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Abstract

Unsupervised visual grounding methods alleviate the is-
sue of expensive manual annotation of image-query pairs by
generating pseudo-queries. However, existing methods are
prone to confusing the spatial relationships between objects
and rely on designing complex prompt modules to gener-
ate query texts, which severely impedes the ability to gener-
ate accurate and comprehensive queries due to ambiguous
spatial relationships and manually-defined fixed templates.
To tackle these challenges, we propose a omni-directional
language query generation approach for unsupervised vi-
sual grounding named Omni-Q. Specifically, we develop a
3D spatial relation module to extend the 2D spatial repre-
sentation to 3D, thereby utilizing 3D location information
to accurately determine the spatial position among objects.
Besides, we introduce a spatial graph module, leveraging
the power of graph structures to establish accurate and di-
verse object relationships and thus enhancing the flexibility
of query generation. Extensive experiments on five public
benchmark datasets demonstrate that our method signif-
icantly outperforms existing state-of-the-art unsupervised
methods by up to 16.17%. In addition, when applied in the
supervised setting, our method can freely save up to 60%
human annotations without a loss of performance.

1. Introduction
Visual grounding [11, 15], also known as Referring Expres-
sion Comprehension (REC), has been rapidly developed in
recent years. Its purpose is to locate relevant objects in
an image based on a language query and serves as a fun-
damental component for various multi-modal tasks, such
as image captioning [10, 41] and visual question answer-
ing [2, 27, 47].

The mainstream visual grounding methods heavily rely
on manual-annotated dataset, which can be broadly cat-
egorized into two types: fully supervised [5, 9] and
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(a) original image
(b) query of different methods

Figure 1. Comparison of queries generated by Pseudo-Q and
Omni-Q. (a) The object locations with their descriptions. (b) The
generation mechanism of Pseudo-Q and Omni-Q are highlighted
by pink and blue boxes, respectively.

weakly-supervised [4, 32]. Fully supervised methods uti-
lize region-query pairs provided in the dataset for train-
ing, while weakly-supervised methods solely rely on im-
ages and queries without any box information. Since clearly
describing the appearance and location of the object is time-
consuming and labor-intensive, annotating the language
query becomes the bottleneck of dataset labeling.

To alleviate the high annotation cost, some works at-
tempt to address unsupervised REC without queries nor
object boxes. Pseudo-Q [13] is one of the most repre-
sentative methods, which leverages off-the-shelf detector
and attribute classifiers to describe the object, and gener-
ate pseudo queries based on prompts. Since Pseudo-Q only
captures information within the same category, it lacks the
ability to model the inter-category object relationships. It
also designs a complex prompt module to refine generated
pseudo queries to tailor for visual grounding task.

However, the aforementioned method only models the
spatial relationships according to the 2D coordinate values,
e.g., using the relative spatial relations of 2D pixels to rep-
resent their 3D relations in the real world, which may lead
to wrong descriptions. As shown in Figure 1(a), the object
described in the red box should rely on front-rear spatial re-
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lationship. However, Pseudo-Q relies solely on 2D spatial
relation for comparison, and thus it is prone to generate am-
biguous descriptions for the green box according to spatial
position (Figure 1(b)). Additionally, it employs complex
prompt templates or mechanisms to organize the object in-
formation into language queries. Although this approach
seems to offer a variety of combination patterns, the man-
ually designed templates ultimately limit the flexibility of
query generation. The generated queries are consistently
constrained to a predetermined set of fixed sentence struc-
tures, thereby impeding the generated queries in terms of
their diversity and comprehensiveness. Consequently, some
valuable information may be missed in the generated query.

In order to accurately model the spatial relationship be-
tween objects and flexibly generate comprehensive and di-
verse language queries, we propose a omni-directional lan-
guage query generation (Omni-Q) approach, which con-
sists of three modules: (1) The object perception module di-
rectly extracts object locations and rich descriptions, obvi-
ating the need to match the results of the object detector and
attribute classifier in previous works. (2) The 3D spatial re-
lation module innovatively extends the 2D spatial represen-
tation to 3D by decoupling relative and absolute positions.
This allows the model to comprehend objects from both lo-
cal and global perspectives, gaining insight into where the
object is in the image and which object is nearby. (3) The
spatial graph module builds upon the learned object seman-
tic and spatial information, leveraging a graph structure to
establish accurate and comprehensive spatial connections
between objects, the capability to model spatial relation-
ships which is significantly better than that of a scene graph.
It achieves a seamless integration of objects and spatial rela-
tionships, without the need for sophisticated prompt mech-
anism to organize queries. By leveraging the synergistic ef-
fects of these three modules, Omni-Q is capable of flexibly
generating precise and comprehensive language queries.

