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Abstract

Comprehensive modeling of the surrounding 3D world is
crucial for the success of autonomous driving. However, ex-
isting perception tasks like object detection, road structure
segmentation, depth & elevation estimation, and open-set
object localization each only focus on a small facet of the
holistic 3D scene understanding task. This divide-and-
conquer strategy simplifies the algorithm development
process but comes at the cost of losing an end-to-end
unified solution to the problem. In this work, we address
this limitation by studying camera-based 3D panoptic
segmentation, aiming to achieve a unified occupancy rep-
resentation for camera-only 3D scene understanding. To
achieve this, we introduce a novel method called PanoOcc,
which utilizes voxel queries to aggregate spatiotemporal
information from multi-frame and multi-view images in
a coarse-to-fine scheme, integrating feature learning and
scene representation into a unified occupancy represen-
tation. We have conducted extensive ablation studies to
validate the effectiveness and efficiency of the proposed
method. Our approach achieves new state-of-the-art results
for camera-based semantic segmentation and panoptic
segmentation on the nuScenes dataset. Furthermore,
our method can be easily extended to dense occupancy
prediction and has demonstrated promising performance
on the Occ3D benchmark. The code will be made available
at https://github.com/Robertwyq/PanoOcc.

1. Introduction
Holistic 3D scene understanding is vital in autonomous
driving. The capability to perceive the environment, iden-
tify and categorize objects, and contextualize their positions
in the 3D space of the scene is fundamental for developing
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a safe and reliable autonomous driving system.

Recent advancements in camera-based Bird’s Eye View
(BEV) methods have shown great potential in enhancing
3D scene understanding. By integrating multi-view ob-
servations into a unified BEV space, these methods have
achieved remarkable success in tasks such as 3D object
detection [24, 26, 34, 51, 55], BEV semantic segmenta-
tion [16, 42, 67], and vector map construction [28, 35].
However, existing perception tasks have certain limitations
as they primarily focus on specific aspects of the scene. Ob-
ject detection is primarily concerned with identifying fore-
ground objects, BEV semantic segmentation only predicts
the semantic map on the BEV plane, and vector map con-
struction emphasizes the static road structure of the scene.
To address these limitations, there is a need for a more
comprehensive and integrated paradigm for 3D scene un-
derstanding. In this paper, we propose camera-based 3D
panoptic segmentation, which aims to encompass all the el-
ements within the scene in a unified representation for the
3D output space.

However, directly utilizing Bird’s Eye View (BEV) fea-
tures for camera-based panoptic segmentation leads to poor
performance due to the omission of finer geometry details,
such as shape and height information, which are crucial
for decoding fine-grained 3D structures. This limitation
motivates us to explore a more effective 3D feature repre-
sentation. Occupancy representation has gained popular-
ity as it effectively describes various elements in the scene,
including open-set objects (e.g., debris), irregular-shaped
objects (e.g., articulated trailers, vehicles with protruding
structures), and special road structures (e.g., construction
zones). Therefore, a burst of recent methods [4, 18, 25,
27, 38, 54, 57, 65] have focused on dense semantic occu-
pancy prediction. However, simply lifting 2D to 3D oc-
cupancy representation has been considered inefficient in
terms of memory cost. This limitation has driven meth-
ods like TPVFormer [18] to split the 3D representation into
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three 2D planes. Although these methods attempt to mit-
igate the memory issue, they still struggle to capture the
complete 3D information and may experience reduced per-
formance. Moreover, these existing works primarily con-
centrate on the semantic comprehension of the scene and do
not tackle instance-level discrimination. Fine-grained fore-
ground segmentation is crucial for 3D perception.

In this work, we propose a novel method called
PanoOcc, which seamlessly integrates 3D object detec-
tion and semantic segmentation in a joint-learning frame-
work, enhancing the understanding of the 3D environment
comprehensively. Both detection and segmentation per-
formance can benefit from this joint-learning framework.
Our approach employs voxel queries to learn a unified
occupancy representation. This occupancy representation
is learned in a coarse-to-fine scheme, solving the prob-
lem of memory cost and significantly enhancing efficiency.
We then take a step further to explore the sparse nature
of 3D space and propose an occupancy sparsify module.
This module progressively prunes occupancy to a spatially
sparse representation during the coarse-to-fine upsampling,
greatly boosting memory efficiency. Our contributions are
summarized as follows:
• We introduce camera-based 3D panoptic segmentation

as a new paradigm for holistic 3D scene understanding,
which utilizes multi-view images to create a unified oc-
cupancy representation for the 3D scene. This allows us
to jointly model object detection and semantic segmenta-
tion within a single end-to-end model, leading to a more
cohesive and holistic understanding of the scene.

