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Abstract

The core of video understanding tasks, such as recog-
nition, captioning, and tracking, is to automatically de-
tect objects or actions in a video and analyze their tem-
poral evolution. Despite sharing a common goal, different
tasks often rely on distinct model architectures and anno-
tation formats. In contrast, natural language processing
benefits from a unified output space, i.e., text sequences,
which simplifies the training of powerful foundational lan-
guage models, such as GPT-3, with extensive training cor-
pora. Inspired by this, we seek to unify the output space
of video understanding tasks by using languages as labels
and additionally introducing time and box tokens. In this
way, a variety of video tasks could be formulated as video-
grounded token generation. This enables us to address var-
ious types of video tasks, including classification (such as
action recognition), captioning (covering clip captioning,
video question answering, and dense video captioning), and
localization tasks (such as visual object tracking) within a
fully shared encoder-decoder architecture, following a gen-
erative framework. Through comprehensive experiments,
we demonstrate such a simple and straightforward idea is
quite effective and can achieve state-of-the-art or compet-
itive results on seven video benchmarks, providing a novel
perspective for more universal video understanding. Code
is available at https://github.com/wangjk666/OmniVid.

1. Introduction

In recent years, the proliferation of video content across var-
ious applications, such as online education and live stream-
ing, has profoundly impacted our daily lives. Videos have
evolved into a captivating and immersive medium for in-
formation delivery, emphasizing the pressing demand for
the development of automated algorithms capable of un-
derstanding the actions [46], events [49], and moving ob-
jects [81] within video sequences. As a result, the field
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of video understanding has undergone significant expan-
sion and encompassed a diverse range of tasks, including
action recognition [3, 33, 60, 64, 80, 103], video caption-
ing [16, 36, 61], and object tracking [4, 20, 95, 116].

For a long period, research in video understanding has
often adopted a task-specific paradigm, i.e., designing spe-
cialized architectures and loss functions to cater to the
unique requirements of different tasks and benchmarks [10,
46, 69, 107]. Despite the promising results with high-
capacity deep neural networks, these methods [30, 82, 104,
113] are tailored for a particular objective and less adapt-
able to deployment in scenarios of diverse needs. To miti-
gate this issue, video foundation models [92, 93, 101, 105],
have gained emerging attention for their impressive perfor-
mance across a broad spectrum of video tasks and poten-
tial in realizing the vision of Artificial General Intelligence
(AGI). However, while generic spatial-temporal represen-
tations can be learned with these models, adapting them to
different downstream tasks oftentimes requires carefully de-
signing and fine-tuning task-specific heads.

In this paper, we posit such limitation originates from
the diversified annotations for different video tasks, e.g., a
set of action categories for action recognition [12, 80, 103],
sentences for captioning [36, 61], and continuous segments
(coordinates) for events (object) localization [20, 23, 71].
This naturally necessitates task-specific designs for better
optimization. In contrast, different tasks in natural language
processing (NLP) enjoy a sharable output space, i.e., text
sequences, which promotes the development of large lan-
guage models, such as GPT [77, 78] and Llama [45, 83, 84].
Drawing inspiration from this, we leverage word tokens in
natural languages to represent semantic information that is
important for coarse-grained tasks like action recognition,
video captioning, and video question answering, and addi-
tionally introduce special time tokens and box tokens that
provide localization capabilities in both spatial and tem-
poral dimensions, particularly useful for fine-grained tasks
like dense video captioning and visual object tracking. With
such an enriched vocabulary that consists of word, time, and
box tokens, the output format, as well as training objectives
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Figure 1. A conceptual comparison between existing video models and OmniViD.

of different tasks, can be well unified. Please refer to Fig-
ure 1 for a better illustration.

With this in mind, we present OmniViD, a generative
framework that approaches various video tasks as a lan-
guage modeling task conditioned on video inputs. Om-
niViD adopts an encoder-decoder architecture, where a ded-
icated video encoder and a language encoder are employed
to extract the multimodal features from diverse inputs. Con-
sidering the remarkable redundancy in video data, we pro-
pose a lightweight MQ-former to enhance the efficiency of
video representations for subsequent modeling. The MQ-
former utilizes three types of learnable queries, i.e., content,
sentence, and box queries, to aggregate the frame features
from the video encoder through cross-attention. Finally, a
token decoder is applied to generate a token sequence from
the above vocabulary.

