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Abstract

Semantic scene completion, also known as semantic oc-
cupancy prediction, can provide dense geometric and se-
mantic information for autonomous vehicles, which attracts
the increasing attention of both academia and industry. Un-
fortunately, existing methods usually formulate this task as
a voxel-wise classification problem and treat each voxel
equally in 3D space during training. As the hard voxels have
not been paid enough attention, the performance in some
challenging regions is limited. The 3D dense space typically
contains a large number of empty voxels, which are easy to
learn but require amounts of computation due to handling
all the voxels uniformly for the existing models. Further-
more, the voxels in the boundary region are more challeng-
ing to differentiate than those in the interior. In this paper,
we propose HASSC approach to train the semantic scene
completion model with hardness-aware design. The global
hardness from the network optimization process is defined
for dynamical hard voxel selection. Then, the local hard-
ness with geometric anisotropy is adopted for voxel-wise
refinement. Besides, self-distillation strategy is introduced
to make training process stable and consistent. Extensive
experiments show that our HASSC scheme can effectively
promote the accuracy of the baseline model without incur-
ring the extra inference cost. Source code is available at:
https://github.com/songw-zju/HASSC.

1. Introduction

The accurate 3D perception of the surrounding environment
is critical for both autonomous vehicles and robots [38, 40,
43, 60]. Early semantic scene completion works mainly fo-
cus on indoor scenes [3, 26, 33, 41]. For outdoor driving
scenarios, SemanticKITTI [1] provides the first large bench-
mark, in which LiDAR-based methods [7, 37, 47, 49] oc-
cupy a dominant position with promising performance. Re-
cently, vision-centric methods [16, 28, 30] have made en-
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Figure 1. Comparing our proposed hardness-aware semantic scene
completion (HASSC) approach against previous semantic scene
completion methods. We present an effective hard voxel mining
(HVM) head with self-distillation during training.

couraging progress in bird’s-eye-view (BEV) perception.
Researchers have further started to complete the entire 3D
semantic scene with only the camera as input and obtain
impressive results [4, 17, 29].

Generally, it is not trivial to infer semantic occupancy in-
formation in 3D dense space from the current camera obser-
vation alone. For vision-centric semantic scene completion
models, the 2D backbone needs high-resolution images as
input and consumes most of the GPU memory, as shown in
Fig. 1(a). After the forward or backward 2D-to-3D transfor-
mation [21, 29, 31], the 3D dense voxel volume features are
captured while it is impossible to perform feature extraction
under high-resolution in 3D space due to the GPU memory
limitation. The 3D backbone adopts convolution [4, 21] or
self-attention [29] operators and extracts fine-grained fea-
tures on reduced-resolution 3D feature maps. As voxel-wise
outputs are required at full resolution, the completion head
typically derives the final result through trilinear interpo-
lation or transposed convolution directly without consider-
ing the hardness for different voxels. Meanwhile, existing
methods [4, 29] mainly formulate semantic scene comple-
tion as a voxel-wise classification problem and compute the
loss for each voxel equally. Such a scheme ignores that the
hardness in classifying various voxels in 3D space is quite
different. Since more than 90% of the voxel space is empty,
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these empty voxels are easy to predict but require a large
amount of computation during training. Moreover, voxels
inside an object exhibit greater predictability than those lo-
cated on the boundary.

Building upon the success of hard sample mining in 2D
dense prediction like object detection [32, 39] and seman-
tic segmentation [19, 27, 48], we are motivated to design
a hard voxel mining strategy in 3D dense space. The dif-
ference between 2D pixel space and 3D voxel space is not
only the extra computational cost due to dimension upgrad-
ing, but also a large number of empty voxels consuming
most of memory and computation in 3D voxel space. To
alleviate this problem, we propose the hard voxel mining
(HVM) head with self-distillation, which select hard voxels
via the global hardness and refine them with local hardness,
as illustrated in Fig. 1(b). Specifically, the global hardness is
based on the uncertainty in predicting each voxel so that we
can update the selected voxels dynamically. As most of the
voxels selected in such way are empty at the early stages
of training, local hardness based on geometric anisotropy
is introduced to weight the losses of different voxels. The
local geometric anisotropy (LGA) of a voxel is defined as
the semantic difference from its neighbors. We adopt the
linear mapping of LGA as the local hardness to weight the
voxel-wise losses from the hard area and refine their predic-
tions. Furthermore, self-distillation training is introduced to
make the model outputs more stable and consistent. The
teacher model is optimized by the exponential moving av-
erage (EMA) of the student model without extra training
process. Our presented self-distillation approach works well
with the hard voxel mining head to jointly improve the com-
pletion performance.

