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Abstract

Industrial anomaly detection (IAD) has garnered signif-
icant attention and experienced rapid development. How-
ever, the recent development of IAD approach has encoun-
tered certain difficulties due to dataset limitations. On
the one hand, most of the state-of-the-art methods have
achieved saturation (over 99% in AUROC) on mainstream
datasets such as MVTec, and the differences of methods
cannot be well distinguished, leading to a significant gap
between public datasets and actual application scenarios.
On the other hand, the research on various new practi-
cal anomaly detection settings is limited by the scale of
the dataset, posing a risk of overfitting in evaluation re-
sults. Therefore, we propose a large-scale, Real-world, and
multi-view Industrial Anomaly Detection dataset, named
Real-IAD, which contains 150K high-resolution images of
30 different objects, an order of magnitude larger than ex-
isting datasets. It has a larger range of defect area and
ratio proportions, making it more challenging than previ-
ous datasets. To make the dataset closer to real application
scenarios, we adopted a multi-view shooting method and
proposed sample-level evaluation metrics. In addition, be-
yond the general unsupervised anomaly detection setting,
we propose a new setting for Fully Unsupervised Indus-
trial Anomaly Detection (FUIAD) based on the observation
that the yield rate in industrial production is usually greater
than 60%, which has more practical application value. Fi-
nally, we report the results of popular IAD methods on the
Real-IAD dataset, providing a highly challenging bench-
mark to promote the development of the IAD field.

*Corresponding authors.

1. Introduction
High-quality datasets play a pivotal role in the develop-
ment of computer vision technology, guiding the direction
of technological advancement and bridging the gap between
technical research and practical application. For instance,
ImageNet [13] has made an indelible contribution to the de-
velopment of deep learning model structures and learning
methodologies. MVTec AD [2] abstracts defect detection in
manufacturing into a research topic, thereby bringing visual
learning algorithms closer to industrial production applica-
tion scenarios. Nevertheless, the data volume of current AD
datasets is still small and needs further development.

Industrial production is the cornerstone of human so-
cietal development, with product quality inspection play-
ing a key role [7]. Defects in the production process of
parts can affect product quality and subsequently reduce
product lifespan. In the production of pharmaceuticals,
food, batteries, and other products, product defects can
pose a threat to human safety. Given the importance of
defect detection, manufacturing companies have invested
substantial resources in this area [2–4], and academia has
also gradually turned its attention to this issue in recent
years [1, 12, 15, 25, 26, 34]. Some automation technologies
have begun to play a role in practical applications. Early ap-
plications of visual learning technology in industrial defect
detection mainly involved supervised learning for detec-
tion [6, 14, 28] and segmentation [8, 16, 32] tasks. Although
these methods have practical value, they still face technical
challenges such as the need for precise defect location an-
notation. Moreover, the detection performance significantly
decreases for defects that are scarce or not included in the
training set. With the advent of datasets like MVTec AD [2]
and VisA [40], a large number of unsupervised anomaly
detection methods have emerged [12, 23, 26, 29, 34, 38].
These techniques only need to ensure that the images in the
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training set are anomaly-free, and resulting models have the
ability to predict defect locations and pixel areas, signifi-
cantly reducing manual annotation costs and endowing the
algorithm with the ability to recognize unknown defects.

The emergence of datasets like MVTec AD [2], and
VisA [40] has stimulated academic interest in industrial
anomaly detection research and has given birth to many in-
novative methods. However, with technological progress,
these datasets have gradually revealed their limitations. For
example, the defect range in MVTec AD is small, and
the actual application scenarios are simple. Recent meth-
ods have exceeded 99% in I-AUROC (image-level) and P-
AUROC (pixel-level) metrics, making it difficult to distin-
guish the merits of new methods. The scale of the data is
also limited, with some categories in MVTec AD having
only about 60 or even fewer defect images, and the ran-
dom error caused by the small number of test images can-
not be ignored. Some new IAD research uses some defec-
tive images in the training set, resulting in a smaller test
set and exacerbating the problem. In terms of object di-
versity, MVTec AD includes 15 types of objects, and VisA
includes 12 types of objects. The limited number of object
types affects the evaluation of the capabilities of a unified
model, leading to overly optimistic model metrics. In ad-
dition, there is a gap between the current dataset setup and
the ideal application scenario. Although IAD is unsuper-
vised learning, the training set still requires manual annota-
tion. This process may introduce noise samples, such as the
noise samples in the BTAD training set proposed in Soft-
Patch [21]. Furthermore, mainstream 2D IAD datasets con-
sist of single-view images, but in practical applications, part
structures are complex, and a single view cannot cover all
defects. Although some datasets, like MVTec AD-3D [4],
attempt to solve the multi-view problem from a 3D perspec-
tive, the high cost of 3D sensors limits them in practical
applications.