We validate the effectiveness of OmniViD on five rep-
resentative video tasks, including action recognition, clip
captioning, video question answering, dense video caption-
ing, and visual object tracking. The results demonstrate that
OmniViD achieves new state-of-the-art or at least competi-
tive results on the prevalent video benchmarks. For exam-
ple, using VideoSwin-Base [64] as the video encoder, we
achieve state-of-the-art performance on action recognition
(83.6% top1 accuracy on Kinetics-400 [46]), clip caption-
ing (56.6 on MSRVTT [107] in terms of CIDEr ), video
question answering (42.3% accuracy on MSRVTT [107]),
dense video captioning (5.6 on ActivityNet [10] in terms
of SODA c), and visual object tracking (88.9 on Track-
ingNet [69] in terms of normalized precision). For the first
time, video tasks of different modalities and granularity can
be supported by a single framework.

2. Related Work

2.1. Task-specific Methods for Video Understanding
Task-specific video understanding models could be roughly
divided into classification, captioning, and localization ap-
proaches. Video action recognition is the most representa-
tive classification task in the video domain, which aims to
recognize human actions in a video. Existing methods, in-

cluding both CNN-based [32, 33, 46, 66] and Transformer-
based models [3, 30, 64], widely encode the action labels
as one-hot vectors and employ cross-entropy loss for su-
pervised training. Captioning tasks, on the other hand, typi-
cally generate a textual description for a video clip [61, 125,
126] or an untrimmed long video [44, 99, 113] with a text
decoder like BERT [47]. It is worth noting that captioning
long videos involves the additional challenge of temporal
event localization within the video, making it a more com-
plex task. We categorize the open-ended video question an-
swering [50, 51, 59] as a specific type of captioning task due
to the consistent output format between them. Localization
tasks, represented by visual object tracking [20, 25, 96], es-
timate the trajectory of a target object in a video sequence
given its position in the first frame. Following the practice
in object detection [11, 38, 40], a box head is oftentimes
adopted to regress the coordinates of the tracking object.
In summary, divergent prediction heads have been devel-
oped in various video tasks to adapt to the specific format
of annotations, which poses a challenge to derive a unified
solution. In this paper, we rethink the design of a univer-
sal video understanding framework from a novel perspec-
tive, i.e., redefining an output space that could be shared
by different video tasks. Within this unified space, the de-
velopment of general architectures and training objectives
become distinctly feasible.

2.2. Unified Video Models
Recently, researchers have undertaken prominent efforts to
unify video tasks within specific domains. OmniVL [92]
and InterVideo [101] represent significant strides in the
realm of video-language pretraining, which are pre-trained
on large-scale video-text data and achieve superior re-
sults on multimodal video tasks like text-to-video retrieval
and video captioning. Beyond these advancements, UN-
Loc [111] and UniVTG [76] have sought to tackle a di-
verse array of temporal localization tasks within a single
framework. They accomplish this by simultaneously pre-
dicting saliency scores and boundary offsets for each frame
(clip). Compared to video-language and temporal localiza-
tion, spatial localization in the video domain, i.e., tracking,
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……

The target locates at (54.04, 11.84, 202.86, 171.76). Height: 240 Width: 320

<woman>  ......  <time_1> <time_2> ……  <box_1> ……<box_168>  ……

1.15 s ~ 64.77 s, a woman is playing the accordion. Dur: 114.64 s

Figure 2. Illustration of the time tokens and box tokens in OmniViD.

Table 1. Input & output of different video tasks. S/B/W/T:
Sentence / Box / Word / Time, Pro. / Tok.: Prompt / Token.

Task Input Target
S Pro. B Pro. W Tok. T Tok. B Tok.

AR % % ! % %

CC % % ! % %

ViQA ! % ! % %

DVP % % ! ! %

VOT % ! % % !

is more fragmented in terms of task definition, model archi-
tecture, and benchmarks. Unicorn [109] marks a significant
step forward by employing a fully shared CNN-based en-
coder and box head for various tracking tasks, utilizing a
target before distinguishing between them. Subsequently,
with the prominent success of vision transformer [11],
OmniTracker [94] and UNINEXT [110] push the bound-
aries of unification in tracking models by incorporating
Transformer-based detectors. Despite the achievements of
these approaches, they are still constrained by task-specific
heads, leaving considerable space for greater unification of
video understanding. To address this limitation, we unify
diverse tasks with a sharable output space and address them
with a fully shared generative framework.

