbalanced attributes, where the model takes the shortcut of at-
tributes to make predictions and fails to collapse into the simplex
ETF. The color of points represents different class labels and the
shape of points represents different attributes.

frame (ETF) structure, as illustrated in Fig. 1(a). The el-
egant structure has demonstrated its efficacy in enhancing
the generalization, robustness, and interpretability of the
trained models [5, 24]. Therefore, a wave of empirical and
theoretical analysis of Neural Collapse has been proposed
[2, 6, 8, 25, 26, 38, 40], and a series of studies have adopted
the simplex ETF as the optimal geometric structure of the
classifier, to guide the maximized class-wise separation in
class-imbalanced training [20, 35–37, 43].

However, in practical visual recognition tasks, besides
the challenge of inter-class imbalance, we also encounter
intra-class imbalance, where the majority of samples are
dominated by the bias attributes (e.g., some misleading con-
tents such as background, color, texture, etc.). For exam-
ple, the widely used LFW dataset [12] for facial recogni-
tion has been demonstrated severely imbalanced in gender,
age and ethnicity [3]. A biased dataset often contains a
majority of bias-aligned samples and a minority of bias-

conflicting ones. The prevalent bias-aligned samples ex-
hibit a strong correlation between the ground-truth labels
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and bias attributes, while the scarce bias-conflicting sam-
ples have no such correlation. Once a model relies on the
simple but spurious shortcut of bias attributes for predic-
tion, it will ignore the intrinsic relations and struggle to
generalize on out-of-distribution test samples. The poten-
tial impact of biased classification may range from politi-
cal and economic disparities to social inequalities within AI
systems, as emphasized in EDRi’s latest report [1].

Therefore, the fundamental solution to biased classifica-
tion lies in deferring, or ideally, preventing the learning of
shortcut correlations. However, previous debiased learn-

ing methods rely heavily on additional training expenses.
For example, a bias-amplified auxiliary model is often
adopted to identify and up-weight the bias-conflicting sam-
ples [16, 19, 23], or employed to guide the input-level and
feature-level augmentations [13, 18, 21]. Some disentangle-
based debiasing methods, from the perspective of causal in-
tervention [32, 42] or Information Bottleneck theory [30],
also require large amounts of contrastive samples or pre-
training process to disentangle the biased features, signifi-
cantly increasing the burden of debiased learning.

In this paper, we extend the investigation of Neural
Collapse to the biased visual datasets with imbalanced at-
tributes. Through the lens of Neural Collapse, we observe
that models prioritize the period of shortcut learning, and
quickly form the biased feature space based on mislead-
ing attributes at the early stage of training. After the bias-
aligned samples reach zero training error, the intrinsic cor-
relation within bias-conflicting samples will then be discov-
ered. However, due to i) the scarcity of bias-conflicting
samples and ii) the stability of the established feature space,
the learned shortcut correlation is challenging to reverse and
eliminate. The mismatch between bias feature space and the
training target induces inferior generalizability, and hinders
the convergence of Neural Collapse, as shown in Fig. 1(b).

To achieve efficient model debiasing, we follow the in-
spiration of prime training, and encourage the model to skip
the active learning of shortcut correlations. The primes are
often provided as additional supervisory signals to redirect
the model’s reliance on shortcuts, which helps improve gen-
eralization in image classification and CARLA autonomous
driving [33]. To rectify models’ attention on the intrin-
sic correlations, we define the primes with a training-free
simplex ETF structure, which approximates the “optimal”
shortcut features and guides the model to pursue unbiased
classification from the beginning of training. Our method is
free of auxiliary models or additional optimization of prime
features. Experimental results also substantiate its state-of-
the-art debiasing performance on both synthetic and real-
world biased datasets.

Our contributions are summarized as follows:
• For the first time, we investigate the Neural Collapse phe-

nomenon on biased datasets with imbalanced attributes.

Through the empirical results of feature convergence, we
analyze the shortcut learning stage of training, as well as
the fundamental issues of biased classification.

• We propose an efficient avoid-shortcut training paradigm,
which introduces the simplex ETF structure as prime fea-
tures, to rectify models’ attention on the intrinsic correla-
tions.

• We demonstrate the state-of-the-art debiasing perfor-
mance of our method on 2 synthetic and 3 real-world bi-
ased datasets, as well as the better convergence properties
of debiased models.