The main contributions of this work are summarized as
follows:
• We propose a hardness-aware semantic scene completion

(HASSC) scheme that can be easily integrated into exist-
ing models without incurring extra cost for inference.

• We take advantage of both the global and local hardness
to find the hard voxels so that their predictions can be
refined by weighted voxel-wise losses during training.

• A self-distillation training strategy is introduced to im-
prove semantic scene completion through an end-to-end
training manner.

• Extensive experiments are conducted to demonstrate the
effectiveness of our presented method.

2. Related Work
Semantic Scene Completion. The methods for outdoor se-
mantic scene completion (SSC) can be divided into two
categories according to their input: 1) LiDAR-based meth-
ods. The grid-based approaches [37, 46] employ the occu-
pancy grid voxelized from the sparse LiDAR point cloud
as input and achieve fast inference performance with lite-

weight backbone. The point-based methods [7, 49] integrate
the point-wise features within the voxel space and improve
the model accuracy. Xia et al. [47] redesign the comple-
tion network architecture and obtain the optimal accuracy
with 3D input. 2) Camera-based methods. MonoScene [4]
is the pioneer work, which explores the SSC with monoc-
ular camera image firstly. The subsequent works construct
a tri-perspective view plane [17] or design dual-path trans-
former decoder [56] to improve the performance with single
image. VoxFormer [29] estimates the coarse geometry with
stereo images first and obtains the non-empty proposals to
perform deformable cross-attention [59] on single or mul-
tiple monocular images. Another method category utilizes
implicit representations rather than voxel-based modeling,
indicating the capability for extending SSC with both Li-
DAR [25, 36] and camera [12]. Since the camera is much
cheaper with greater application potentials than LiDAR, we
mainly focus on vision-centric methods in this paper.

Hard Sample Mining for Dense Prediction. Hard sample
mining is firstly explored in 2D object detection [32, 39] as
the difficulty in detecting distinct objects from an image is
quite different. In 2D image segmentation, Li et al. [27] pro-
pose a layer cascade method to segment regions with differ-
ent hardness. Yin et al. [53] extract hard regions according
to the loss values and re-train these areas for better perfor-
mance. Kirillov et al. [19] start from the common ground of
image rendering and segmentation, and refine the edge re-
gions of objects in the image from the feature level. Deng et
al. [9] use an auxiliary detection network to find hard areas
at nighttime and conduct segmentation refinement in both
training and inference. Xiao et al. [48] propose a pixel hard-
ness learning method by making use of global and histori-
cal loss values. The above methods are all designed for im-
ages in 2D pixel space. Li et al. [22] propose local geomet-
ric anisotropy to weight voxel-wise cross-entropy losses,
which does not perform well in outdoor scenes. In this pa-
per, we propose to conduct effective hard sample mining in
3D dense voxel space for driving scenes.

Self-Distillation. Knowledge distillation is firstly proposed
to learn dark knowledge from well-trained large models for
model compression [2, 15]. A series of subsequent works
have been presented to improve the learning efficiency
and capability of student models [10, 14, 51, 57]. In au-
tonomous driving, knowledge distillation, especially cross-
modality distillation, has shown its great potential in im-
proving model accuracy [6, 44, 58] and compressing mod-
els [8, 50, 54]. However, these methods usually need to train
a stronger teacher with more parameters or other modality
at first, which incur additional training costs. Inspired by
successful applications of self-distillation in other fields in-
cluding 2D and 3D semantic segmentation [18, 20, 24, 55],
we introduce self-distillation training strategy for semantic
scene completion without extra designed models.
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Figure 2. Overview of Hardness-Aware Semantic Scene Completion (HASSC) pipeline. We take the camera images as input and construct
3D feature volume by Camera Encoder and 2D-to-3D Transform. With the fine-grained features provided by 3D Backbone, we propose
hard voxel mining (HVM) head to make the model concentrate on hard voxels. The teacher-model has the same architecture as student-
model, which is updated by the exponential moving average (EMA) of student. The stable predictions can be achieved by taking advantage
of both the self-distillation and HVM head.

3. Method
The semantic scene completion task predicts a dense se-
mantic voxel volume V ∈ RX×Y×Z in front of the vehicle
with only the observation from onboard sensors including
camera and LiDAR. (X , Y , Z) represent the length, width
and height of the 3D volume, respectively. Each voxel in
V is either empty or occupied with one semantic class. We
mainly consider the more challenging 2D input for its low
cost and great application potentials.