2.3. Autoregress Modeling in Computer Vision
AutoRegressive modeling [114] is a statistical modeling
technique that predicts the current state of a sequence
based on historical observations, which has achieved re-
markable success in the field of natural language process-
ing (NLP) [24] and time series analyasis [34, 68]. In-
spired by this, researchers in the vision community have
also attempted to explore its potential for visual understand-
ing. Pix2SeqV1&V2 [18, 19] expand the textual vocabulary
with quantized image coordinates. With this, they address
several fundamental image tasks, e.g., object detection, and
image captioning, in a unified autoregressive manner. Fol-
lowing this idea, ARTrack [102] and SeqTrack [21] further
support the visual object tracking task. VisionLLM [100],
on the other hand, directly builds vision-centric frameworks
upon pre-trained LLMs, with the hope of transferring their
knowledge to visual understanding with minimal resource
overhead. In this work, we leverage autoregressive model-
ing to the design of a universal video understanding frame-
work. In addition to the expansion to temporal localization
tasks with unique time tokens, our method also explores the
advantages of autoregressive modeling for a universal video
understanding framework for the first time.

3. Method
Our primary objective is to design a universal framework
that accommodates a diverse set of video understanding

tasks. To accomplish this, we expand upon the vocabulary
commonly used in language models [8, 53] by introducing
unique time tokens and box tokens. This augmentation al-
lows us to represent the output of various video tasks as a
token sequence within a shared vocabulary. Building upon
this foundation, we further present OmniViD, a generative
framework that conceptualizes video tasks as a process for
generating tokens grounded in the video content.

Given a video V that lasts tens of seconds to multiple
minutes, we sample a sequence of frames [X1,X2, ...,XT ]
from it. For video question answering, a question regarding
the visual content is given, while for visual object tracking,
the bounding box of the target object in the first frame is
specified by the user. Below we first introduce how to per-
form tokenization for different video tasks with the above
vocabulary in Sec. 3.1, and then present the architecture of
OmniViD in Sec. 3.2. Finally, we elaborate on the unified
training and inference pipeline in Sec. 3.3.

3.1. Unified Vocabulary for Video Understanding

In video understanding, various tasks necessitate diverse in-
puts and outputs according to specific settings and require-
ments. To establish a cohesive output space that could be
shared by different video tasks, we supplement the word to-
kens in language vocabulary with special time tokens and
box tokens, by discretizing the timestamps and the coor-
dinates along the temporal and spatial dimensions, respec-
tively (see Figure 2).

With the enriched vocabulary, the input and target se-
quences for the training of OmniViD can be generated in
the following manner:
• Action Recognition: the input only includes a task

prompt ptask, i.e., “action recognition”, and the target is
the ground-truth action name, e.g., “dancing ballet”.

• Clip Captioning: similar to action recognition, the only
difference lies in the target sequence becomes a longer
description, e.g., “a clip showing a computer screen”.

• Video Question-Answering: the input includes both the
task prompt and the question psen, e.g., “What is the
video doing?”, while the target is the answer to that ques-
tion, e.g., “fencing competition”.
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Figure 3. Architecture of OmniViD. The Mixed Q-former aggregates the frame features into three types of queries, i.e., content queries,
text queries, and box queries. After that, the queries obtained from different frames are input to a temporal encoder for temporal modeling.
Finally, the token decoder generates a sequence of tokens conditioned on the multimodal inputs.

• Dense Video Captioning: the expected output is a set of
events {ei}Ei=1 happening in the given video. In order to
facilitate the model to learn the correspondence between
timestamps and visual contents, we define a triplet for the
i-th event ei: ei =

〈
tstarti , tduri , s

〉
, where tstarti and tduri

denote the start and duration time token, and s represents
the description for the event [113]. The target sequence is
constructed by concatenating the triplets of all the events.