2. Related Works
Debiased Learning. Extensive efforts have been dedi-
cated to model debiasing, but they are significantly limited
by additional training costs. Recent advances can be di-
vided into three categories: reweight-based, augmentation-
based, and disentangle-based. Based on the easy-to-learn
heuristic of biased features, reweight-based approaches re-
quire pre-trained bias-amplified models to identify and em-
phasize the bias-conflicting training samples [16, 19, 23].
Augmentation-based approaches, with the guidance of ex-
plicit bias annotations, conduct image-level and feature-
level augmentations to enhance the diversity of training
datasets [13, 18, 21]. Other disentangle-based approaches
attempt to remove the bias-related part of features, from the
perspective of Information Bottleneck theory [30] or causal
intervention [32, 42], but at the cost of substantial con-
trastive samples. Additionally, model debiasing is also well
studied in graph neural networks [4, 41], language models
[7, 22] and multi-modal tasks [11, 34].
Neural Collapse. Discovered by Papyan et al. [24], the
Neural Collapse phenomenon reveals the convergence of
the last-layer feature space to an elegant geometry. At the
terminal phase of training on balanced datasets, the fea-
ture centers and classifier weights will collapse together
into the structure of a simplex ETF, which is illustrated in
Section 3.1. Recent works have dug deeper into the phe-
nomenon and provided theoretical supports under different
constraints or regularizations [2, 8, 40], as well as empir-
ical studies of intermediate features and transfer learning
[6, 25, 26, 38]. Considering the class-imbalanced datasets,
Fang et al. [5] point out the Minority Collapse phenomenon,
where features of long-tailed classes will merge together
and be hard to classify. As a remedy, they fix the classi-
fier as an ETF structure during training, which guarantees
the optimal geometric property in imbalanced learning [36],
semantic segmentation [43], and federated learning [37]. To
take a step further, our work fills the gap of Neural Collapse
analysis on biased datasets with shortcut correlations.
Avoid-shortcut Learning. The recent inspiration of avoid-
shortcut learning aims to postpone, or even prevent the
learning of shortcut relations in model training. With well-
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crafted contrastive samples [27–29] or artificial shortcut
signals [33, 42], avoid-shortcut learning has demonstrated
its efficacy in image classification, autonomous driving and
question answering models. One of the representative meth-
ods is named prime training, which provides richer super-
visory signals of key input features (i.e., primes) to guide
the establishment of correct correlations, therefore improv-
ing generalization on OOD samples [33]. In this work, we
leverage the approximated “optimal” shortcuts as primes to
encourage the models to bypass shortcut learning.

3. Preliminaries
3.1. Neural Collapse Phenomenon

Consider a biased dataset D with K classes of training
samples, we denote xk,i as the i-th sample of the k-th class
and zk,i 2 Rd as its corresponding last-layer feature. A
linear classifier with weights W = [w1, ...,wK ] 2 Rd⇥K

is trained upon the last-layer features to make predictions.
The Neural Collapse (NC) phenomenon discovered that,

when neural networks are trained on balanced datasets, the
correctly learned correlations will naturally lead to the con-
vergence of feature spaces. Given enough training steps af-
ter the zero classification error, the last-layer features and
classifier weights will collapse to the vertices of a simplex
equiangular tight frame (ETF), which is defined as below.
Definition 1 (Simplex Equiangular Tight Frame) A col-
lection of vectors mk 2 Rd, k = 1, 2, ...,K, d � K � 1 is
said to be a k-simplex equiangular tight frame if:

M =

r
K

K � 1
P(IK � 1

K
1K1T

K) (1)

where M = [m1, ...,mK ] 2 Rd⇥K , and P 2 Rd⇥K is
an orthogonal matrix which satisfies PTP = IK , with IK
denotes the identity matrix and 1K denotes the all-ones vec-
tor. Within the ETF structure, all vectors have the maximal
pair-wise angle of � 1

K�1 , namely the maximal equiangular
separation.