3.1. Overview

In this work, we aim to provide a hard sample mining so-
lution in voxel space for 3D dense prediction. The overall
pipeline of Hardness-Aware Semantic Scene Completion
(HASSC) is illustrated in Fig. 2. Our proposed hard voxel
mining (HVM) head and self-distillation training strategy
are independent from specific network, which can be easily
integrated into off-the-shelf methods.

The typical semantic scene completion network, e.g.,
MonoScene [4] and VoxFormer [29], consists of camera en-
coder, 2D-to-3D transformation, 3D backbone and comple-
tion head.
Camera Encoder. The camera encoder is made of an im-
age backbone and a neck, which extracts semantic and ge-
ometric feature F2D ∈ RH′×W ′×D′

from images under the
perspective view. H ′×W ′ is the 2D feature resolution, and
D′ is the dimension. The extracted feature is the basis to
construct 3D voxel volume in the following.
2D-to-3D Transformation. The 2D-to-3D transformation
in semantic scene completion is similar to view transfor-
mation in BEV perception, which can be divided into two
paradigms, including forward projection [16, 21, 34] and
backward projection [29, 30, 45]. With the extracted im-
age feature F2D, we construct 3D volume feature F3D ∈

RX′×Y ′×Z′×D by explicit geometry estimation and query-
based 3D-to-2D back projection [29]. To reduce memory
consumption and computational cost, X ′ × Y ′ × Z ′ as the
3D feature resolution is smaller than X × Y × Z. D is the
3D feature dimension.
3D Backbone. The 3D Backbone performs self-
attention [29] or convolution [4, 21] on the voxel volume
feature F3D from the 2D-to-3D Transformation and obtain
fine-grained feature F3D

fine ∈ RX′×Y ′×Z′×D. Moreover, the
completion head uses F3D

fine to obtain the final prediction
Pfinal ∈ RX×Y×Z×C , where C is the number of total
classes including empty and semantic categories.

3.2. Hard Voxel Mining Head

The completion head in SSC usually up-samples the fine-
grained feature F3D

fine from the 3D backbone through trilin-
ear interpolation or transposed convolution to obtain the
completion result Pfinal of full-resolution. Since this process
does not take into account the hardness of each voxel, the
performance is poor in some difficult regions. Our proposed
hard voxel mining (HVM) head is based on the vanilla com-
pletion head and selects hard voxels during training to refine
their predictions. In the following, we firstly introduce the
definitions of global hardness and local hardness, and then
explain the working flow of proposed HVM head, as illus-
trated in Fig. 3.
Global Hardness. With the fine-grained feature F3D

fine, we
obtain the coarse prediction Pcoarse ∈ RX′×Y ′×Z′×C by
the single layer Multi-Layer Perceptron (MLP) and softmax
function firstly. Let (i, j, k) denote the voxel index. For the
prediction of each voxel p(i,j,k) ∈ R1×C in Pcoarse , we rank
the probabilities of each class {p1, p2, ..., pC} in decreasing
order. The largest probability in C classes is represented as
pa, and the second largest one is denoted as pb. Then, the
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Figure 3. Illustration of Hard Voxel Mining (HVM) Head. At
training stage, N hard voxels are selected with respect to their
global hardness and random sampling. Then, we re-sample the
corresponding fine-grained features and employ MLP Layer to re-
fine their predictions, which are supervised by the ground truth and
local hardness. For inference, we directly utilize Trilinear Interpo-
lation to obtain final prediction.

global hardness Hglobal
i,j,k of this voxel is defined as follows

Hglobal
i,j,k =

1

pa − pb
. (1)

We obtain Hglobal ∈ RX′×Y ′×Z′
by computing all the

predictions of voxels in Pcoarse. Hglobal measures the uncer-
tainty of the semantic scene completion prediction between
the class a and b, which varies with the optimization of the
network. The value of Hglobal indicates the global hardness
of predicting a certain voxel during the overall training pro-
cess. In this paper, we mainly employ Hglobal to select hard
voxels and refine their predictions.
Local Hardness. In 3D dense space, each voxel involves
different geometric information, which depends on its vari-
ous location. Since the voxels in the boundary region pose
a greater challenge than those in the interior, the local infor-
mation is crucial for instructing the model to find genuinely
hard voxels. We adopt local geometric anisotropy [22]
(LGA) A ∈ RX×Y×Z as the basis of the local hardness
Hlocal ∈ RX×Y×Z on the selected voxels. For each voxel
v(i,j,k) in V , the LGA Ai,j,k is computed with its neighbors
{v1, v2, .., vM} at M different directions