Extensive experiments on five datasets demonstrate the
effectiveness of our method, which significantly outper-
forms all existing weakly-supervised and unsupervised vi-
sual grounding methods by up to 22.75% and 16.17%, re-
spectively. Particularly, Omni-Q obtained competitive and
even superior performance compared to fully supervised
methods on certain evaluation metrics. Furthermore, when
compete with supervised models, Omni-Q could achieve
the same performance with only 40% of labeled data while
the other 60% data kept unlabeled. It proves our method
may potentially save up to an impressive 60% manual an-
notation costs without a loss of performance.

Our contributions are summarized as follows:
• We introduce a novel unsupervised visual grounding

framework named Omni-Q, which extends spatial rela-
tionships into 3D for the first time and significantly en-
hances the accuracy of query generation.

• We propose a spatial graph module to utilize the graph
structure to associate objects and spatial relationships,
eliminating the need for complex prompt modules while
maintaining the flexibility to generate diverse queries.

• Experiments shows that our method not only achieved
state-of-the-art performance but also attained competitive
results compared to fully supervised methods.

2. Related Work
2.1. Visual Grounding

Visual grounding [17, 48] is an important part of bridg-
ing language [6, 20] and visual representation [8, 31]. Ex-
isting visual grounding methods mainly divided into full-
supervised [12, 14, 21, 30, 38], weakly-supervised [7,
34, 36, 46] and unsupervised [13, 33]. Fully supervised
methods rely heavily on box-query pairs in annotations,
which are expensive and time-consuming to annotate de-
spite higher performance. Weakly-supervised methods try
to alleviate this problem by exploiting image-query pairs,
which obtain object proposals to match the query through
an additional off-the-shelf detector. Although the labeling
burden is reduced to a certain extent, the bottleneck mainly
depends on the language queries. The unsupervised method
does not need any labeled data and can generate box-query
pairs only through image information, avoiding the problem
of requiring a large amount of labeled data.

2.2. Unsupervised Visual Grounding

Among the existing unsupervised visual grounding meth-
ods [33, 40], the most representative work is Pseudo-
Q [13], which directly generates box-query pairs from im-
ages. Pseudo-Q uses the object detector and attribute detec-
tor to obtain the location and attribute of the object, then de-
termines the spatial relationship between same category ob-
jects through heuristic rules, and finally sends it to the query
prompt module to obtain the query following templates. Al-
though Pseudo-Q takes into account the category, attribute,
and spatial relationship for intra-category objects, it does
not model the inter-category object relationships, which re-
stricts the ability to describe objects. At the same time, a
large number of manually designed rules make it difficult to
guarantee the accuracy of spatial relationships.

3. Proposed Method
3.1. Overview

Previous approaches mainly determine the spatial relation-
ship on 2D plane and heavily relied on heuristic algorithms,
employing a large number of manually designed rules to
generate queries, which often hindered guaranteeing the
correctness and comprehensiveness of queries. In this pa-
per, we propose a novel unsupervised visual grounding
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Figure 2. Overview of our method. We take unlabeled images as input and employ the (a) object perception module to extract the
position and description of the objects. Afterward, position information is fed into the (b) 3D spatial relation module to produce the
spatial relationships among the objects. Finally, we utilize the (c) spatial graph module to construct a spatial graph and traverse it to
obtain the object queries.

framework, named Omni-Q, to generate correct and high-
quality language queries. The overview of Omni-Q is de-
picted in Figure 2. Specifically, the object perception mod-
ule takes an unlabeled image as input to extract the location
and description of each object in the image. Subsequently,
the image with object proposals are sent to the 3D spatial
relation module, which produces the spatial relationship in
three-dimensional representation based on depth informa-
tion and plane position. By gathering the above elements,
we obtain the spatial graph through the spatial graph mod-
ule and traverse it to acquire region-query pairs enriched
with semantic information for supervised learning.