To make the dataset closer to actual application scenarios
and address the limitations of existing datasets, we propose
a new Real-world Industrial Anomaly Detection dataset
called Real-IAD. This dataset far exceeds existing datasets
in terms of the number of object categories and the number
of images. To our knowledge, this dataset is the first to con-
sider the multi-view problem in 2D IAD tasks. In an ideal
scenario for practical application, image acquisition equip-
ment is deployed on the production line, and the algorithm
is trained automatically without human intervention, pos-
sessing the ability to determine whether a product is defec-
tive. Based on the characteristic that the yield rate of most
production lines is greater than 60%, we add 0∼40% of
quality inspection anomaly images to the anomaly-free train
set, proposing the completely unsupervised anomaly detec-
tion problem for the first time. Through this new dataset,
we hope to promote technological development in the field

of industrial anomaly detection, encourage the emergence
of more efficient and practical detection methods, and pro-
vide stronger technical support for industrial production. In
this new real-world dataset, we have collected 30 indus-
trial products covering a variety of materials, such as plas-
tic, wood, ceramics, and mixed materials etc., considering
the diversity in industrial production. We have also deliber-
ately increased the resolution of the dataset to capture more
subtle defect features, providing strong support for high-
precision defect detection. In addition, we have collected
images of each product from multiple angles to address the
problem that a single view cannot cover all defects. To ver-
ify the effectiveness of the new dataset and promote techno-
logical development, we conducted a series of experiments
on the dataset. Specifically, we conduct benchmark tests
on existing unsupervised anomaly detection algorithms to
assess their performance on the new dataset. The exper-
imental results show that although these algorithms have
achieved good performance on the original datasets, there
is still room for improvement on the new dataset, indicating
that the new dataset has a certain level of challenge, which
can help promote algorithm improvement and innovation.

In summary, our main contributions are as follows:

• We propose a new Real-IAD dataset, which is more than
ten times larger than existing mainstream datasets. It in-
cludes 30 classes of objects with each containing 5 shoot-
ing angles, totaling 150K high-resolution images. More-
over, Real-IAD presents more challenging defects with a
larger range of defect area and ratio proportions, better
differing the performance between different methods and
meeting various research settings of IAD.

• We construct a Fully Unsupervised IAD setting on the
Real-IAD dataset that is closer to actual application sce-
narios, where only naturally existing constraint is used
that the yield rate of most production lines is greater than
60%, without introducing additional manual annotations.

• We report the performance of popular IAD methods on
the Real-IAD dataset in several settings and provide a
highly challenging benchmark to promote the develop-
ment of the anomaly detection field.

2. Related Work

2.1. Anomaly Detection Datasets

Early anomaly detection works are generally conducted on
KolektorSDD [31] which only contains one category and
greatly limits the evaluation and development of algorithms.
Subsequently, datasets such as MTD [19], MPDD [20] and
BTAD [27] are proposed, but these datasets are still rela-
tively small, in terms of the number of categories and total
number of images. Since the introduction of the MVTec
AD dataset [2], the conventional sensory IAD tasks have
started to get on track and gradually attracted a large num-
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ber of researchers and practitioners. This dataset contains
15 industrial products in 2 types with a total of 5,354 im-
ages, greatly promoting algorithm research. Later VisA [40]
covers 12 objects in 3 types with a total of 10,821 images,
elevating the number of IAD dataset to the 10K level for
the first time while having a larger number of categories,
i.e., 15. Recently, Zhou et al. [39] propose a synthetic
PAD to promote research on pose-agnostic anomaly de-
tection, but there is a natural gap between synthetic data
and real samples, leading to inconsistencies in the metrics.
In addition, some datasets have extended 3D information
to better detect defects, e.g., MVTec 3D AD [4], Eyecan-
dies [5], and Real3D [24]. Nevertheless, the current visual
IAD datasets are still small in scale and category, gener-
ally applied to limited industrial scenarios, and there is no
IAD dataset equivalent to the status of ImageNet-1K [13]
in the classification field. To address this issue, we pro-
pose a novel large-scale (approximately 150K), more cat-
egories (30 categories), and multi-view (5 shooting angles)
Real-IAD dataset for the task, which contain high-definition
images, elaborate labelings, and more challenging detects,
committed to providing a more challenging benchmark to
promote the development of IAD methods and fair compar-
ison of different methods (c.f ., Sec. 4 for details).