• Our proposed framework, PanoOcc, employs a coarse-to-
fine scheme to learn the unified occupancy representation
from multi-frame and multi-view images. We demon-
strate that utilizing 3D voxel queries within a coarse-
to-fine learning scheme is both effective and efficient.
This approach could be further enhanced for memory ef-
ficiency by integrating an occupancy sparsify module to
make the scheme spatially sparse.

• Experiments on the nuScenes dataset show that our ap-
proach achieves state-of-the-art performance on camera-
based 3D semantic segmentation and panoptic segmen-
tation. Furthermore, our approach can extend to dense
occupancy prediction and has shown promising perfor-
mance on the Occ3D benchmark.

2. Related Work
Camera-based 3D Perception. Camera-based 3D per-
ception has received extensive attention in the autonomous
driving community due to its cost-effectiveness and rich vi-
sual attributes. Previous methods perform 3D object de-
tection and map segmentation tasks independently. Re-
cent BEV-based methods unify these tasks on the problem
of feature view transformation from image space to BEV

space. One line of works follows the lifting paradigm pro-
posed in LSS [42]; they explicitly predict a depth map and
lift multi-view image features onto the BEV plane [17, 23,
24, 41]. Another line of works inherits the spirit of query-
ing from 3D to 2D in DETR3D [55]; they employ learnable
queries to extract information from image features by cross-
attention mechanism [19, 26, 37, 56, 61]. While these meth-
ods efficiently compress information onto the BEV plane,
they sacrifice some of the integral scene structure inherent
in 3D space. To address this limitation, our proposed uni-
fied occupancy representation is better suited for achieving
a holistic 3D understanding, making it ideal for tasks such
as 3D semantic segmentation and panoptic segmentation.
3D Occupancy Prediction. Occupancy prediction can be
traced back to Occupancy Grid Mapping (OGM) [48], a
classic task in mobile robot navigation that aims to gen-
erate probabilistic maps from sequential noisy range mea-
surements. Recently, there has been considerable atten-
tion given to camera-based 3D occupancy prediction, which
aims to reconstruct the 3D scene structure from images. Ex-
isting tasks in this area can be categorized into two lines
based on the type of supervision: sparse prediction and
dense prediction. Sparse prediction methods derive super-
vision from LiDAR points and are evaluated on LiDAR
benchmarks. For instance, [18] proposes a tri-perspective
view method for predicting 3D occupancy. Dense predic-
tion methods are closely related to Semantic Scene Com-
pletion (SSC)[1, 9, 29, 46]. MonoScene[4] first employs
U-Net to infer dense 3D occupancy with semantic labels
from a single monocular RGB image. VoxFormer [25] uti-
lizes depth estimation to select voxel queries in a two-stage
framework. Subsequently, a series of studies have focused
on the task of dense occupancy prediction and have intro-
duced new benchmarks. OpenOccupancy [54] offers a care-
fully annotated occupancy benchmark, while Occ3D [49]
proposes an occupancy prediction benchmark using the
Waymo and nuScenes datasets. Openocc [50] further pro-
vides occupancy flow annotation for dynamic objects mod-
eling on the nuScenes dataset. Our proposed method uni-
fies object detection and semantic segmentation prediction
for the first time, applicable under both sparse LiDAR and
dense occupancy supervision.
LiDAR Panoptic Segmentation. LiDAR panoptic seg-
mentation [40] offers a comprehensive understanding of the
environment by unifying semantic segmentation and object
detection. However, traditional object detection methods
often lose height information, making it challenging to learn
fine-grained feature representations for accurate 3D seg-
mentation. Recent LiDAR panoptic methods [15, 44, 68]
have been developed based on well-designed semantic seg-
mentation networks [7, 64] to address this limitation. In-
stead of predicting sparse semantic segmentation on LiDAR
points, our proposed camera-based 3D panoptic segmenta-
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tion aims to produce dense voxel segmentation of the scene.