3.2. Object Perception Module

The object perception module aims to extract both the lo-
cation and rich descriptions of objects in images. Previous
works [13] employ object detector and attribute classifier to
generate object locations and descriptions, and they estab-
lish correspondences between objects and attributes using
sophisticated matching algorithms, like matching clothes to
people. However, the overall process becomes complex and
lacks the high-level semantic required for a comprehensive
description. In light of these considerations, we leverage
the object understanding model trained on the same dataset,
similar to previous work [13], to describe objects in a more
natural way. This approach aims to incorporate higher-level
semantic context into the object representation, allowing for
a more complete and expressive description.

Specifically, the unlabeled image I is sent to the object
understanding model [35] to obtain the bounding boxes bi
and descriptions si respectively. Although si tends to be
more natural language style, it only describes the charac-
teristics of a single object, which can lead to ambiguity
among all elements and lacks global referentiality. To en-
hance the discriminativeness and diversity of si, we employ
grammatical analysis to further break it down. Firstly, we
use TextBlob [26] to parse the description si and obtain the
syntax tree Ti:

Ti = TextBlob(si) (1)
= {noun phrase, verb phrase, . . . ,prep} . (2)

Then, we extract all noun phrase in Ti as expression
candidate sets. In order to exclude irrelevant noun phrases
and ensure the correctness of the generated query as much
as possible, we retain only the first noun phrase in the cat-
egory list. Next, we further process the noun phrase and
extract adjectives such as color words to enrich the diver-
sity of expression:

{object, color, cloth} = extract(noun phrase), (3)

expi = si ∪ {object, color, cloth} . (4)

Finally, we aggregate the expressions of all objects in the
image, and apply filter mechanism to retain non-duplicated
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Figure 3. The architecture of 3D spatial relation module.

and unambiguous expressions exp
′

i:{
exp

′

1, · · · , exp
′

n

}
= nondup({exp1 ∪ · · · ∪ expn}),

(5)
where nondup() denotes the filtering of unique elements.
So far, we have obtained the object description pairs{
(bi, exp

′

i)
}n

i=1
for subsequent graph construction. As

shown in Fig. 2 (a), for the red bounding box, the corre-
sponding exp

′

i is generated with multiple description candi-
dates in it.

3.3. 3D Spatial Relation Module

In this subsection, we propose the 3D spatial relation mod-
ule to assemble spatial relationship for objects. Spatial
relationships can be broadly categorized into three types:
horizontal, vertical and depth. By leveraging 2D spatial
relationships within the same depth plane along with at-
tribute expressions, we can uniquely locate a specific ob-
ject in three-dimensional representation. Moreover, we di-
vide spatial relationships into relative positions and abso-
lute positions, both of which are frequently used. The rel-
ative position indicates the positional relationship between
the current object and other surrounding objects, which can
describe object flexibly. The absolute position indicates the
region in the image where the object is located, providing a
simple and direct expression.

To model the 3D spatial relationship, we utilize a depth
estimation model to generate the depth map D for the whole
image. Then, the depth intensity of each object is calcu-
lated and compared with a threshold to determine the fore-
rear relationship. Consequently, each object bi is associ-
ated with a depth spatial information fi, dividing the ob-
ject into either foreground or background. Then, for objects
of the same depth, we compare their position along both
axial directions to obtain horizontal and vertical spatial in-

formation. Finally the relative positions Posr and absolute
positions Posa are obtained by combining the horizontal,
vertical and depth relationships:{

pos1a, · · · , posna
}
= absolute(I, F, b1, · · · , bn), (6)

{
pos1,1r , · · · , posn,nr

}
= relative(I, F, b1, · · · , bn), (7)

where posia denotes the absolute position of the i-th object,
and posi,jr represents the relative position relationship be-
tween the i-th and j-th object.

The generated absolute and relative positions depict a
comprehensive three-dimensional spatial representation for
any object. Especially, challenging relationships such as
front/rear and adjacent, which were prone to confusion in
previous works can be easily addressed by our method.