Ai,j,k =

M∑
m=1

(
vgt ⊕ vmgt

)
, (2)

where vgt and vmgt are the semantic labels of v and vm

(m = 1, ...,M ), respectively. ⊕ denotes the exclusive dis-
junction operation. It returns 0 or 1 when v and vm have
the same semantic label or not. Note that we calculate the
LGA of all the voxels including empty ones. In our imple-
mentation, we set M to 6 and compute the voxels in the

LGA=0 LGA=1 LGA=2 LGA=3 LGA=4 LGA=5 LGA=6

Local Geometric Anisotropy (LGA) Distribution on SemanticKITTI 

Figure 4. Illustration of Local Geometric Anisotropy (LGA).
The upper figure gives the examples of different LGA values,
which are all from real scenarios. The lower figure shows the dis-
tribution of LGA values in SemanticKITTI [1]. We use dark and
light colors to represent the proportion of non-empty and empty
voxels in each LGA value category, respectively.

up/down, front/back, and left/right directions. The examples
and distribution information on SemanticKITTI [1] for dif-
ferent LGA values are provided in Fig. 4.

Then, the corresponding local hardness Hi,j.k is defined
as below

Hlocal
i,j,k = α+ βAi,j,k, (3)

where α and β are the coefficients linearly mapping A onto
Hlocal. Hlocal measures the semantic difference between the
selected voxel and its neighbors. The value of Hlocal reflects
the geometric position on the object of the voxel. We adopt
local hardness Hlocal to weight the selected voxels and make
the model focus on more challenging voxel positions.
Hard Voxel Selection. During training, we select N hard
voxels from the coarse prediction Pcoarse with the global
hardness Hglobal. Since N ≪ X ′ × Y ′ × Z ′, selecting N
voxels with the largest Hglobal in Pcoarse directly may cause
the SSC network to fall into over-fitting in the local area
at the beginning. Motivated by PointRend [19], we firstly
over-generate proposal voxels by randomly sampling tN
voxels (t > 1) with a homogeneous distribution in 3D dense
space. Secondly, ωN hard voxels (ω ∈ [0, 1]) are selected
from tN proposals by sorting the global hardness, which
is calculated from the corresponding coarse prediction re-
gion Pcoarse. Thirdly, remaining (1 − ω)N voxels are ran-
domly sampled from 3D space to prevent over-fitting in
training. Finally, we obtain N hard voxels with the coor-
dinates Vhard ∈ RN×3.
Voxel-wise Refinement Module. Given N selected hard
voxels, we re-sample their corresponding features from the
fine-grained 3D volume features F3D

fine by the coordinates
Vhard and obtain Fhard

fine ∈ RN×D. Then, the hard voxels are
refined with a lightweight network consisting of MLPs like
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PointNet [35], since the voxel-wise prediction can be con-
sidered as point-wise segmentation problem as below

Phard
refine = MLP(Fhard

fine ), (4)

where Phard
refine is the refined prediction of the selected hard

voxels.
In training process, we need to re-sample the correspond-

ing semantic labels of hard voxels from the ground truth. As
the majority of 3D dense space is empty, we observe that the
selected hard voxels are also predominantly empty ones at
the beginning. In fact, part of these empty voxels are not in-
herently challenging to distinguish. If we treat the selected
hard voxels equally, it may cause the SSC network to focus
on some samples that are not actually difficult in the early
stages of training. Therefore, we adopt the predefined local
hardness Hlocal to weight the selected hard voxels and make
the SSC network with the auxiliary MLP-based refinement
head concentrate on the harder samples at local position.
Specifically, the local hardness of selected hard voxels is
computed by Eq. 2 and Eq. 3. Then, the hard voxel mining
loss is calculated as follows

Ls-hvm =
1

N

N∑
n=1

Hlocal
n · CE(vnrefine, v

n
gt), (5)

where CE(·, ·) denotes the cross entropy loss function.
vnrefine and vngt are the refined prediction and the semantic
label of the selected n-th hard voxel, respectively.

At inference stage, we directly use trilinear interpolation
to obtain the final completion result Pfinal without introduc-
ing extra computational burden, as illustrated in Fig. 3.