3. Method
3.1. Problem Setup
Camera-based 3D panoptic segmentation. Given multi-
view images as input, camera-based 3D panoptic segmen-
tation aims to predict a dense panoptic voxel volume sur-
rounding the ego-vehicle. Specifically, we take current
multi-view images denoted as It = {I1

t
, I

2
t
, ..., I

n

t
} and pre-

vious frames It�1, ..., It�k as input. n denotes the camera
view index, while k denotes the number of history frames.
The model outputs the current frame semantic voxel vol-
ume Yt 2 {w0, w1, ..., wC}H⇥W⇥Z and its correspond-
ing instance ID Nt 2 {v0, v1, v2, ..., vP }H⇥W⇥Z . Here, C
denotes the total number of semantic classes in the scene,
while w0 represents the empty voxel grid. P is the total
number of instances in the current frame t; for each grid be-
longing to the foreground classes (thing), it would assign a
specific instance ID vj . v0 is assigned to all voxel grids be-
longing to the stuff categories and empty. H,W , and Z de-
note the length, width, and height of the surrounding voxel
volume.
Camera-based 3D semantic occupancy prediction. This
can be viewed as a sub-task within camera-based 3D panop-
tic segmentation, specifically targeting the prediction of the
semantic voxel volume Yt 2 w0, w1, ..., wC

H⇥W⇥Z . The
emphasis is placed on accurately distinguishing the empty
class (w0) from the other classes to determine whether a
voxel grid is empty or occupied.

3.2. Overall Architecture
In this section, we introduce the overall architecture of
PanoOcc, which serves as a baseline for 3D panoptic seg-
mentation. As illustrated in Figure 1, our approach takes
multi-frame and multi-view images as input and outputs
3D panoptic segmentation for the current scene. Firstly,
the image backbone extracts multi-scale features from the
input images. These features are then processed by the
Occupancy Encoder, which comprises the View Encoder
and Temporal Encoder, to generate a coarse unified occu-
pancy representation. Specifically, the View Encoder uti-
lizes voxel queries to learn voxel features, preserving the
actual 3D structure of the scene by explicitly encoding
height information. The Temporal Encoder aligns and fuses
previous voxel features with the current frame, capturing
temporal information and enhancing the occupancy repre-
sentation. The Occupancy Decoder employs a coarse-to-
fine scheme to recover fine-grained feature representation.
The Coarse-to-fine Upsampling module restores the high-
resolution voxel representation, enabling efficient learning
of precise occupancy representation. With the advantage of
a unified occupancy representation, the model can jointly

learn object detection and semantic segmentation through
the Task Head. Finally, the Refine Module refines the pre-
diction of thing classes and outputs 3D panoptic segmen-
tation results. Our model follows two key design princi-
ples: (1) Unified occupancy representation for learning
and task output. (2) Efficient feature learning for 3D
scenes. In the following, we provide detailed descriptions
of designs in these two aspects.

3.3. Unified Occupancy Representation
Occupancy serves as a unified 3D representation, not only
reflected in the unity across different tasks (object detec-
tion and semantic segmentation) but also in the integration
of feature learning processes. Therefore, we introduce our
method from the perspectives of Unified Learning and Uni-
fied Task in the following.
Unified Learning. We adopt occupancy as feature repre-
sentation in the learning process. To achieve this, we use
voxel queries to aggregate multi-frame multi-view image
features within occupancy encoder. Occupancy encoder
consists of view encoder and temporal encoder. We de-
fine a group of 3D-grid-shape learnable parameters Q 2
RH⇥W⇥Z⇥D as voxel queries. H and W are the spatial
shape of the BEV plane, while Z represents the height di-
mension, and D is the embedding dimension. A single
voxel query q 2 RD located at (i, j, k) position of Q is
responsible for the corresponding 3D voxel grid cell region.
Each grid cell in the voxel corresponds to a real-world size
of (sh, sw, sz) meters. Given voxel queries Q and extracted
image features F as input, the occupancy encoder outputs
the fused voxel features Qf 2 RH⇥W⇥Z⇥D.