• Visual Object Tracking: we take the task prompt and the
discrete representation of the bounding box in the first
frame, pbox, as input, and employ the box tokens in the
following frames as target. Given a bounding box (x1, y1,
x2, y2) on an H × W image, the tokenized representa-
tion is (⟨box ⌊x1/W ⌋⟩, ⟨box ⌊y1/H⌋⟩, ⟨box ⌊x2/W ⌋⟩,
⟨box ⌊y2/H⌋⟩).

The input and target sequence for different video tasks are
summarized in Table 1.

3.2. Unified Architecture

OmniViD follows an encoder-decoder architecture, which
first extracts the video features F ∈ RT f×Hf×W f×Cf

from
{Xt}Tt=1 with a video encoder, where T f and Hf × W f

denote the temporal and spatial resolution and Cf is the
feature dimension. For visual object tracking, we replace
the first frame with the cropped template, following the
common practice [4, 20, 96]. A language encoder is also
adopted to transform three types of prompts, ptask, psen,
pbox to the prompt embeddings Gtask, Gsen, Gbox, and then

concatenate them as the textual feature G ∈ RLg×Cg

along
the sequence dimension. Based on the multimodal inputs,
OmniViD produces a sequence of tokens in the above vo-
cabulary. The overall framework is illustrated in Figure 3.

MQ-former. In order to encode the video features into a
more efficient representation, we further propose a MQ-
former to aggregate them into a set of learnable queries.
Ours MQ-former is inspired by the Q-Former in BLIP-
2 [56] and augments its content queries qcon with sentence
queries qsen and box queries qbox. qsen and qbox are ob-
tained by transforming the corresponding prompt features
Gsen and Gbox with two separate linear layers. We add
qsen and qbox to qcon to incorporate semantic and posi-
tional cues [63]. Note that the use of different types of
queries not only enables our method to adapt to a variety
of video tasks but also explicitly integrates guidance infor-
mation from prompts into the visual features.

With this, we begin by splitting the video features F
along the temporal dimension, resulting in a sequence of
frame features {Fi}T

f

i=1, and then send them to MQ-former
in parallel. Within the MQ-former, the summed queries in-
teract with one another, and Fi, through self-attention and
cross-attention in an iterative manner, which integrates the
frame features into the compact queries. Subsequently, we
feed the per-frame queries to a transformer layer [28] for
temporal modeling, yielding Q ∈ RT fNq×Cq , where Nq is
the number of queries and set to 32 following the configu-
ration in BLIP-2 [56], Cq represents the feature dimension.
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Visual Translator. Alignment between video and textual
representations is extremely important to ensure that the
output of our model is intrinsically relevant to the video
content. To accomplish this, we input Q to a Multi-Layer
Perceptron (MLP) layer to project it to the textual embed-
ding space, thereby aligning its dimension with the prompt
features G. After this, they are concatenated along the se-
quence dimension to obtain the multimodal tokens M ∈
R(Lg+T fNq)×Cg

.
Video-grounded Token Decoding. Finally, we employ a
token decoder to predict a sequence of tokens based on M .
The architecture of our token decoder is similar to popular
language decoders [53, 87], with causal self-attention for
autoregressive token generation.

3.3. Unified Training and Inference

Training. Conditioned on M , OmniViD is trained to maxi-
mize the log-likelihood between the predicted tokens ŷ and
the target tokens y with cross-entropy loss:

maximize

L∑
k=1

logP(ŷk|M, y1:k−1), (1)

where P denotes the softmax probability and L is the length
of y. Note that the output of various video tasks could be
represented as a sequence of tokens in the unified vocabu-
lary introduced in Sec. 3.1.

Inference. During inference, we predict each token ac-
cording to the model likelihood, i.e., P (yk|M,y1:k−1), and
employ the beam search strategy [35] since it leads to the
better performance than argmax sampling or nucleus sam-
pling [41]. Similar to language models, the end of se-
quence generation is indicated by an EOS token. The event
segments for dense video captioning and bounding boxes
for visual object tracking could be easily obtained by de-
quantizing the time or box tokens.

4. Experiments
4.1. Implementation Details

Datasets. Our training corpus include action recogni-
tion datasets (Kinetics-400 [46] and Something-Something
V2 [39]), clip captioning datasets (MSRVTT [107]
and MSVD [106]), video question answering datasets
(MSRVTT [107] and MSVD [106]), dense video caption-
ing datasets (ActivityNet [10]), and visual object tracking
datasets (TrackingNet [69], LaSOT [29], GOT10K [43]).