Besides the convergence to simplex ETF structure, the
Neural Collapse phenomenon could be concluded as the fol-
lowing properties during the terminal phase of training:
NC1: Variability collapse. The last-layer features zk,i of
the same class k will collapse to their class means zk =
Avgi{zk,i}, and the within-class variation of the last-layer
features will approach 0.
NC2: Convergence to simplex ETF. The normalized class
means will collapse to the vertices of a simplex ETF.
We denote the global mean of all last-layer features as
zG = Avgi,k{zk,i}, k 2 [1, ...,K] and the normalized class
means as z̃k = (zk � zG)/kzk � zGk, which satisfies Eq.1.
NC3: Self duality. The classifier weights wk will align
with the corresponding normalized class means z̃k, which
satisfies z̃k = wk/||wk||.

NC4: Simplification to nearest class center. After conver-
gence, the model’s prediction will collapse to simply choos-
ing the nearest class mean to the input feature (in standard
Euclidean distance). The prediction of z could be denoted
as argmaxkhz,wki = argmink ||z� zk||.

3.2. Neural Collapse Observation on Biased Dataset
Besides the findings on balanced datasets, some studies

have explored Neural Collapse under the class-imbalanced
situation [5, 36]. Taking a step further, we investigate the
phenomenon on biased datasets with imbalanced attributes,
to advance the understanding of biased classification. To
examine the convergence of last-layer features and classifier
weights, we compare the metrics of Neural Collapse on both
unbiased and synthetic biased datasets. As shown in Fig. 2,
we report the result of NC1-NC3, which corresponds to the
first three convergence properties in Section 3.1 and respec-
tively evaluates the convergence of same-class features, the
structure of feature space and self-duality. The details of
NC metrics are concluded in Tab. 1.

When trained on unbiased datasets (black lines in Fig.
2), the model displays the expected convergence properties,
with metrics NC1-NC3 all converge to zero. We owe the el-
egant collapse phenomenon to the right correlation between
the feature space and training objective, which is also sup-
ported by the analysis of benign global landscapes [45, 46].

However, when trained on biased datasets, the training
process exhibits two stages: first the shortcut learning pe-
riod and then the intrinsic learning period, as divided by the
vertical dashed line. During the shortcut learning period,
the accuracy of bias-aligned samples increases quickly, and
the NC1-NC3 metrics show a rapid decline (green lines
with N in Fig. 2). It indicates that when simple shortcuts
exist in the training distribution, the model will quickly es-
tablish its feature space based on the bias attributes, and ex-
hibit a converging trend towards the simplex ETF structure.

After the bias-aligned samples approach zero error, the
model turns to the period of intrinsic learning, which fo-
cuses on the intrinsic correlations within bias-conflicting
samples to further reduce the empirical loss. However, al-
though their final loss reduces to zero, the bias-conflicting
samples still display low accuracy and poor convergence
results (green lines with H). It implies that the intrin-
sic learning period merely induces the over-fitting of bias-
conflicting samples and does not benefit in generalization.
We attribute the failure of collapse to the early establish-
ment of shortcut correlations. Once the biased feature
space is established based on misleading attributes, recti-
fying it becomes challenging, particularly with scarce bias-
conflicting samples. In the subsequent training steps, the
misled features of bias-conflicting samples will hinder the
convergence of same-class features, thereby halting the con-
verging trend towards the simplex ETF structure and lead-
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Figure 2. Comparison of (a) testset accuracy and (b-d) Neural Collapse metrics on unbiased (CIFAR-10) and synthetic biased (Corrupted
CIFAR-10 with the bias ratio of 5.0%) datasets. All vanilla models are trained with standard cross-entropy loss for 500 epochs. The postfix
-Aligned and -Conflicting indicate the results of bias-aligned and bias-conflicting samples respectively. The NC1 metric evaluates the
convergence of same-class features, NC2 evaluates the difference between the feature space and a simplex ETF, and NC3 measures the
duality between feature centers and classifier weights. The vertical dashed line at the epoch of 60 divides two stages of training.