3.3. Self-Distillation

To further train a robust model with higher performance
without extra well-trained teacher model, we propose to
perform self-distillation with the hard voxel mining head.
The teacher model in our HASSC scheme has the same net-
work architecture as the student model, as shown in Fig. 2.
Following [13, 42], we construct a mean teacher by ex-
ponential moving average (EMA) to achieve better stabil-
ity and consistency between iterations. During training pro-
cess, the parameters of teacher model share the same initial-
ization as student at step 0 and update at next steps as below

θTeacher
t+1 = γθTeacher

t + (1− γ)θStudent
t+1 , (6)

where γ = min
(
1− 1

t+1 , 0.99
)

. θTeacher
t and θStudent

t are the
learnable parameters of teacher and student model at step t.
We only optimize parameters of the student model θStudent

and update the teacher network by Eq. 6.
Since the teacher network has the same hard voxel min-

ing head as student, N hard voxels Vhard-T ∈ RN×3 can be

obtained during training. We use Vhard-T to sample the fi-
nal result Pfinal from the student branch. Then, the teacher-
guided hard voxel mining loss Lt-hvm is computed by Eq. 5
with the corresponding local hardness, final prediction and
ground truth. In case of the large number of voxels, we em-
ploy Lt-hvm to make the hard voxel selection by HVM head
in student model more stable and consistent.

Moreover, we adopt Kullback–Leibler divergence
(DKL) to instruct student model to learn from the online
soft labels PTeacher

final provided by teacher-branch as follows

Ldistill = λeµ ·DKL

(
PTeacher

final ∥Pfinal
)
, (7)

where λ is the weight coefficient for distillation. µ ∈ [0, 1]
is the mean intersection over union (mIoU) value between
the prediction of the current frame with teacher model
PTeacher

fine and the corresponding ground truth Vgt.

3.4. Training and Inference

Overall Loss Function for Training. In this work, we fol-
low the common settings [4, 29] and treat the semantic
scene completion (SSC) as a voxel-wise classification prob-
lem. Overall, the total training loss of our proposed HASSC
is composed of three terms as below

Ltotal = Lssc + Lhvm + Ldistill, (8)

where Lssc is the commonly used loss for SSC. Lssc consists
of weighted cross entropy loss Lwce and scene-class affinity
losses as follows

Lssc = Lwce + Lsem + Lgeo, (9)

where Lsem and Lgeo are scene-class affinity losses opti-
mized for semantics and geometry, respectively.

Additionally, the hard voxel mining loss Lhvm is made of
Ls-hvm and Lt-hvm:

Lhvm = Ls-hvm + δ · Lt-hvm, (10)

where δ is the trade-off coefficient between student and
teacher.
Inference. The student-branch is well optimized during
training, which not only digs out hard samples and refine
them with fine-grained features but also makes use of the
soft labels provided by the teacher-branch. During the infer-
ence process, we only need to preserve the student-branch
without incurring the extra computational cost.

4. Experiments
4.1. Setup

Dataset. The SemanticKITTI dataset [1] is the first large
semantic scene completion benchmark for outdoor scenes,
which contains LiDAR scans and front camera images from
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Methods VoxFormer-S [29]
HASSC

VoxFormer-S VoxFormer-T [29]
HASSC

VoxFormer-T StereoScene† [21]
HASSC

StereoScene

Modality Camera Camera Camera Camera Camera Camera

Range S M L S M L S M L S M L S M L S M L

IoU (%)↑ 65.35 57.54 44.02 65.54 57.99 44.82 65.38 57.69 44.15 66.05 58.01 44.58 65.70 56.84 43.66 65.52 57.01 44.55
mIoU (%)↑ 17.66 16.48 12.35 18.98 17.95 13.48 21.55 18.42 13.35 24.10 20.27 14.74 23.27 21.15 15.24 24.43 22.17 15.88