Model Instantiation. We adopt VideoSwin pretrained on
Kinetics-600 [13] as the video encoder, and initialize the
language encoder and token decoder with pretrained Bart-
base [53] model that owns ∼140M parameters. The number
of time and box tokens are set to 300 and 1000, respec-

Table 2. Comparison with state-of-the-art video action recognition
methods. Note that for MoViNet, we report the best results on both
datasets, i.e., A6 on K400 and A3 on SSV2.

Method K400 SSV2
# Frames Top1 # Frames Top1

I3D [46] N/A 72.1 - -
R(2+1)D-TS [85] N/A 73.9 - -
SlowFast [33] 8 × 3 × 10 77.9 - -
ip-CSN [86] 32 × 3 × 10 79.2 - -
X3D-XL [31] 16 × 3 × 10 79.1 - -
SlowFast+NL [33] 16 × 3 × 10 79.8 - -
CorrNet [90] 32 × 3 × 10 81.0 - -
MoViNet [48] 120 × 1 × 1 81.5 120 × 1 × 1 64.1

ViT-B-VTN [72] 250 × 1 × 1 78.6 - -
MViT-B [30] 32 × 1 × 5 80.2 64 × 3 × 1 67.7
XViT [9] 16 × 3 × 1 80.2 32 × 3 × 1 65.4
ViViT-L [2] 16 × 3 × 4 80.6 16 × 3 × 4 65.4
TimeSformer-L [3] 96 × 1 × 3 80.7 96 × 3 × 1 62.3
Mformer-HR [74] 16 × 3 × 10 81.1 16 × 3 × 1 67.1
VideoSwin-B [64] 32 × 3 × 4 82.7 32 × 3 × 1 69.6
UniFormer-B [57] 32 × 1 × 4 82.9 32 × 3 × 1 71.2
Ours 32 × 3 × 4 83.6 32 × 3 × 1 71.3

tively. Following BLIP-2 [56], we adopt the same architec-
ture of Bert-Base for our MQ-Former, which consists of 12
transformer layers with additionally inserted cross-attention
blocks. The positional encodings are added to the outputs
of MQ-Former to inject temporal information.

Training and Inference Procedures. For the clip-based
tasks, including action recognition (AR), clip captioning
(CC), and video question answering (ViQA), we sample 32
frames randomly during training and uniformly during in-
ference. For dense video captioning (DVP), we follow [113]
to extract frames at 1FPS, and subsample or pad the frame
sequence to 160 during both training and inference. For
visual object tracking (VOT), we randomly sample two
frames in a video sequence during training, following the
common practice [20, 102].

We train our model for 50, 20, 50, and 500 epochs for
AR, CC, ViQA, DVP, and VOT, respectively. Note that we
follow [21, 102] to train VOT for a longer time since the
scale of tracking datasets is much larger. Different batch
sizes are adopted, i.e., 64 for AR, 8 for CC, 256 for ViQA,
8 for DVP, and 16 for VOT. The model is optimized with
the AdamW optimizer [65], with an initial learning rate 5e-
6 and decayed to 0 with the cosine scheduler. The frame
resolution that we adopt is 224 × 224, augmented with ran-
dom resized cropping and horizontal flipping. During infer-
ence, we average the logits of the generated tokens as the
final score for AR to support multi-clip&crop evaluation,
and VOT for template update [21, 102]. The threshold for
VOT template update is 0.03.
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Table 3. Comparison with state-of-the-art video captioning meth-
ods on MSRVTT and MSVD. Off-the-shelf object detectors are
used for the results marked with †.