Compared to previous feature transformations based on
BEV queries [26], the primary difference lies in the utiliza-
tion of attention operations [69] and temporal alignments.
In the view encoder, we incorporate attention operations
into voxel space by designing voxel self-attention and voxel
cross-attention. The core difference in lifting BEV queries
to voxel queries computation lies in the selection of refer-
ence points; further details are provided in the appendix.
The temporal encoder comprises two specific operations:
temporal alignment and temporal fusion. Unlike previous
temporal alignment methods [26, 41], which align histori-
cal features on the BEV plane, our approach utilizes voxel
alignment in 3D space. This allows us to rectify inaccu-
racies caused by assumptions made in previous BEV-based
methods, where road height remains unchanged throughout
the scene—an assumption not always valid in real-world
driving scenarios, especially in cases involving uphill and
downhill terrain. Voxel alignment is crucial for generating
fine-grained voxel representations to accurately perceive the
environment. Specifically, the process of voxel alignment is
formulated as follows:

Qt�k!t = GridSample(Qt�k,Gt�k) (1)
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Figure 1. The overall framework of PanoOcc. Our framework begins by employing an image backbone network to extract multi-scale
features from multi-view images across multiple frames. Subsequently, voxel queries are utilized to learn voxel features through the View
Encoder. The Temporal Encoder then aligns the previous voxel features with the current frame and combines these features. The Voxel
Upsample module restores the high-resolution voxel representation for fine-grained semantic classification. The Task Head predicts object
detection and semantic segmentation through two separate heads. The Refine Module further refines the object class prediction with the
assistance of 3D object detection and assigns instance IDs to generate 3D panoptic segmentation results.

Gt�k = Tt!t�k ·Gt (2)

where Gt 2 RH⇥W⇥Z is the voxel grid at current frame
t, Gt�k 2 RH⇥W⇥Z represents the current frame grid
at frame t � k. Tt!t�k is the transformation matrix
for transforming the points at frame t to previous frame
t � k. Then the queries at frame t � k are aligned
to current frame t by interpolation sampling, denoted as
Qt�k!t. After alignment, the previous aligned voxel
queries [Qt�k!t, ...,Qt�1!t] are concatenated with the
current voxel queries Qt. We employ a block of residual
3D convolutions to fuse the queries and output fused voxel
queries Qf .
Unified Task. With the advantage of occupancy represen-
tation, the model has a strong capacity to handle different
tasks. We can unify the 3D object detection and semantic
segmentation into 3D panoptic segmentation, achieving a
more comprehensive understanding of the scene and a finer-
grained modeling of objects. This allow us to train jointly
and benefit from each other through the foreground infor-
mation propagation.

Specifically, our model is trained end-to-end for joint de-
tection and segmentation, while previous methods usually
train separately due to conflicting learning objectives. To
address this problem, we leverage foreground information
propagation between the semantic head and the detection
head. The total loss L consists of two parts: LDet and
LSeg . The semantic voxel segmentation head is supervised
by LSeg , a dense loss consisting of focal loss [31] (applied
to all voxels) and Lovasz loss [2] (applied to non-empty

voxels). We utilize voxel selection to convey foreground
information to the detection head, which predicts a binary
voxel mask to select the voxel features corresponding to
foreground categories (thing). The voxel mask is also su-
pervised by focal loss [31] denoted as Lthing. The total
loss LSeg is formulated as:

LSeg = �1Lfocal + �2Llovasz + �3Lthing (3)

The detection head is supervised by LDet, a sparse loss con-
sisting of focal loss [31] for classification and L1 loss for
bounding box regression:

LDet = �4Lcls + �5Lreg (4)

The Refine module further enhances the predicted fore-
ground (thing) voxels using the detection results and gener-
ates 3D panoptic segmentation results. We begin by sorting
all box predictions based on their confidence scores. Subse-
quently, we select a set of high-confidence bounding boxes
denoted as G = {bi|si > ⌧}, where bi represents a 3D
bounding box, si is the confidence score, and ⌧ is a thresh-
old (default: ⌧ = 0.8). For the voxels within each bounding
box bi, we assign the class prediction ci to all of them. To
perform panoptic voxel segmentation, we sequentially as-
sign instance IDs based on confidence scores. If the current
instance overlaps with previous instances beyond a certain
threshold, we ignore it to avoid duplication. Finally, we as-
sign instance ID 0 to all voxels corresponding to the stuff
class.
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Figure 2. Illustration of occupancy sparsify. It serves as an op-
tional technique to boost efficiency. We use BEV representation
for simple illustration, while it is actually a 3D process. The light
yellow region will be pruned according to occupancy masks.