Metrics Computational details
NC1 NC1 = 1

KTr(⌃W⌃†
B), where Tr is the trace of matrix and ⌃†

B denotes the pseudo-inverse of ⌃B

⌃B = 1
K

P
k2[K]

(zk � zG)(zk � zG)T, ⌃W = 1
K

P
k2[K]

1
nk

nkP
i=1

(zk,i � zk)(zk,i � zk)T

NC2 NC2 =
��� WWT

||WWT||F � 1p
K�1

(IK � 1
K1K1T

K)
���
F

NC3 NC3 =
��� WZ
||WZ||F

� 1p
K�1

(IK � 1
K1K1T

K)
���
F

, where Z = [z1 � zG, ..., zK � zG]

Table 1. The metrics of evaluating the Neural Collapse phenomenon, which are generally adopted in previous studies [24, 38, 46]. k · kF
denotes the Frobenius norm, IK is the identity matrix and 1K is the all-ones vector.

ing to a non-collapsed, sub-optimal feature space.
To break the curse of shortcut learning, we turn the tricky

shortcut into a training prime, which effectively guides the
models to focus on intrinsic correlations and form a natu-
rally collapsed feature space (blue lines in Fig. 2). Our
method is presented in the following sections.

4. Methodology
4.1. Motivation

Following the previous analysis, we highlight the im-
portance of redirecting the model’s emphasis from simple
shortcuts to intrinsic relations. Since the models can be eas-
ily misled by shortcuts in the training distribution, is it fea-
sible to supply a “perfectly learned” shortcut feature, to de-
ceive the models into skipping the active learning of short-
cuts, and directly focusing on the intrinsic correlations?

We observe in Fig. 2 that the NC1-NC3 metrics show
a rapid decrease during shortcut learning, but remain stable
in the subsequent training epochs. However, if the train-
ing distribution does follow the shortcut correlation (with
no obstacle from bias-conflicting samples), the convergence
will end up with the optimal structure of simplex ETF, just
as the results on unbiased datasets. This inspires us to ap-
proximate the “perfectly learned” shortcut features with a
simplex ETF structure, which requires no additional train-
ing and represents the optimal geometry of feature space.

Therefore, following the outstanding performance of
prime training in OOD generalization [33], we introduce the
approximated “perfect” shortcuts as the primes for debiased
learning. The provided shortcut primes are constructed with
a training-free simplex ETF structure, which encourages the
models to directly capture the intrinsic correlations, there-
fore exhibit superior generalizability and convergence prop-
erties in our experiments.

4.2. Avoid-shortcut Learning with Neural Collapse
Building upon our motivation of avoid-shortcut learn-

ing, the illustration of the proposed ETF-Debias is shown
in Fig. 3. The debiased learning framework can be di-
vided into three stages: prime construction, prime train-

ing, and unbiased classification. Firstly, a prime ETF will
be constructed to approximate the “perfect” shortcut fea-
tures. Then during the prime training, the model will be
guided to directly capture the intrinsic correlations with the
prime training and the prime reinforcement regularization.
In evaluation, we rely on the intrinsic correlations to per-
form unbiased classification. The details are as follows.
Prime construction. When constructing the prime ETF,
we first randomly initialize a simplex ETF as M 2 Rd⇥B ,
which satisfies the definition in Eq. 1. The dimension d is
the same as the learnable features, and the number of vec-
tors in M is determined by the categories of bias attributes
bi 2 {1, ..., B}, which are pre-defined in the training dis-
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Figure 3. The illustration of our method. We take the class climbing from BAR [23] as an example, which contains samples of human
climbing but with the bias attribute of different backgrounds (as indicated with the color of image frames). The framework contains: 1)
Prime Construction: Before training, a randomly initialized ETF structure is constructed as the shortcut primes, and 2) During Prime
Training, the prime features mb are retrieved based on the bias attribute b of the input samples, to guide the optimization of learnable
features z towards the intrinsic correlations. The classifier F✓ will take both the learnable features and fixed prime features to make predic-
tions. 3) In Unbiased Classification, the prime features are assigned as null vectors to evaluate the debiased model on test distributions.

tribution. After initialization, the vertices of prime ETF
[m1, ...,mB ] are considered as the approximation of the
“perfect” shortcut features for each attribute, which serve
as the prime features for avoid-shortcut training. During
training, the prime features will be retrieved based on the
bias attribute b of each input sample.
Prime training. During the prime training, we take the
end-to-end model architecture with a backbone E� and a
classifier F✓. For the i-th input xi,b with the bias attribute
of b, we first extract its learnable feature zi,b = E�(xi,b)
with the backbone model, and retrieve its prime feature mb

based on the bias attribute b. The classifier F✓ will take
both the learnable feature zi,b and the prime feature mb to
make softmaxed predictions ŷ = F✓(zi,b,mb). The stan-
dard classification objective is defined as:

min
�,✓

LCE(x,y) =
NX

i=1

L(F✓(zi,b,mb),yi,b) (2)

where y is the ground-truth label. In our implementation,
we use the standard cross-entropy loss as L, and concate-
nate the prime features after the learnable features to per-
form predictions.