Method MSRVTT MSVD
B@4 M R C B@4 M R C

PickNet [22] 41.3 27.7 59.8 44.1 52.3 33.3 69.6 76.5
SibNet [62] 40.9 27.5 60.2 47.5 54.2 34.8 71.7 88.2
OA-BTG† [118] 41.4 28.2 - 46.9 56.9 36.2 - 90.6
GRU-EVE† [1] 38.3 28.4 60.7 48.1 47.9 35.0 71.5 78.1
MGSA [15] 42.4 27.6 - 47.5 53.4 35.0 - 86.7
POS+CG [89] 42.0 28.2 61.6 48.7 52.5 34.1 71.3 88.7
POS+VCT [42] 42.3 29.7 62.8 49.1 52.8 36.1 71.8 87.8
SAAT [124] 39.9 27.7 61.2 51.0 46.5 33.5 69.4 81.0
STG-KD† [73] 40.5 28.3 60.9 47.1 52.2 36.9 73.9 93.0
PMI-CAP [17] 42.1 28.7 - 49.4 54.6 36.4 - 95.1
ORG-TRL† [121] 43.6 28.8 62.1 50.9 54.3 36.4 73.9 95.2
OpenBook [123] 42.8 29.3 61.7 52.9 - - - -
SwinBERT [61] 41.9 29.9 62.1 53.8 58.2 41.3 77.5 120.6
Ours 44.3 29.9 62.7 56.6 59.7 42.2 78.1 122.5

Table 4. Accuracy (%) of ViQA on MSRVTT and MSVD, Pre
VLData: pertaining vision-language data.

Method PreTrain VLData MSRVTT MSVD

ClipBERT [52] 5.6M 37.4 -
CoMVT [79] 100M 39.5 42.6
JustAsk [112] 69M 41.5 46.3
ALIPRO [55] 5.5M 42.1 45.9
OmniVL [92] 18M 44.1 51.0

HCRN [50] - 35.6 36.1
JustAsk [112] - 39.6 41.2
Ours - 42.3 47.7

4.2. Main Results

1) Action Recognition, as one of the most representative
video understanding tasks, aims to identify the action cat-
egories in a video. We evaluate the Top-1 accuracy of
OmniViD on commonly used datasets, including Kinetics-
400 (K400) [46] which consists of 306k short video clips
of 400 action categories, and Something-Something V2
(SSV2) [39] which comprises 220k videos of 174 cate-
gories. The comparison results with other methods are
shown in Table 2. OmniViD achieves the best performance
on both datasets, i.e., 83.6% on K400 and 71.3% on SSV2,
surpassing VideoSwin [64] by 0.9 and 1.7, respectively.
This highlights the advantage of our method.

2) Video Captioning expects the model to generate a tex-
tual description for a given video, which simultaneously
evaluates the visual comprehension and text generation ca-
pability of our method. MSRVTT [107] and MSVD [14],
two large-scale open domain video captioning datasets, are
adopted and the results are shown in Table 3. We can see

Table 5. Dense captioning on the ActivityNet Captions validation
set. ∗ denotes pretraining on large-scale video-language dataset
YT-Temporal-1B [117].

Method Captioning Event Loc. Overall
B4 M C R P SODA c

DCE [49] 0.17 5.69 12.43 - - -
DVC [58] 0.73 6.93 12.61 - - -
TDA-CG [91] 1.31 5.86 7.99 - - -
SDVC [70] - 6.92 - 55.58 57.57 -
PDVC [99] 1.65 7.50 25.87 55.42 58.07 5.3
UEDVC [119] - - - 59.00 60.32 5.5

Vid2seq [113] - - 18.80 - - 5.4
Vid2seq∗ [113] - 8.50 30.10 52.70 53.90 5.8
Ours 1.73 7.54 26.00 45.08 60.43 5.6

Table 6. Comparisons with the visual object tracking models on
LaSOT and TrackingNet.

Method LaSOT TrackingNet
Suc Pnorm P Suc Pnorm P

SiamFC [4] 33.6 42.0 33.9 57.1 66.3 53.3
ATOM [26] 51.5 57.6 50.5 70.3 77.1 64.8
SiamPRN++ [54] 49.6 56.9 49.1 73.3 80.0 69.4
DiMP [5] 56.9 65.0 56.7 74.0 80.1 68.7
KYS [6] 55.4 63.3 - 74.0 80.0 68.8
Ocean [120] 56.0 65.1 56.6 - - -
AutoMatch [122] 58.2 - 59.9 76.0 - 72.6
PrDiMP [27] 59.8 68.8 60.8 75.8 81.6 70.4
TrDiMP [97] 63.9 - 61.4 78.4 83.3 73.1
Siam R-CNN [88] 64.8 72.2 - 81.2 85.4 80.0
TransT [20] 64.9 73.8 69.0 81.4 86.7 80.3
Unicorn [109] 68.5 76.6 74.1 83.0 86.4 82.2
KeepTrack [67] 67.1 77.2 70.2 - - -
STARK [108] 67.1 77.0 - 82.0 86.9 -
AiATrack [37] - 79.4 73.8 - 87.8 80.4
OSTrack [115] - 78.7 75.2 - 87.8 82.0
MixFormer [25] 69.2 78.7 74.7 83.1 88.1 81.6
SeqTrack [21] 69.9 79.7 76.3 83.3 88.3 82.2
ARTrack [102] 70.4 79.5 76.6 84.2 88.7 83.5
UNINEXT [110] 72.4 80.7 78.9 85.1 88.2 84.7
Ours 70.8 79.6 76.9 83.8 88.9 83.2