3.4. Efficient Feature Learning
Compared to the information density in image space, 3D
space exhibits significantly greater sparsity. Additionally,
directly extending Bird’s Eye View (BEV) features to voxel
features would result in substantial memory and computa-
tional costs. Therefore, within the occupancy decoder, we
introduce two designs: Coarse-to-fine Upsampling and Oc-
cupancy Sparsify, aimed at alleviating this issue.
Coarse-to-fine Upsampling. This design enables the
model to only learn a coarse voxel feature Qf in the occu-
pancy encoder. The module then utilizes 3D deconvolutions
to upsample the fused voxel query Qf 2 RH⇥W⇥Z⇥D to
high-resolution occupancy features O 2 RH

0⇥W
0⇥Z

0⇥D
0
.

Such a coarse-to-fine manner not only avoids directly ap-
plying expensive 3D convolutions to high-resolution occu-
pancy features, but also leads to no performance loss. We
have a quantitative discussion in the Table 5.
Occupancy Sparsify. Although the coarse-to-fine man-
ner guarantees the high efficiency of our method, there is
a considerable computational waste on the spatially dense
feature Qf and O. This is because our physical world
is essentially sparse in spatial dimensions, which means a
large portion of space is not occupied. Dense operations
(i.e., dense convolution) violate such essential sparsity. In-
spired by the success of sparse architecture in LiDAR-based
perception [11, 33, 60], we optionally turn to the Sparse
Convolution [13] for occupancy sparsify. In particular, we
first learn an occupancy mask for Qf to indicate if posi-
tions on Qf are occupied. Then we prune Qf to a sparse
feature Qsparse 2 RN⇥D by discarding those empty po-
sitions according to the learned occupancy mask, where
N ⌧ HWZ and N is determined by a predefined keep-
ing ratio Rkeep. After the pruning, all the following dense
convolutions are replaced by corresponding sparse convolu-
tions. Since sparse deconvolution will dilate the sparse fea-
tures to empty positions and reduce the sparsity, we conduct
similar pruning operations after each upsampling to main-

tain the spatial sparsity. Finally, we obtain a high-resolution
and sparse occupancy feature Osparse 2 RN

0⇥D
0
, where

N
0 ⌧ H

0
W

0
Z

0. Figure 2 illustrates the occupancy sparsify
process.

4. Experiments
4.1. Datasets
nuScenes dataset [3] contains 1000 scenes in total, split
into 700 in the training set, 150 in the validation set, and 150
in the test set. Each sequence is captured at 20Hz frequency
with 20 seconds duration. Each sample contains RGB im-
ages from 6 cameras with 360� horizontal FOV and point
cloud data from 32 beam LiDAR sensor. For the task of
object detection, the key samples are annotated at 2Hz with
ground truth labels for 10 foreground object classes (thing).
For the task of semantic segmentation and panoptic segmen-
tation, every LiDAR point in the key samples is annotated
using 6 more background classes (stuff ) in addition to the
10 foreground classes (thing).
Occ3D-nuScenes [49] contains 700 training scenes and 150
validation scenes. The occupancy scope is defined as �40m
to 40m for X and Y-axis, and �1m to 5.4m for the Z-axis
in the ego coordinate. The voxel size is 0.4m ⇥ 0.4m ⇥
0.4m for the occupancy label. The semantic labels contain
17 categories (including ‘others’). Besides, it also provides
visibility masks for LiDAR and camera modality, indicating
which regions are visible from the sensor.
Evaluation metrics. nuScenes dataset uses mean Average
Precision (mAP) and nuScenes Detection Score (NDS) met-
rics for the detection task, mean Intersection over Union
(mIoU), and Panoptic Quality (PQ) metrics [20] for the 3D
semantic and panoptic segmentation. PQ† is a modified
panoptic quality [43], which maintains the PQ metric for
thing classes, but modifies the metric for stuff classes. The
Occ3D-nuScenes benchmark [49] calculates the mean In-
tersection over Union (mIoU) for 17 semantic categories
within the camera’s visible region.