In essence, we provide a pre-defined prime feature for
each training sample based on its bias attribute. The prime
features, with a strong correlation with the bias attributes,
can be viewed as the optimal solution to shortcut learning.
By leveraging the already “perfect” representation of short-
cut correlations, the model will be forced to explore the
intrinsic correlations within the training distribution. The
prime-guided mechanism targets at the fundamental issue of

biased classification, without inducing extra training costs.
Prime reinforcement regularization. Given the prime fea-
tures, the model is encouraged to grasp the intrinsic correla-
tion of the training distributions. However, we raise another
potential risk that, despite the provided “perfectly learned”
shortcut features, the model may still pursue the easy-to-
follow shortcuts, leading to the redundancy between the
learnable feature zi,b and the fixed mb. We point out that
the model may not establish a strong correlation between
the prime features and the bias attributes, and continues to
optimize the learnable features for the missing connections.

Therefore, we introduce a prime reinforcement regular-

ization mechanism to enhance the model’s dependency on
prime features. We encourage the model to classify the bias
attributes with only the prime features, and the regulariza-
tion loss is defined as:

LRE(x,b) =
PN

i=1 L(F✓(zi,b,mb)� F✓(zi,b,mnull),b) (3)

where mnull is implemented as all-zero vectors with the
same dimension as mb, and L is the standard cross-entropy
loss. In the ablation studies in Section 5.3, we observe an
improved generalization capability across test distributions,
as the result of the strengthened reliance on prime features.
Regarding the entire framework, we define the overall train-
ing objective as:

min
�,✓

LCE(x,y) + ↵LRE(x,b) (4)

where ↵ is the hyper-parameter to adjust the regularization.
Unbiased classification. In evaluation, we rely on the
intrinsic correlations to perform unbiased classification.
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Given a test sample xi,b, we extract its learnable feature zi,b
and set its prime feature as mnull to obtain the final output
ŷ = F✓(zi,b,mnull).

4.3. Theoretical Justification
Based on the analysis of Neural Collapse from the per-

spective of gradients [36, 43], we provide a brief theoretical
justification for our method.

With the priming mechanism, we denote the i-th feature
of the k-th class as ezk,i = [zk,i,mi,b] 2 R2⇥d, which
represents the concatenation of learnable feature zk,i and
prime feature mi,b based on its bias attribute b. To keep
the same form, we also denote the classifier weights as
ewk = [wk,ak] 2 R2⇥d, where wk represents the weight
for intrinsic correlations and ak represents the one for short-
cut correlations. We observe that, due to the fixed prime
features during training, ak will quickly collapse to the bias-
correlated prime features of class k, and can be viewed as
constant after just a few steps of training. With the defini-
tion, the cross-entropy (CE) loss can be written as:

LCE(ezk,i, ewk) = � log
⇣

exp([zk,i,mi,b]
T[wk,ak])PK

k0=1
exp([zk,i,mi,b]T[wk0 ,a0

k])

⌘

(5)
We follow the analysis of previous works and compute the
gradients of LCE w.r.t both classifier weights and features.
Gradient w.r.t classifier weights. We first compute the
gradient of LCE w.r.t classifier weights fW = [ew1..., ewK ]:

@LCE

@ ewk
=

nkX

i=1

�(1� pk(ezk,i))ezk,i +
KX

k0 6=k

nk0X

j=1

pk(ezk0,j)ezk0,j


nkX

i=1

�(1� p(b)k (mi,b)� p(l)k (zk,i))ezk,i
| {z }

pulling part

+
KX

k0 6=k

nk0X

j=1

(p(b)k (mj,b0) + p(l)k (zk0,j))ezk0,j

| {z }
forcing part

(6)

where p(l)k and p(b)k are the predicted probabilities for class
labels and bias attributes, calculated with softmax:

p(l)k (zk,i) =
exp(zTk,iwk)