that OmniViD outperforms existing models by a clear mar-
gin (+2.8 and +1.9 in terms of CIDEr on MSRVTT and
MSVD), even if several of them, e.g., OA-BTG [118] and
ORG-TRL [121], leverage object detector [38, 40] to extract
object information in an offline manner.

3) Video Question Answering aims to answer a natural
language question based on the video content. We com-
pare the accuracy of OmniViD with other ViQA models on
MSRVTT [107] and MSVD [106] in Table 4. The results
demonstrate that OmniViD outperforms both QA-specific
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methods, e.g., JustAsk [112], and pertaining methods, e.g.,
ALIPRO [55], showcasing the effectiveness of our method
for complex multimodal reasoning.
4) Dense Video Captioning localizes the events in an
untrimmed video and generates the corresponding text de-
scriptions for them. Following the practice of previous
methods [99, 113], we evaluate OmniViD in three aspects:
1) the average precision (P), average recall (R) across IOU
at 0.3, 0.5, 0.7, 0.9 and their harmonic mean for localiza-
tion. 2) BLEU4 (B4), METEOR (M), and CIDEr (C) for
dense captioning. 3) SODA c for an overall evaluation. The
results are reported in Table 5.

Traditional methods, including both two-stage (e.g.,
DVC [58], SDVC [70]), and one-stage models (e.g.,
PDVC [99], UEDVC [119]), all employ the pre-extracted
features from video backbones [46] without end-to-end
training. Compared to them, OmniViD achieves better re-
sults on all the metrics, except for Recall. Our underperfor-
mance on recall is because traditional methods always ap-
ply a fixed number of localization heads to get a large num-
ber of false-positive predictions, e.g., 100 for SDVC [70].
Vid2Seq [113] is the first end-to-end framework for dense
video captioning. We can see that our method, although
slightly inferior to their pre-trained model on YT-Temporal-
1B, can significantly outperform them without large-scale
pretraining, i.e., 18.80 vs. 26.00 in terms of CIDEr. A de-
tailed comparison between OmniViD and Vid2seq can be
found in the appendix.
5) Visual Object Tracking estimates the trajectory of a target
object given its position in the first frame, which requires a
fine-grained understanding of spatial-temporal information.
In Table 6, we compare OmniViD with other tracking mod-
els on two most representative datasets, LaSOT [29] and
TrackingNet [69]. Success (Suc), precision (P), and normal-
ized precision (Pnorm) are reported. It is worth mentioning
that although SeqTrack [21] and ARTrack [102] also em-
ploy the autoregressive framework for object tracking, Om-
niViD differs from them in twofold aspects. Firstly, we per-
form tracking on the complete frame, instead of a cropped
region. Second, we encode the reference box to the visual
feature of the tracking frame through box queries, rather
than just using it as a prompt for the token decoder. It can be
observed that OmniViD achieves excellent performance on
both LaSOT and TrackingNet, i.e., 79.6 and 88.9 in terms
of Pnorm, which beats most of the previous SOTA methods.

4.3. Ablation Studies

Analysis of Different Components in OmniViD. In Table
7, we conduct ablation experiments to study the effects of
the core components in OmniViD: 1) text & box queries in
Mixed Qformer: different queries are the core design of our
method to adapt to different video tasks and inject reference
information into the frame feature. It can be seen from the

1st and 2nd rows that they improve the VQA and VOT per-
formance by 1.9 and 1.4, respectively. 2) temporal encoder:
comparing the results in the 3rd and 5th rows, it is evident
that the temporal encoder brings remarkable performance
gains on all the tasks, validating the temporal modeling is
important for video understanding. 3) initializing token de-
coder with Bart [53]: the results in row 4 demonstrate that
the initialization of the token decoder has a greater impact
on captioning tasks, stemming from the fact that the training
objectives of captioning tasks are inherently more aligned
with the pretraining of the token decoder.
Table 7. Ablation studies on different components of OmniViD.