4.2. Experimental Settings
Implementation Details. For the implementation details
of the model, please refer to the appendix A. On the
nuScenes dataset [3], we set the point cloud range for the
x and y axis to [�51.2m, 51.2m], and [�5m, 3m] for the
z axis. The voxel grid size used for loss supervision is
(0.256m, 0.256m, 0.125m). For the training and inference
details, please refer to the appendix D. The input image size
is cropped to 640⇥ 1600. When using the R101-DCN [10]
or InternImage [53] as the backbone, we default to the
1.0 image scale (640 ⇥ 1600). However, when using the
R50 [14] backbone, we adopt a 0.5 image scale (320⇥800).
Evaluation. For sparse evaluation on the LiDAR bench-
mark, our approach assesses LiDAR semantic segmentation
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RangeNet++ [39] LiDAR - 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [64] LiDAR - 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [8] LiDAR - 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
Cylinder3D++ [70] LiDAR - 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
RPVNet [58] LiDAR - 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9

TPVFormer [18] Camera R50 59.3 64.9 27.0 83.0 82.8 38.3 27.4 44.9 24.0 55.4 73.6 91.7 60.7 59.8 61.1 78.2 76.5
PanoOcc Camera R50 68.1 70.7 37.9 92.3 85.0 50.7 64.3 59.4 35.3 63.8 81.6 94.2 66.4 64.8 68.0 79.1 75.6

BEVFormer [26] Camera R101-DCN 56.2 54.0 22.8 76.7 74.0 45.8 53.1 44.5 24.7 54.7 65.5 88.5 58.1 50.5 52.8 71.0 63.0
TPVFormer [18] Camera R101-DCN 68.9 70.0 40.9 93.7 85.6 49.8 68.4 59.7 38.2 65.3 83.0 93.3 64.4 64.3 64.5 81.6 79.3
OccFormer [65] Camera R101-DCN 70.4 70.3 43.8 93.2 85.2 52.0 59.1 67.6 45.4 64.4 84.5 93.8 68.2 67.8 68.3 82.1 80.4
PanoOcc Camera R101-DCN 71.6 74.3 43.7 95.4 87.0 56.1 64.6 66.2 41.4 71.5 85.9 95.1 70.1 67.0 68.1 80.9 77.4

PanoOcc Camera Intern-XL 74.5 75.3 51.1 96.9 87.5 56.6 85.6 68.0 43.0 74.1 87.1 95.1 71.0 68.7 70.3 82.3 79.3

Table 1. LiDAR semantic segmentation results on nuScenes validation set. Our method achieves comparable performance with state-
of-the-art LiDAR-based methods and notably surpasses the recently proposed camera-based methods.

by assigning voxel semantic predictions to LiDAR points.
We extend this evaluation with object detection results, en-
abling panoptic evaluation on LiDAR panoptic segmen-
tation [12]. While PQ only considers sparse points and
may not comprehensively reflect the understanding of fore-
ground objects, we still use mAP, NDS, and mIoU to mea-
sure the effectiveness of our approach in experiments. For
dense evaluation on the occupancy benchmark [49], we di-
rectly compute mIoU based on the occupancy labels.

4.3. Main Results
We validate the performance of our methods on three bench-
marks: 3D semantic segmentation, 3D panoptic segmenta-
tion, and 3D occupancy prediction on the nuScenes dataset.
The results showcase that our PanoOcc achieves state-of-
the-art performance across all benchmarks. Notably, we
are also the first to implement an end-to-end method for
camera-based panoptic segmentation.
3D Semantic Segmentation. We evaluate the model per-
formance on the nuScenes test and validation set respec-
tively. In Table 1, we adopt three types of backbone to con-
duct experiments. Under the R50 [14] and R101-DCN [10]
setting, our method achieves 68.1 mIoU and 71.6 mIoU, a
new state-of-the-art. To further validate our approach, we
experiment with a larger image backbone [53] and achieve
an impressive 74.5 mIoU, approaching the performance of
current state-of-the-art LiDAR-based methods. The test set
performance is provided in the appendix B.
3D Occupancy Prediction. In Table 2, we evaluate
our method for 3D occupancy prediction on the Occ3D-
nuScenes [49] validation set. All methods utilize camera
input and are trained for 24 epochs. The performance of
MonoScene [4], BEVDet [17], BEVFormer [26], and CTF-

PanoOccTPVFormer
Figure 3. Visualizations of camera-based panoptic segmenta-
tion. Here, we present a comparison between two samples pro-
cessed by TPVFormer and our method. Our approach enables
the output of panoptic segmentation, particularly highlighting fine-
grained instance discrimination (highlighted in the red box).