2.2. Standard Anomaly Detection

The standard IAD task aims to identify whether a given im-
age of a target class is anomalous or not and localize the
anomaly region if the prediction is anomalous. The lack of
anomalous data makes it more challenging and it is usually
formulated as an unsupervised learning problem with only
normal data available in the training phase. Recently, vast
efforts are dedicated to developing unsupervised anomaly
detectors and form several mainstream approaches, namely
data augmentation-based methods [22, 36], reconstruction-
based methods [17, 23], and embedding-based methods [12,
26, 29, 30]. Specially, the embedding-based methods can be
further divided into four categories, i.e., memory bank [29],
normalizing flow [30], knowledge distillation [12, 37], and
classification [26]. These methods produce superior results.

2.3. Other Settings in Anomaly Detection

More challenging settings have been proposed one after an-
other. The zero-/few-shot IAD [9, 10, 18] focuses on em-
ploying a few normal samples for IAD, reducing the de-
mand for data. SoftPatch [21] introduces noisy data (less
than 10%) into the anomaly-free training data in the stan-
dard setting to model the real scenario, and Zaheer et al.
propose unsupervised video detection [35]. Contrarily, the
semi-supervised IAD [33] introduces anomalous data dur-
ing training for better IAD. To avoid re-training for differ-
ent categories, the unified IAD [34] accomplished IAD for
multiple classes by a unified framework. In this paper, we

propose a new setting called Fully Unsupervised Industrial
Anomaly Detection (FUIAD) based on the observation that
the yield rate in industrial production is usually greater than
60%, which has a more practical application value.

3. Real-IAD Dataset Description

3.1. Data Collection and Construction Manner

This section introduces the construction pipeline of Real-
IAD in Fig. 1, and the procedure includes three parts:

1) Material Preparation. We have purchased and collected
30 objects covering a variety of materials, including metal,
plastic, wood, ceramics, and mixed materials. Some ob-
jects are shown in the upper part of Fig. 1-(a). We manually
created various types of defects, including missing parts,
dirt, deformation, pits, damage, holes, cracks, scratches, as
shown in the lower part of Fig. 1-(a). Subsequently, these
normal and anomaly objects are sent to the prototype ma-
chine for image collection.

2) Prototype Construction. The construction of the acqui-
sition equipment is shown in Fig. 1-(b). There are a total
of five cameras capturing the object from different angles,
with one camera taking top shots and the other four taking
shots from symmetric angles at approximately 45 degrees.
Additionally, to better image the object and clearly capture
minor defects, a ring light source is installed above the ob-
ject. In actual applications, automated equipment is used to
flip the parts for bottom quality inspection. For parts with
more structural obstructions, the camera is rotated to cap-
ture images from more angles. Considering that part flip-
ping and additional shooting angles may affect actual ap-
plications but not algorithm research, we abstract the multi-
view visual quality inspection problem in real scenarios into
five shooting angles. The camera adopted is HIKROBOT
MV-CE200-10GC with 3,648×5,472 resolution.

3) Data Collection, Annotation, and Cleaning. As shown
inFig. 1-(c), to ensure the accuracy of dataset collection, we
first manually confirm all normal images and anomaly im-
ages and use LabelMe to manually label pixel-level masks
for anomaly data. Then, the data is divided into three
groups, each of which is supervised trained using a cas-
cade RCNN based on HRNet-32w backbone for confident
learning. We look for inconsistencies between the model’s
prediction results and the manual annotation results. These
data will undergo manual inspection and annotation again
until the model’s predicted AP results remain essentially
unchanged, and the number of annotated images that need
to be modified is less than a certain threshold. Finally, we
consider the data to be clean and construct different dataset
settings.
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Figure 1. Data collection pipeline for our proposed Real-IAD dataset, which consists of four steps in tandem: (a) Material preparation
and defect manufacturing. (b) Prototype design and construction that contains 5 shots for capturing multi-view images simultaneously, i.e.,
one top-down camera with extra four cameras arranged uniformly at 45 degrees. (c) Collection procedure that includes cyclical processes
of data collection, annotation, and cleaning. At the bottom, partial visualization of the final Real-IAD dataset reveals that the proposed
Real-IAD exhibits large scale (30 classes), a wide range of defect proportions (0.01% to 6.75%), and a broad defect ratio (1:1 to 1:10),
indicating that Real-IAD is highly challenging. Abnormal areas are prominently marked in red.