car (3.92%) 39.78 35.24 25.79 42.37 36.78 27.23 44.90 37.46 26.54 45.79 37.70 27.33 47.05 43.52 31.15 46.47 43.02 30.64
bicycle (0.03%) 3.04 1.48 0.59 2.72 2.26 0.92 5.22 2.87 1.28 4.23 2.11 1.07 2.38 2.15 1.05 4.20 2.63 1.20
motorcycle (0.03%) 2.84 1.10 0.51 4.49 1.63 0.86 2.98 1.24 0.56 5.64 2.03 1.14 4.78 2.84 1.55 5.26 3.34 0.91
truck (0.16%) 7.50 7.47 5.63 6.25 11.00 9.91 9.80 10.38 7.26 22.89 21.90 17.06 18.72 22.48 17.55 24.94 34.73 23.72
other-veh. (0.20%) 8.71 4.98 3.77 14.77 8.85 5.61 17.21 10.61 7.81 22.71 13.52 8.83 17.33 13.79 9.26 20.61 14.24 7.77
person (0.07%) 4.10 3.31 1.78 5.11 4.89 2.80 4.44 3.50 1.93 5.12 4.18 2.25 6.31 4.37 2.17 6.06 3.58 1.79
bicyclist (0.07%) 6.82 7.14 3.32 6.87 8.57 4.71 2.65 3.92 1.97 4.09 6.58 4.09 7.70 4.75 2.30 8.22 5.65 2.47
motorcyclist (0.05%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
road (15.30%) 72.40 65.74 54.76 74.49 68.04 57.05 75.45 66.15 53.57 78.51 70.02 57.23 79.24 74.16 61.86 80.61 75.53 62.75
parking (1.12%) 10.79 18.49 15.50 15.49 21.23 15.90 21.01 23.96 19.69 29.43 26.69 19.89 21.33 21.19 17.02 25.21 25.95 20.20
sidewalk (11.13%) 39.35 33.20 26.35 42.69 36.32 28.25 45.39 34.53 26.52 51.69 38.83 29.08 50.71 41.86 30.58 52.68 43.61 32.40
other-grnd(0.56%) 0.00 1.54 0.70 0.02 2.38 1.04 0.00 0.76 0.42 0.00 1.55 1.26 0.00 1.12 0.85 0.00 0.18 0.51
building (14.10%) 17.91 24.09 17.65 22.78 27.30 19.05 25.13 29.45 19.54 27.99 30.81 20.19 26.98 32.52 22.71 29.09 31.68 22.90
fence (3.90%) 12.98 10.63 7.64 9.81 8.70 6.58 16.17 11.15 7.31 17.09 11.65 7.95 22.50 14.26 8.73 20.88 13.32 8.67
vegetation (39.3%) 40.50 34.68 24.39 40.49 35.53 25.48 43.55 38.07 26.10 44.68 38.93 27.01 40.20 36.10 24.81 40.29 36.44 26.27
trunk (0.51%) 15.81 10.64 5.08 14.93 11.25 6.15 21.39 12.75 6.10 22.22 14.11 7.71 21.45 15.28 7.17 21.65 14.92 7.14
terrain (9.17%) 32.25 35.08 29.96 36.66 38.28 32.94 42.82 39.61 33.06 47.04 41.37 33.95 45.75 43.67 34.87 48.50 46.95 38.10
pole (0.29%) 14.47 11.95 7.11 15.25 12.48 7.68 20.66 15.56 9.15 18.95 14.76 9.20 20.43 18.95 10.66 18.67 16.34 9.00
traf.-sign (0.08%) 6.19 6.29 4.18 5.52 5.61 4.05 10.63 8.09 4.94 9.89 8.44 4.81 9.21 8.91 5.19 10.88 9.08 5.23

Table 1. Quantitative comparisons against the selected baseline methods on the validation set of SemanticKITTI [1]. † denotes the results
are reproduced from the original implementation. “S”, “M” and “L” represent the short range (12.8 × 12.8 × 6.4m3), middle range
(25.6 × 25.6 × 6.4m3) and long/full range (51.2 × 51.2 × 6.4m3), respectively. The improved results compared to the corresponding
baselines are marked in blue.

KITTI Odometry Benchmark [11]. The ground truth is gen-
erated from the accumulated LiDAR semantic segmenta-
tion labels, which is represented as the 256 × 256 × 32
voxel grids with a resolution of 0.2m. Each voxel grid is
annotated as one of 19 semantic classes or 1 empty class.
We adopt the same setting as in [1, 11] and split the total
22 sequences into (00-07, 09-10) / (08) / (11-21) for train-
ing/validation/test sets.
Evaluation Metrics. The mean intersection over union
(mIoU) on 19 semantic classes is reported to evaluate the
quality of semantic scene completion (SSC). Moreover, we
adopt intersection over union (IoU) to measure the perfor-
mance of class-agnostic scene completion (SC), which re-
flects the 3D geometric quality with 2D camera images as
input. Besides, we calculate the IoU and mIoU at different
ranges from the ego car on the validation set, which include
the volume of 12.8× 12.8× 6.4m3 (short range, S), 25.6×
25.6× 6.4m3 (middle range, M), and 51.2× 51.2× 6.4m3

(long/full range, L). In practical, the perception results at
closer range are more critical to vehicle safety.
Implementation Details. Our proposed HASSC method is
designed as a generic training scheme to improve the perfor-
mance of existing methods in hard regions. To demonstrate
the efficacy of our approach, we choose the state-of-the-art
methods including VoxFormer-S [29], VoxFormer-T [29]1

1https://github.com/NVlabs/VoxFormer

and StereoScene [21]2 as our baseline models. VoxFormer-
S only adopts the current frame from left camera as input
while VoxFormer-T combines the previous 4 images. Stere-
oScene uses both the left and right camera images to train
the model. The input image size is set to 1220 × 370 and
1280 × 384 for VoxFormer and StereoScene, respectively.
Other training settings are keep the same as the correspond-
ing baselines. The number of selected hard voxels during
training (N ) is set to 4096. The coefficients (α, β) of linear
transformation from A to Hlocal are set to 0.2 and 1.0, re-
spectively. The distillation weight λ is set to 48. The trade-
off coefficient δ is set to 0.1.