Occ [49] is reported in the work of [49]. The use of the
camera visible mask during training has proven to be an
effective technique. We re-implemented BEVFormer [26]
with the inclusion of the camera mask during training. Our
PanoOcc also use camera visibile mask during training and
achieves a new state-of-art performance. We adopt the
R101-DCN as the backbone and use 4 frames for temporal
fusion. Figure 4 illustrates the dense occupancy prediction
on the Occ3D-nuScenes validation set.
3D Panoptic Segmentation. PanoOcc is the first work to
implement an end-to-end trainable model for camera-based
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MonoScene [4] R101-DCN 6.06 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65
BEVDet [17] R101-DCN 11.73 2.09 15.29 0.0 4.18 12.97 1.35 0.0 0.43 0.13 6.59 6.66 52.72 19.04 26.45 21.78 14.51 15.26
BEVFormer [26] R101-DCN 26.88 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69
TPVFormer [18] R101-DCN 27.83 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78
CTF-Occ [49] R101-DCN 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0
PanoOcc R101-DCN 32.47 10.85 46.93 27.25 43.54 48.74 23.02 31.16 27.59 28.59 26.58 38.27 58.05 38.94 38.15 32.27 15.58 16.41

BEVFormer* [26] R101-DCN 39.24 10.13 47.91 24.9 47.57 54.52 20.23 28.85 28.02 25.73 33.03 38.56 81.98 40.65 50.93 53.02 43.86 37.15
PanoOcc* R101-DCN 42.13 11.67 50.48 29.64 49.44 55.52 23.29 33.26 30.55 30.99 34.43 42.57 83.31 44.23 54.40 56.04 45.94 40.40

Table 2. 3D Occupancy prediction performance on the Occ3D-nuScenes dataset. * means the performance is achieved by using the
camera mask during training. The results indicate that our method achieves state-of-the-art performance in both settings.

Method Input
Modality PQ PQ† RQ SQ mAP

EfficientLPS [45] LiDAR 62.0 65.6 73.9 83.4 /
Panoptic-PolarNet [68] LiDAR 63.4 67.2 75.3 83.9 /
Panoptic-PHNet [21] LiDAR 74.7 77.7 84.2 88.2 /
LidarMulitiNet [62] LiDAR 81.8 / 90.8 89.7 63.8

PanoOcc Camera 62.1 66.2 75.1 82.1 48.4

Table 3. LiDAR panoptic segmentation results on nuScenes
validation set. Our PanoOcc based on the camera input has ap-
proached LiDAR-based methods’ performance.

panoptic segmentation. We compare our method with pre-
vious LiDAR-based panoptic segmentation methods. Ta-
ble 3 demonstrates that our PanoOcc achieves a PQ of 62.1,
showing comparable performance to some LiDAR-based
methods like EfficientLPS [45] and PolarNet [64]. How-
ever, our approach still exhibits a performance gap com-
pared to state-of-the-art LiDAR-based methods, which can
be attributed to inferior detection performance (48.4 mAP
vs. 63.8 mAP). As illustrated in Figure 3, we provide a qual-
itative comparison between TPVFormer [18] and ours. Our
method enables panoptic segmentation, particularly empha-
sizing fine-grained instance discrimination.

4.4. Ablation Study

In this section, we mainly validate the key design choices of
PanoOcc on the nuScenes validation set. Please refer to the
appendix C for more ablation studies. The ablation studies
are conducted for the 3D panoptic segmentation task, eval-
uated on the LiDAR benchmark of the nuScenes dataset.
Joint Learning of Detection and Segmentation. Ta-
ble 4 demonstrates the significant positive impact of train-
ing for joint detection and segmentation. When compared
to single-task models, the jointly-trained model excels in
both the segmentation and detection tasks. Voxel selection
further enhances the interaction between detection and seg-

Det. Seg. Vox. Sel. mIoU mAP NDS

(a) X / 0.252 0.310
(b) X 0.652 / /
(c) X X 0.656 0.266 0.319
(d) X X X 0.661 0.271 0.324

Table 4. Effectiveness of joint detection and segmentation. Det.
stands for detection head. Seg. denotes segmentation head. Vox.
Sel. represents voxel selection for foreground voxels.