3.4. Spatial Graph Module

In this subsection, we combine the object description and
spatial relationship to construct a spatial graph, which al-
lows us to flexibly use both to describe an object. With the
spatial graph, we can establish communication between ob-
jects through adjacent edges, so that the current object can
be described more diversely by other spatially adjacent ob-
jects. Note that our spatial graph differs from traditional
scene graph, mainly in that a single node in our graph cor-
responds to multiple values, and the spatial position serves
as the relationship between objects.

Concretely, we regard object expression exp
′

i as a ver-
tex in the graph, and the relationships posi,jr between i-th
object and j-th object are represented as edges, resulting
in a directed spatial graph denoted as G. As the absolute
position posia of an object is only relevant to itself, it is
also connected to the object as a distinct vertex. In graph
G, each vertex corresponds to multiple descriptions of the
objects, and these vertices are interconnected by directed
edges, where the edge weight represents the spatial rela-
tionship between objects.

After the graph is built, queries can be generated by per-
forming random walks among all the nodes. To start the
process, we first determine the starting node and then ran-
domly select one of its corresponding object descriptions as
the value of the node. Starting from this initial node, we
proceed by choosing a directed edge arbitrarily and mov-
ing to the next node in the graph. As we reach a new node,
the sequence path from the starting node to the current node
forms a query, which is added to the candidate set for sub-
sequent model training. To generate diverse queries and en-
sure a comprehensive description of a certain object, we re-
peat the above process N times (i.e., visiting a maximum of
N nodes), which yields traversal paths with lengths ranging
from 1 to N, so as to achieve a differentiated description of
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Algorithm 1: Spatial Graph Generation

Data: Object expressions exp
′
= {exp′

i}Ni=1,
relative positions Posr = {posir}Ni=1,
absolute positions Posa = {posi,ja }Ni,j=1

Result: Spatial graph G, candidate set Ω
1 Initialize empty spatial graph G and candidate set Ω;
2 foreach index i in range(length(exp

′
)) do

3 Add exp
′

i and posia as vertex to G;
4 foreach index j in range(length(exp

′

i)) do
5 Add (i, j, posi,jr ) as directed edge to G;
6 while epoch < epochs do
7 Initialize empty string query;
8 Randomly choose vertex G[i] as current node;
9 while length of query < N do

10 Add expression of G[i] to query;
11 Add query to Ω;
12 if Node G[i] has adjacent node G[j] then
13 Add edge G[i][j] to query;
14 Set current node to G[j];
15 else
16 break;
17 return spatial graph G and candidate set Ω;

a certain object, and generate accurate and diverse queries.
The whole process of graph construction and query genera-
tion is illustrated in Algorithm 1.

4. Experiments
4.1. Datasets

Similar to previous method, we conducted experiments
on five visual grounding datasets: RefCOCO [42], Re-
fCOCO+ [42], RefCOCOg [28], ReferItGame [16] and
Flickr30K Entities [29]. The number of training images in
above datasets are 16994, 16992, 24698, 8994 and 29779
respectively. We use the same train/val/test splits for fair
comparison and we DO NOT use any information of dataset
except images for unsupervised training. We take the accu-
racy as the evaluation metric and the Jaccard overlaps be-
tween the predicted box and ground-truth larger than 0.5 is
regraded as positive.

4.2. Implementation and Training Details

We adopt GRiT [35] as our object understanding model,
which is pre-trained on Visual Genome [19] dataset same
as Pseudo-Q. For a fair comparison, we use TransVG as
our training model, which is end-to-end optimized with
AdamW as optimizer and the initial learning rate is set
to 2.5 × 10−5 for the visual and language encoder and
2.5 × 10−4 for the cross-modality fusion module. All our
experiments are conducted with 8 Telsa V100 GPUs and

the batch size is 256. Our model is trained for 30 epochs on
all datasets and we use the same data augmentation strat-
egy following TransVG [5]. For each image, we select 6
objects and uniformly sample up to 48 pseudo queries from
candidates among all datasets, which aims to minimize the
special design for the specific dataset.