Model AR CC ViQA DVP VOT

1 w/o TextQuery 83.4 56.5 40.4 5.6 79.2
2 w/o BoxQuery - - - - 78.2
3 w/o TemEnc 82.5 53.3 41.7 5.1 77.6
4 w/o LangInit 81.7 44.4 39.7 4.5 79.0
5 Ours 83.6 56.6 42.3 5.6 79.6

Open-vocabulary Action Recognition: Compared to the
traditional classifier-based methods, OmniViD is more flex-
ible in adapting to the open-vocabulary (OV) setting by ap-
pending the category names to the input textual prompt. As
shown in Table 8, OmniViD achieves competitive results
than existing OV methods without cumbersome designs.

Table 8. Open-vocabulary results on HMDB-51 and UCF101.

Method Train HMDB-51 UCF101

ASR [98] K400 21.8± 0.9 24.4±1.0
ZSECOC [75] K400 22.6±1.2 15.1±1.7
UR [127] K400 24.4±1.6 17.5±1.6
E2E [7] K400 32.7 48.0
Ours K400 26.3 32.0

Number of Time and Box Tokens. We further try differ-
ent numbers of time (Nt) and box (Nb) tokens on the local-
ization tasks. As shown in Figure 4, for both types of to-
kens, increasing the number could first improve the results
since the quantization error is reduced accordingly, and fi-
nally converges when Nt ≥ 300 and Nb ≥ 1000.

Figure 4. Comparison between joint and separate training.

4.4. Visualizations

We visualize the predictions of OmniViD on various video
understanding tasks in Figure 5. From the top two rows,
we can see that OmniViD could not only generate accurate
and natural captions for videos but also answer questions re-
garding the characters or activities in the video, showcasing
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GT: 0.28 ~ 55.15, a weight lifting tutorial is given.

Pred: 0 ~55.16, a man is working out on a piece of exercise equipment.

GT: 14.11 ~ 42.34, he is pulling the rope back and forth.

Pred: 13.79 ~54.32, he is practicing body placement and lifting technique.

GT: 0 ~ 16.09, People are playing lacrosse on a field.

GT: 4.91 ~ 16.09, a girl in a maroon shirt is hitting the ball with her stick.

Pred: 0 ~16.06, A small group of girls are playing a game of lacrosse on a field.

Pred: 4.12 ~12.35, One of the girls hits the ball into the goal.

A person is mixing ingredients in a bowl.A woman is taking the phone.

What are soldiers doing? Fire. Who performs on stage in front of a crowd? Band.

Figure 5. Visualization of the predictions by OmniViD on different video understanding tasks. From top to down, we show the clip
captioning, video question answering, dense video captioning, and visual object tracking visualization results, respectively.

its cross-modal modeling capability. In addition, OmniViD
also excels in spatial-temporal localization. The results in
3rd and 4th rows show that it could detect different types
of events in videos precisely and produce vivid descriptions
for them. Moreover, OmniViD also exhibits remarkable ro-
bustness against occlusions and variations in object track-
ing. These visualizations underscore the versatility and ef-
fectiveness of OmniViD across a wide range of video tasks.

5. Conclusion

This paper introduced OmniViD, a generative framework
for universal video understanding. We defined a unified
output space for different video tasks by supplementing the
vocabulary of language models with special time and box
tokens. With this, a wide spectrum of video tasks, includ-
ing action recognition, clip captioning, video question an-

swering, dense video captioning, and visual object tracking,
could be formulated as a video-grounded token generation
process, and further, addressed within an encoder-decoder
architecture. Extensive experiments on seven prominent
video benchmarks showcased the superior video under-
standing capability and versatility of OmniViD.

Despite the promising results achieved, the joint train-
ing performance of OmniViD exhibited some degradation
in the spatial-temporal localization tasks compared to sepa-
rate training. In the future, we will explore more advanced
training and optimization strategies on multiple datasets and
tasks, to further improve the overall performance and ro-
bustness of our method.
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