All the models in experiments are trained on four
GeForce RTX 4090 GPUs with 24G memory, and the in-
ference speed is reported by a single GeForce RTX 4090
GPU. More implementation details with different baselines
are given in our supplementary material.

4.2. Performance

Qualitative Comparisons. We firstly present the quantita-
tive comparison with the our baseline models on the vali-
dation set of SemanticKITTI. As shown in Tab. 1, HASSC
effectively improves the accuracy over baseline meth-
ods including VoxFormer-S (+1.13%mIoU, +0.80%IoU),
VoxFormer-T (+1.39%mIoU, +0.43%IoU) and Stere-

2https://github.com/Arlo0o/StereoScene
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Figure 5. Visual results of our method (HASSC-VoxFormer-T) and the state-of-the-art camera-based methods on the validation set of
SemanticKITTI. The left shows the perspective view image from left camera, which is the input for model training and inference. The right
is the ground truth and the corresponding predicted semantic scene from these methods.

oScene (+0.64%mIoU, +0.89%IoU) at full range. Our
HASSC-VoxFormer-T obtains a more obvious improve-
ment at the closer range including short (+2.55%mIoU)
and middle (+1.85%mIoU) to ensure the safety of au-
tonomous vehicles. Besides, it is worthy of noting that
HASSC-VoxFormer-S with single image input even outper-
forms VoxFormer-T with 5 images (13.48% v.s. 13.35%).

Then, we submit our prediction results to the website
of SemanticKITTI for the online evaluation of hidden test
set. In Tab. 2, we compare our approach against the state-
of-the-art camera-based methods. HASSC shows consis-
tent improvements with both VoxFormer-S (+1.14%mIoU)
and VoxFormer-T (+0.97%mIoU). Note that HASSC-
VoxFormer-S outperforms all the camera-based methods
with single image input. Comparisons on detailed seman-
tic categories and further discussions about our method are
provided in the supplementary material.
Qualitative Comparisons. To further investigate the ef-
fectiveness of our proposed HASSC, we visualize the pre-
dictions of different models on the validation set of Se-
manticKITTI. As shown in Fig. 5, our method (HASSC-
VoxFormer-T) performs better at complex classes junctions
(e.g., road, sidewalk and truck) compared to other camera-
based approaches. This also corresponds to the improve-
ments in quantitative evaluation (road +3.66%mIoU, side-
walk +2.56%mIoU, truck +9.80%mIoU) of our method,
which demonstrates the effectiveness of the proposed hard
voxel mining scheme.

4.3. Ablation Studies

In this section, we perform exhaustive ablation experiments
on the validation set of SemanticKITTI with VoxFormer-

Methods SSC Input Pub. IoU (%)↑ mIoU (%)↑

LMSCNet∗ [37] x̂occ
3D 3DV 2020 31.38 7.07

3DSketch∗ [5] xrgb,x̂TSDF CVPR 2020 26.85 6.23
AICNet∗ [23] xrgb,x̂depth CVPR 2020 23.93 7.09

JS3C-Net∗ [49] x̂pts AAAI 2021 34.00 8.97

MonoScene [4] xrgb CVPR 2022 34.16 11.08
TPVFormer [17] xrgb CVPR 2023 34.25 11.26
OccFormer [56] xrgb ICCV 2023 34.53 12.32
NDC-Scene [52] xrgb ICCV 2023 36.19 12.58

VoxFormer-S [29] xrgb CVPR 2023 42.95 12.20
VoxFormer-T [29] xrgb × 5 CVPR 2023 43.21 13.41

HASSC-VoxFormer-S xrgb - 43.40 13.34
HASSC-VoxFormer-T xrgb × 5 - 42.87 14.38

Table 2. Quantitative comparisons with the state-of-the-art
camera-based methods on the hidden test set of SemanticKITTI.
∗ denotes that the method is converted to the camera-based model
by MonoScene [4].