Voxel
Resolution

Voxel
Upsampling Memory Latency Param FPS mIoU

200x200x8 37G / 9.5G 255 ms 117.7 M 4.1 67.9
50x50x16 X 18G / 5.7G 149 ms 48.7 M 9.2 68.3

Table 5. Ablation study for the coarse-to-fine design. We show
the train / inference memory consumption, respectively. The ex-
periments were conducted on the A100 GPU.

mentation learning, improving performance in both tasks.
Efficiency of Coarse-to-Fine Design. Table 5 illustrates
the effectiveness of our coarse-to-fine scheme. By compar-
ing it with the direct use of high-resolution voxel queries
(200⇥200⇥8), we observe that our coarse-to-fine design
achieves comparable or even superior performance while
consuming nearly half the memory (33.5G v.s. 24G). Our
approach, for the first time, reveals that high-resolution se-
mantic occupancy could be effectively learned in the low-
resolution latent space via a coarse-to-fine scheme.

4.5. Discussion
In this section, we delve into the benefits of voxel queries
and explore the potential of sparse design in the future. All
experiments are evaluated for 3D semantic segmentation.
Voxel v.s. Tri-plane. Traditionally, it has been widely be-
lieved that using 3D voxel grids alone is an inefficient so-
lution due to the memory cost. This belief has led TPV-
Former [18] to split the 3D representation into three 2D
planes. However, we have demonstrated that employing the
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Figure 4. Qualitative results on Occ3D-nuScenes validation set. Our PanoOcc takes multi-view images as input and produces dense
occupancy predictions, which are visualized at the resolution of 200⇥ 200⇥ 16.

Method Query form Resolution Memory# Latency# FPS" mIoU"

TPVFormer⇤ 2D Tri-plane 200x(200+16+16) 33.5G / 7.1G 268 ms 3.7 68.9
PanoOcc 3D Voxel 50x50x16 24G / 6.0G 203 ms 4.8 71.6

Table 6. Model efficiency comparison with different query forms. ⇤ denotes performance obtained using the official code and released
checkpoints. We report the memory consumption during training and inference in the experiments. The experiments are evaluated for the
3D semantic segmentation task on the nuScenes benchmark.

Convolution Latency# Memory# FPS" mIoU"

(a) Dense 126 ms 15 G 9.3 0.654
(b) Sparse 112 ms 9 G 9.7 0.639

Table 7. Exploration of sparse architecture design. The experi-
ment is conducted under the R50 setting without temporal fusion.

coarse-to-fine learning scheme can effectively address the
memory increase issue. In Table 6, we compare the per-
formance and efficiency of our method with the previous
state-of-the-art approach [18], under the same experimental
setup. Despite having an additional detection branch, our
model still exhibits lower memory consumption and faster
inference speed.
Occupancy Sparsify. In contrast to 2D space, 3D space
exhibits high sparsity, indicating that the majority of voxels
are empty. In Table 7, we investigate the effectiveness of
the occupancy sparsify strategy. Here we have 3 layers of
sparse deconvolution for upsampling in total. In coarse-to-
fine order, the keeping ratio after each upsampling is 0.2,
0.5, and 0.5, respectively. It suggests that finally we only
keep 5% voxels, and this reduction has not resulted in a
significant performance decrease.

5. Conclusion
In this paper, we propose camera-based 3D panoptic seg-
mentation, aiming for a comprehensive understanding of
the scene by a unified occupancy representation. To
facilitate learning of occupancy representation, we pro-
pose a novel framework called PanoOcc, which leverages
voxel queries to integrate information from multi-frame and
multi-view images in a coarse-to-fine manner. Extensive ex-
periments conducted on the nuScenes dataset and Occ3D-
nuScenes demonstrate the effectiveness of PanoOcc and its
potential to advance holistic 3D scene understanding. We
envision 3D occupancy representation as a promising new
paradigm for future 3D scene perception.
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ers for real-time map-view semantic segmentation. In CVPR,
2022. 1

[68] Zixiang Zhou, Yang Zhang, and Hassan Foroosh. Panoptic-
polarnet: Proposal-free lidar point cloud panoptic segmenta-
tion. In CVPR, 2021. 2, 7

[69] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2020. 3

[70] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin
Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and
asymmetrical 3d convolution networks for lidar segmenta-
tion. In CVPR, 2021. 6, 2

17168


	. Introduction
	. Related Work
	. Method
	. Problem Setup
	. Overall Architecture
	. Unified Occupancy Representation
	. Efficient Feature Learning

	. Experiments
	. Datasets
	. Experimental Settings
	. Main Results
	. Ablation Study
	. Discussion

	. Conclusion
	. Implementation Details
	. Test Set Performance
	. Ablation Studies on Model Design
	. Training and Inference Details
	. Visualization
	. Reproducibility Statements