PK
k0=1 exp([zk,i,mi,b]T[wk0 ,ak0 ])

(7)

p(b)k (mi,b) =
exp(mT

i,bak)PK
k0=1 exp([zk,i,mi,b]T[wk0 ,ak0 ])

(8)

In Eq. 6, the gradient w.r.t classifier weights are divided
into two parts. The pulling part is composed of features
from the same class that pulls wk towards the direction of
the k-th feature cluster, while the forcing part contains the
features of other classes and pushes wk away from their
clusters. The weight factor of each feature ezk,i represents

its influence on the optimization of ewk, which implicitly
plays the role of re-weighting in our method.

We assume that class k is strongly correlated with bias
attribute b. As the weight ak is observed to collapse quickly
to the bias-correlated prime feature mb, the probability
p(b)k / exp(mT

b ak) of bias-aligned samples (with prime
features mb) are much greater than that of bias-conflicting
samples (with prime features mb0 ). Thus, with the weight
factors in Eq. 6, the pulling and forcing effects of bias-
aligned samples will be relatively down-weighted, and the
impact of bias-conflicting samples will be up-weighted.
The re-weighting mechanism of gradient mitigates the ten-
dency of pulling ewk towards the center of bias-aligned sam-
ples, which alleviates the misdirection of bias attributes.
Gradient w.r.t features. Similarly, we compute the gradi-
ent of LCE w.r.t the feature ezk,i:

@LCE

@ezk,i
= �(1� pk(ezk,i))wk +

KX

k0 6=k

pk0(ezk,i)wk0

 �(1� p(b)k (mi,b)� p(l)k (zk,i))wk| {z }
pulling part

+
KX

k0 6=k

(p(b)k0 (mi,b) + p(l)k0 (zk,i))wk0

| {z }
forcing part

(9)

In the gradient w.r.t features, the pulling part directs the
feature ezk,i towards the weight of its class wc, and the forc-

ing part repels it from wrong classes. Regarding the weight
factors, the probability of bias attribute p(b)k also re-weights
the influence of classifier weights. Bias-aligned samples,
with high p(b)k probability, will have smaller pulling effects
towards the classifier weight wk, which avoids the dom-
inance of bias-aligned features around the weight centers
and hinders the tendency of shortcut learning. In com-
parison, the bias-conflicting samples are granted stronger
pulling and pushing effects, which strengthens their conver-
gence toward the right class. The detailed theoretical jus-
tification of our method, along with the comparison with
vanilla training, are available in Appendix A.

5. Experiments
5.1. Experimental Settings
Datasets and models. We validate the effectiveness of
ETF-Debias on general debiasing benchmarks, which cover
various types of bias attributes including color, corrup-
tion, gender, and background. We adopt 2 synthetic bi-
ased datasets, Colored MNIST [15] and Corrupted CIFAR-
10 [10] with the ratio of bias-conflicting training sam-
ples {0.5%, 1.0%, 2.0%, 5.0%}, and 3 real-world bi-
ased datasets, Biased FFHQ (BFFHQ) [18] with bias ratio
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Table 2. Comparison of debiasing performance on synthetic datasets. We report the accuracy on the unbiased test sets of Colored MNIST
and Corrupted CIFAR-10. Best performances are marked in bold, and the number in brackets indicates the improvement compared to the
best result in baselines. (⇤) and (⇧) denote methods with/without bias supervision respectively.

Dataset Ratio(%) Vanilla LfF⇧[23] LfF+BE⇧[19] EnD⇤[30] SD⇤[42] DisEnt⇤[18]Selecmix⇧[13] ETF-Debias

Colored
MNIST

0.5 32.22±0.13 57.78±0.81 69.69±1.99 35.93±0.40 56.96±0.37 68.83±1.62 70.53±0.46 71.63±0.28 (+1.10)
1.0 48.45±0.06 72.29±1.69 80.90±1.40 49.32±0.58 72.46±0.18 79.49±1.44 83.34±0.37 81.97±0.26 (-1.37)
2.0 58.90±0.12 79.51±1.82 84.90±1.14 65.58±0.46 79.37±0.46 84.56±1.19 85.90±0.23 86.00±0.03 (+0.10)
5.0 74.19±0.04 83.96±1.44 90.28±0.18 80.70±0.17 88.89±0.21 88.83±0.15 91.27±0.31 91.36±0.21 (+0.09)