4.3. Comparison with State-of-the-art Methods

RefCOCO/RefCOCO+/RefCOCOg. The performance of
our method on RefCOCO, RefCOCO+ and RefCOCOg are
presented in Table 1. Our method achieves significant im-
provement, surpassing the existing state-of-the-art method
Pseudo-Q by a considerable margin. Additionally, our
method achieves competitive performance when compared
to the weakly-supervised state-of-the-art method DTWREG
on all three datasets. Remarkably, it even outperformed
some fully supervised methods on RefCOCOg. The re-
sults demonstrate that our method can generate high-quality
queries with accurate spatial locations and comprehensive
object relationships.

ReferItGame. As shown in Table 2, our method
achieves an accuracy of 52.91% on ReferItGame dataset,
and surpasses all state-of-the-art weakly-supervised and un-
supervised methods. since the ReferItGame dataset con-
tains a large number of spatial relationships, our method
still achieves a steady improvement. In particular, our
method further improves 14.52% and 9.59% compared
to [34] and Pseduo-Q, which demonstrates the excellent
ability of Omni-Q.

Flickr30K entities. As presented in Table 2, our
method achieves a remarkable 65.23% top-1 accuracy on
Flickr30K, which outperforms all the unsupervised as well
as weakly-supervised methods. The dataset primarily con-
sists of expressions related to object descriptions and at-
tributes, with a minimal proportion of spatial relationships.
Thanks to the flexibility of the graph structure, we set the
maximum number of traversed nodes to 1, allowing the gen-
erated queries to focus on the object itself.

4.4. Ablation Studies

In this section, we conduct ablation experiments to verify
the effectiveness of each component and thoroughly analyze
the efficacy of our proposed method.

Effectiveness of object perception module. Table 3
shows that integrating the object perception module resulted
in a performance improvement of 8.09% on RefCOCO. De-
spite the capability of object understanding model to di-
rectly generate descriptions for specific objects, its lack of
uniqueness and spatial relationships prevents it from being
suitable for object reference, which leads to significantly
lower accuracy compared to other methods. Among the
captions of all datasets generated by object understanding
model, only 25.08% of them include spatial positions such
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Method Sup.
RefCOCOg RefCOCO+ RefCOCO

val-g val-u test-u val testA testB val testA testB

MAttNet [43]

Full

- 66.58 67.27 65.33 71.62 56.02 76.65 81.14 69.99
NMTree [22] 64.62 65.87 66.44 66.46 72.02 57.52 76.41 81.21 70.09
FAOA [37] 56.12 61.33 60.36 56.81 60.23 49.60 72.54 74.35 68.50
ReSC [38] 63.12 67.30 67.20 63.59 68.36 56.81 77.63 80.45 72.30
TransVG [5] 66.56 67.66 67.44 63.50 68.15 55.63 80.32 82.67 78.12
VC [45]

Weak

33.79 - - - 34.60 31.58 - 33.29 30.13
ARN [23] 34.66 - - 34.53 36.01 33.75 34.26 36.43 33.07
KPRN [24] 33.56 - - 35.96 35.24 36.96 35.04 34.74 36.98
DTWREG [32] 43.24 - - 39.18 40.10 38.08 39.21 41.14 37.72
CPT [39]

No

- 36.70 36.50 31.90 35.20 28.80 32.20 36.10 30.30
Pseudo-Q∗ [13] 49.82 46.25 47.44 38.88 45.06 32.13 56.02 58.25 54.13
Ours ∗ 65.99 63.62 62.36 46.22 51.71 38.60 67.39 71.64 61.94
∆ (+16.17) (+17.37) (+14.92) (+7.34) (+6.65) (+6.47) (+11.37) (+13.39) (+7.81)

Table 1. Comparison with state-of-the-art methods on RefCOCO, RefCOCO+ and RefCOCOg in terms of top-1 accuracy (%). “Sup.”
refers to supervision level. Our results are highlighted with red regions and surpass all weakly-supervised and unsupervised methods by a
large margin. * denotes the model pre-trained on the Visual Genome [19] dataset.