T [29] as the baseline model for fair comparison.
Ablation on HASSC Scheme. Firstly, we provide the ab-
lation of the proposed HASSC scheme. As illustrated in
Tab. 3, the first row is the result reproduced with the origi-
nal implementation of VoxFormer-T. It can be observed that
using global hardness Hglobal and local hardness Hlocal in-
dividually obtains the limited performance improvements.
Only the combination of Hglobal and Hlocal can effectively
improve model performance. With the teacher-guided hard
voxel mining (T-HVM), HASSC achieves stable improve-
ments in both semantics and geometry. The self-distillation
(T-Distill) from teacher-branch can provide consistent su-
pervision with reliable soft labels and further improve the
model accuracy when coupled with HVM head. Further-
more, we visualize the sum of the local hardness of N se-
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Figure 6. Visualization of the sum of the local hardness change
during training on both student and teacher branches.

Global Local T-HVM T-Distill IoU (%)↑ mIoU (%)↑

44.16 13.33
✓ 43.89 13.30

✓ 44.00 13.40
✓ ✓ 43.98 13.91
✓ ✓ ✓ 44.12 14.03

✓ 44.38 13.65
✓ ✓ ✓ ✓ 44.58 14.74

Table 3. Ablation study on our proposed HASSC scheme.

Methods VoxFormer-T HASSC-VoxFormer-T

Params (M) 57.91 58.43
Inference Speed (ms) 724.05 720.84

IoU (%)↑ 44.16 44.58
mIoU (%)↑ 13.33 14.74

Table 4. Comparison with baseline model on the training and in-
ference efficiency.

lected voxels during training. As shown in Fig. 6, the sum
of local hardness continues to increase on both the student
and teacher branches, which means the process of select-
ing voxels based on the learned global hardness Hglobal is
consistent with local one Hlocal.
Comparison of Training and Inference Efficiency. The
model complexity analysis regarding training and infer-
ence is provided in Tab. 4. Compared with the vanilla
VoxFormer-T, it can be seen that our proposed HASSC only
introduces minimal overheads (+0.90% parameters) during
training but promotes 10.58% relative performance without
incurring extra cost for inference (724.05ms v.s. 720.84ms).
Ablation on Hard Voxel Selection. As there are totally
262, 144 (128×128×16) voxels in coarse prediction Pcoarse,
we need to find an appropriate number (N ) of hard voxels
for refinement. Therefore, the ablation experiments on the
number (N ) of hard voxel selection are shown in Tab. 5.
These experiments are conducted without distillation loss
Ldistill from teacher-branch. A small N yields an minimal
improvement while a large one may include relatively easy
voxels resulting in erroneous optimization. When N is set
to 4096, the HVM head achieves the best performance.
Ablation on Self-Distillation. We present ablation on the
weight (λ) of self-distillation loss Ldistill. As illustrated in

Voxel Numbers (N ) 0 1024 2048 4096 8192

IoU (%)↑ 44.16 44.01 43.92 44.12 44.09
mIoU (%)↑ 13.33 13.52 13.64 14.03 13.74

Table 5. Ablation study on the number of hard voxel selection.

Distill Weight (λ) 0 12 24 48 96

IoU (%)↑ 44.12 44.06 44.25 44.58 44.51
mIoU (%)↑ 14.03 13.80 14.23 14.74 14.39

Table 6. Ablation study on the weight of self-distillation from
teacher model.

Methods Hardness IoU (%)↑ mIoU (%)↑

PALNet [22] Local 44.28 13.28
PointRend [19] Global 44.29 13.57
Xiao et al. [48] Global 44.10 13.33

Ours Global & Local 44.58 14.74

Table 7. Comparison with other hard sample mining schemes. We
re-implement them with VoxFormer-T for fair comparison.

Tab. 6, inappropriate distillation loss weight may lead to the
inferior model performance when λ = 12. We set λ to 48 in
order to better integrate it into the hard voxel mining head.
Comparison with Other Schemes. Finally, we pro-
vide comprehensive comparison with existing hard sam-
ple mining schemes. We re-implement PALNet [22],
PointRend [19] and [48] with VoxFormer-T [29] to facili-
tate a fair comparison. PALNet [22] is originally for indoor
semantic scene completion and only considers local geom-
etry. PointRend [19] and [48] are designed for 2D image
segmentation and just use the globally updated informa-
tion from the network optimization process. As shown in
Tab. 7, they obtain marginal performance enhancements in
3D space of large-scale scenes. Our proposed HASSC out-
performs all the reference methods.

5. Conclusion
In this paper, we adhere to the principle of not all voxels are
equal and propose hardness-aware semantic scene comple-
tion (HASSC). The hard voxel mining head consists of hard
voxel selection and voxel-wise refinement module, which
combines global and local hardness to optimize the network
on difficult regions. Additionally, self-distillation training
strategy is introduced to improve the stability and consis-
tency of completion. We have conducted extensive experi-
ments to demonstrate that HASSC can effectively promote
the existing semantic scene completion models without in-
curring the overheads during inference.
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