Corrupted
CIFAR-10

0.5 17.06±0.12 31.00±2.67 23.68±0.50 14.30±0.10 36.66±0.74 30.12±1.60 33.30±0.26 40.06±0.03 (+3.40)
1.0 21.48±0.55 34.33±1.76 30.72±0.12 20.17±0.19 45.66±1.05 35.28±1.39 38.72±0.27 47.52±0.26 (+1.86)
2.0 27.15±0.46 39.68±1.15 42.22±0.60 30.10±0.54 50.11±0.69 40.34±1.41 47.09±0.17 54.64±0.42 (+4.53)
5.0 39.46±0.58 53.04±0.76 57.93±0.58 45.85±0.21 62.43±0.57 49.99±0.84 54.69±0.29 65.34±0.60 (+2.91)

Table 3. Comparison of debiasing performance on real-world datasets. We report the accuracy on the unbiased test sets of Biased FFHQ,
Dogs & Cats, and BAR. The class-wise accuracy on BAR is reported in Appendix D. Best performances are marked in bold, and the
number in brackets indicates the improvement compared to the best result in baselines. (⇤) and (⇧) denote methods with/without bias
supervision respectively.

Dataset Ratio(%) Vanilla LfF⇧[23] LfF+BE⇧[19] EnD⇤[30] SD⇤[42] DisEnt⇤[18]Selecmix⇧[13] ETF-Debias

Biased
FFHQ

0.5 53.27±0.61 65.60±2.27 67.07±2.37 55.93±1.62 65.60±0.20 63.07±1.14 65.00±0.82 73.60±1.22 (+6.53)
1.0 57.13±0.64 72.33±2.19 73.53±1.62 61.13±0.50 69.20±0.20 68.53±2.32 67.50±0.30 76.53±1.10 (+3.00)
2.0 67.67±0.81 74.80±2.03 80.20±2.78 66.87±0.64 78.40±0.20 72.00±2.51 69.80±0.87 85.20±0.61 (+5.00)
5.0 78.87±0.83 80.27±2.02 87.40±2.00 80.87±0.42 84.80±0.20 80.60±0.53 83.47±0.61 94.00±0.72 (+6.60)

Dogs & Cats 1.0 51.96±0.90 71.17±5.24 78.87±2.40 51.91±0.24 78.13±1.06 65.13±2.07 54.19±1.61 80.07±0.90 (+1.20)
5.0 76.59±1.27 85.83±1.62 88.60±1.21 79.07±0.28 89.12±0.18 82.47±2.86 81.50±1.06 92.18±0.62 (+3.06)

BAR 1.0 68.00±0.43 68.30±0.97 71.70±1.33 68.25±0.19 67.33±0.35 69.30±1.27 69.83±1.02 72.79±0.21 (+1.09)
5.0 79.34±0.19 80.25±1.27 82.00±1.24 78.86±0.36 79.10±0.42 81.19±0.70 78.79±0.52 83.66±0.21 (+1.66)

{0.5%, 1.0%, 2.0%, 5.0%}, BAR [23], and Dogs & Cats
[15] with bias ratio {1.0%, 5.0%}.
As for the model architecture, we adopt a three-layer MLP
for Colored MNIST and ResNet-20 [9] for other datasets.
Since BAR has a tiny training set, we follow the previ-
ous work [19] and initialize the parameters with pre-trained
models on corresponding datasets. All results are averaged
over three independent trials. More details about datasets
and implementation are available in Appendix B.
Baselines. According to the three categories of debiased
learning in Section 2, we compare the performance of ETF-
Debias with six recent methods. For reweight-based debi-
asing, we consider LfF [23] with auxiliary bias models, and
its improved version LfF+BE [19]. For disentangle-based
debiasing, we consider EnD [30] and SD [42], which stem
from the Information Bottleneck theory and causal inter-
vention respectively. For augmentation-based debiasing, we
consider DisEnt [18] and Selecmix [13], to include both the
feature-level and image-level augmentations.