Method Sup. ReferIt Flickr30K

PIRC Net [18]

Full

59.13 72.83
Yu et al. [44] 63.00 73.30
FAOA [37] 60.67 68.71
ReSC [38] 64.60 69.28
TransVG [5] 69.76 78.47
KACNet [3]

Weak

33.67 46.61
MATN [46] 33.10 13.61
ARN [23] 26.19 -
Gupta et al. [7] - 51.67
Liu et al. [25] 37.68 59.27
Wang et al. [34] 38.39 53.10
Yeh et al. [40]

No

36.93 20.91
Wang et al. [33] 26.48 50.49
Pseudo-Q∗ [13] 43.32 60.41
Ours∗ 52.91 65.23
∆ (+9.59) (+4.82)

Table 2. Comparison with state-of-the-art methods on Refer-
ItGame and Flickr30K Entities in terms of top-1 accuracy (%).
“Sup.” refers to supervision level. * denotes the model pre-trained
on the Visual Genome [19] dataset.

as “on”, “left”, “front”, etc. In contrast, the object per-
ception module can extract key nouns and attributes from
descriptions, thereby obtaining discriminative descriptions
that contribute to the observed performance boost.

Effectiveness of 3D spatial relation module. As shown
in Table 3, incorporating 3D spatial relation module (using
Spatial+3D-Depth) greatly improves the performance of the
model, with a maximum increase of 21.01% on RefCOCO.
Absolute position and depth information provides clear spa-
tial location for object expressions, enabling them to be ex-
plicitly referred to in 3D space, relying on both their own
and surrounding objects position in the image.

OUM OPM Spatial 3D-Depth SGM RefCOCO
✓ 37.42
✓ ✓ 45.51
✓ ✓ ✓ 64.72
✓ ✓ ✓ ✓ 66.52
✓ ✓ ✓ ✓ ✓ 67.39

Table 3. Ablations of each module on RefCOCO. “OUM” de-
notes only use descriptions generated by the object understanding
model. “OPM” represents the object perception module, “Spatial”
and “3D-Depth” belong to the 3d spatial relation module, which
respectively denotes using spatial relation of position and depth
information. “SGM” means the spatial graph module, specifically
referring to the situation of visiting more than one node.

(a) (b)

Figure 4. (a) Ablation of the maximum visited nodes on RefCOCO
and RefCOCOg. (b) Experiments on saving manual labeling on
RefCOCO. The dashed line corresponds to the upper bound of the
performance (i.e., the fully supervised accuracy).

Effectiveness of spatial graph module. The spatial
graph module was introduced to organize and generate
queries by establishing relationships between objects. As
shown in the last row of Table 3, further incorporating ob-
ject relationship resulted in performance improvements of
0.87% on RefCOCO, respectively. This improvement is at-
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Dataset Pseudo-Q Ours

RefCOCOg
val-g 39.56 51.78 (+12.22)
val-u 39.97 51.51 (+11.54)
test-u 40.02 51.08 (+11.06)

RefCOCO+
val 29.23 41.28 (+12.05)

testA 34.51 45.20 (+10.69)
testB 23.30 32.48 (+9.18)

RefCOCO
val 48.86 57.61 (+8.75)

testA 52.43 60.79 (+8.36)
testB 44.51 48.40 (+3.89)

Table 4. Comparison of generalization performance (ReferIt →
RefCOCO series) between Pseudo-Q and Omni-Q.

tributed to the ability of spatial graph module to establish
relationships between various objects, and its flexibility in
generating language queries using the graph structure.

Generalization study. To demonstrate the generaliza-
tion ability of our method, we train the model using queries
generated on ReferItGame and test it on RefCOCO series
datasets, as shown in Table 4. We observe that compared
to Pseudo-Q, Omni-Q exhibits the best generalization per-
formance across all datasets. This finding suggests that our
approach is not specifically designed for a particular dataset
but rather a general unsupervised visual grounding frame-
work built on a thorough understanding of images.

Number of maximum visited nodes. We conduct ab-
lation experiments to explore the optimal number of maxi-
mum visited nodes during the traversal of the spatial graph.
Increasing the number of visited nodes indicates that the
generated queries include a greater number of objects and
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Model Training data
RefCOCO+

val testA testB

Pseudo-Q
P 38.88 45.06 32.13

P + O 40.80 44.41 36.59

Omni-Q
P 43.26 50.77 34.36
O 46.22 51.71 38.60

Table 5. Comparison of Pseudo-Q using different training data.
“P” and “O” denote the data generated by attribute classifier [1]
and object understanding model [35], respectively.

encompass more spatial relationships. As observed in Fig-
ure 4(a), with the increase in the maximum number of vis-
ited nodes, the overall accuracy shows an initial rise fol-
lowed by a plateau. This suggests that involving more ob-
jects in the query may also introduce redundant information.
Hence, we opt to traverse only two nodes.