5.2. Main Results
Comparison on synthetic datasets. To display the debi-
asing performance, we report the accuracy on the unbiased

test set of 2 synthetic datasets in Tab. 2. It’s notable that
ETF-Debias consistently outperforms baselines in the gen-
eralization capability towards test samples, on almost all
levels of bias ratio. We observe that some baseline methods
(e.g., EnD) do not display a satisfactory debiasing effect
on synthetic datasets, as they rely heavily on diverse con-
trastive samples to identify and mitigate the bias features. In
contrast, our approach directly provides the approximated
shortcut features as training primes, which achieves supe-
rior performance on synthetic bias attributes.
Comparison on real-world datasets. To verify the scala-
bility of ETF-Debias in real-world scenarios with more di-
verse bias attributes, we test our method on 3 real-world bi-
ased datasets in Tab. 3. We observe that ETF-Debias shows
an even greater performance gain on real-world datasets
than on synthetic ones, which may be attributed to the se-
mantically meaningful prime features constructed with the
simplex ETF structure. On the large-scale BFFHQ dataset,
our method achieves up to 6.6% accuracy improvements
compared to baseline methods, demonstrating its potential
in real-world applications.
Convergence of Neural Collapse. In Fig. 2, we display the
trajectory of NC metrics during training on the Corrupted

12328



CIFAR-10 dataset. Guided by the prime features, the model
establishes a right correlation and shows a much better con-
vergence property on biased datasets, contributing to the su-
perior generalization capability. More convergence results
are available in Appendix C.

5.3. Ablation Study
Ablation on the influence of regularization. To measure
the sensitivity of our method to different levels of prime
reinforcement regularization, we compare the accuracy on
the unbiased test set with ↵ range from 0.0 to 1.0 in Fig.
4(a). It’s been shown that the debiasing performance re-
mains significant with different strengths of regularization,
and achieves extra performance gain with the proper level
of prime reinforcement.

Figure 4. Ablation studies on hyper-parameter and prime features.
We report (a) test set accuracy on different datasets, with hyper-
parameter ↵ ranging from 0.0 to 1.0, and (b) test set accuracy on 5
datasets with different prime features. The shaded areas represent
the standard deviation, and the bias ratio of all datasets is 5%.

Ablation on the influence of ETF prime features. As
illustrated before, we choose the vertices of ETF as the
“perfectly learned” shortcut features, thus redirecting the
model’s attention to intrinsic correlations. To demonstrate
the efficacy of ETF prime features, we compare the results
of randomly initialized prime features with the same dimen-
sion as the ETF-based ones. As shown in Fig. 4(b), the ran-
domly initialized primes suffer a severe performance degra-
dation, underscoring the advantages of ETF-based prime
features in approximating the optimal structure.

5.4. Visualization
To intuitively reveal the effectiveness of our method,

we compare the CAM [44] visualization results on vanilla
models and debiased models trained with ETF-Debias. As
shown in Fig. 5, the model’s attention is significantly recti-
fied with ETF-Debias. For example, on Corrupted CIFAR-
10 dataset, vanilla models are easily misled by the corrup-
tions on the entire images, but with the guide of prime fea-

Figure 5. The comparison of visualization results on bias-
conflicting samples (first row) between vanilla models (second
row) and ETF-Debias models (third row). We display the result
of CAM [44] on (a) Corrupted CIFAR-10 dataset, with the bias
attribute as different types of corruption on the entire image, (b)
Dogs & Cats dataset, with the bias attribute as the color of animals
and (c) BFFHQ dataset, with the bias attribute as gender.

tures in our method, the debiased models shift their atten-
tion to the objects themselves. It’s also notable that our
method circumvents the wrong attention area in classifica-
tion and encourages the focus on more discriminative and
finer-grained regions. On datasets of facial recognition, our
method also breaks the spurious correlation on specific vi-
sual attributes [19] and considers more facial features, as
shown in Fig. 5(c). More visualization results are available
in Appendix E.

6. Conclusion
In this paper, we propose an avoid-shortcut learning

framework with the insights of the Neural Collapse phe-
nomenon. By extending the analysis of Neural Collapse to
biased datasets, we introduce the simplex ETF as the prime
features to redirect the model’s attention to intrinsic corre-
lations. With the state-of-the-art debiasing performance on
various benchmarks, we hope our work may advance the
understanding of Neural Collapse and shed light on the fun-
damental solutions to model debiasing.
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