The proportion of manual labeling saved. In Fig-
ure 4(b), we validate the effectiveness of generated queries
by adding a certain proportion of ground-truth. Meanwhile,
we use the accuracy achieved by the same model under fully
supervised setting as the upper-bound. Our goal is to ex-
plore the minimum amount of ground truth required for the
queries to enable the model to reach the upper bound perfor-
mance. As a result, Omni-Q can effectively replace the vast
majority of queries (i.e., approximately 60% ground truth)
and achieve results comparable to fully supervised meth-
ods, significantly reducing the cost of manual annotation,
far exceeding the 31% labeling savings of Pseudo-Q.

Study on object understanding model. To further
study the performance gains brought by the object under-
standing model, we additionally input all the boxes and ob-
ject descriptions generated by the same object understand-
ing model to the training set of Pseudo-Q. In this way,
Pseudo-Q would have more data information sources than
our Omni-Q, i.e., the attribute classifier [1] (denoted as “P”)
and the object understanding model [35] (denoted as “O”).
Both of P and O are pre-trained on the Visual Genome
dataset. In addition, we also reproduce our model using ex-
actly the same training data (P) with Pseudo-Q. Results are
shown in Table 5. We can see object understanding model
also help the training of Pseudo-Q, improving its valida-
tion accuracy from 38.88 to 40.80. But we can also see
even though Pseudo-Q uses more training data (P + O) than
our Omni-Q, its performance is still lower than Omni-Q. In
addition, we can see when using identical training data P,
Omni-Q achieves an improvement of over 5% compared to
Pseudo-Q. This implies that simply integrating object de-
scriptions is insufficient for a significant enhancement of
the model. It is crucial to rectify spatial relationship errors
during the query generation process and establish intercon-
nections between objects to achieve a noticeable improve-
ment in performance, aligning with our 3D spatial relation
module and spatial graph module.

4.5. Qualitative Results

In this section, we visualize the detection results of the
model and compare the queries generated by different meth-
ods to analyze the quality of the queries.

Visualization of detection results. To demonstrate the
performance of our method, we present the visual results
of the RefCOCO test dataset in Figure 5. The first row fo-
cuses on exploring the accuracy of model in handling depth-
queries, while the last row assesses the ability of model to
discriminate between similar and confusing objects. From
the results, it is evident that three-dimensional spatial repre-
sentation enables the model to accurately distinguish the or-
dering of objects. Furthermore, our method can effectively
discern the composition relationships in queries, accurately
identify the central words in queries, and locate the regions
in the graph where they refer to.

The quality of generated queries. In addition, we dis-
play the generated queries in Figure 6. As depicted in the
figure, the queries generated by Omni-Q are more accurate,
maintaining precise spatial relationships while having rich
descriptions. Notably, it overcomes the challenge of previ-
ous methods misidentifying “front/rear” as “left/right”. Fur-
thermore, the spatial graph effectively associates objects us-
ing spatial relationships, which affords us the opportunity
to generate diverse queries flexibly. We calculate the aver-
age BERT feature similarity of quires generated by Pseudo-
Q (0.81) and ours (0.71). The results show our generated
queries have more information and less redundancy.

5. Discussions and Conclusion
Limitation. In the unsupervised setting, assessing the ac-
curacy of the input source is challenging, and there are in-
evitably incorrect object expressions. Pseudo-Q similarly
encounters this challenge, and enhancing performance in
the future involves filtering high-quality queries. Secondly,
exploring how to delve deeper into the analysis of image
content is essential for future study.
Conclusion. We introduced Omni-Q to address the issues
of confusing spatial relationships and the need for complex
prompt modules in existing methods. Specifically, we pro-
posed the 3D spatial relation module to extend 2D spatial
representations to 3D to accurately localize the spatial lo-
cation of objects. Additionally, the spatial graph module
organizes objects leveraging graph structures and generates
flexible and comprehensive queries. Extensive experiments
demonstrate the effectiveness of our method, which signif-
icantly surpasses the state-of-the-art methods while saving
nearly 60% of manual annotations.
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