Table 1. Comparison with current popular 2D real-world IAD datasets on different attributes. ✔: Satisfied. ✘: Unsatisfied.

Dataset Class
Image Number Image

Resolution
Defect Types
Per Category

Segmentation
Labeling

Multiple
Shooting AnglesNormal Anomaly All

BTAD 3 952 392 1344 600∼1,600 3.00 ✔ ✘

SSGD 1 0 2504 2504 1,500×1,000 7.00 ✘ ✘

MVTec AD 15 4,096 1,258 5,354 700∼1,024 4.87 ✔ ✘

VisA 12 9,621 1,200 10,821 960∼1,562 7.50 ✔ ✘

Read-IAD 30 99,721 51,329 151,050 2,000∼5,000 4.37 ✔ ✔

3.2. Comparison with Popular 2D Datasets

This section provides a detailed statistical analysis of the
proposed Real-IAD dataset, and compares it with main-
stream datasets, i.e., MVTec AD [2] and VisA [40].

Comparison with Mainstream Datasets. As shown in

Tab. 1, compared to mainstream datasets, our method has at
least a 2x increase in the number of categories, and a mag-
nitude increase in quantity, i.e., from 10K to 150K. Further-
more, Real-IAD provides images with a resolution of up
to 2,000∼5,000 to support research on finer-grained IAD
algorithms, which involves cropping from original images.
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Figure 2. Statistic information of our proposed Real-IAD datast. (a) Statistic comparison of anomaly/normal data volume among
popular datasets. (b) Statistics of the percentage of the image area occupied by the anomaly region. (c) Statistics of the aspect ratio
of the minimum bounding rectangle of the defect. (d) Distribution of anomaly/normal image quantities across different categories. (e)
Distribution of data volume across different defect categories.
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Figure 3. Visualization of multi-view collections, where the first
column represents the results captured by the top-down camera,
and the other columns represent the results captured by four sur-
rounding cameras at 45 degrees. Abnormal images are highlighted
for visualization, and normal images are displayed with normal
brightness. It can be seen that multi-view shooting can solve the
problem of invisibility of abnormal areas from a single viewpoint.

Furthermore, each object is provided with five images taken
from different angles with segmentation labeling to support
a multi-view setting, c.f ., Fig. 3.

Data Statistics. Fig. 2 shows statistic of our Real-IAD
dataset. Compared to the contrastive datasets, our Real-
IAD has an order of magnitude improvement on both nor-
mal and abnormal data (Fig. 2-a). At the same time, the
proportion of defect area (Fig. 2-b) and the range of defect
ratio (Fig. 2-c) are larger, indicating a higher difficulty level
of the dataset, which is also proven by the experiments in
Tab. 2. The bottom of Fig. 2 displays the number of nor-
mal and abnormal data in different categories (Fig. 2-d), as

well as the proportion of different types of defects (Fig. 2-
e). Overall, the ratio of normal to abnormal data is not very
disparate, e.g., VisA reaches 8:1, and each type of category
has multiple types of defects.

Advantage Analyses. Our Real-IAD dataset has advan-
tages in the following aspects: 1) Diversity: Compared with
existing datasets, the Real-IAD dataset covers a wider range
of categories and provides richer scenarios, which helps to
train more robust anomaly detection models and conduct
fair evaluations. 2) Large-scale: Real-IAD is the first to
provide a dataset of over 150K images, a magnitude in-
crease compared to popular IAD datasets, which also pro-
vides multi-view images with pixel-level annotations. 3)
Challenge: Compared with existing datasets, the Real-IAD
has a higher level of difficulty, which can drive the develop-
ment and progress of current anomaly detection algorithms.

3.3. Real-IAD Visualization

The bottom of Fig. 1 displays 30 sample data types from
Real-IAD, demonstrating that the dataset includes data from
a variety of material types, such as metal, plastic, wood,
ceramics, and mixed material. Moreover, the types of de-
fects include pit, deformation, abrasion, scratches, damage,
missing parts, foreign objects, and contamination. The de-
fect area occupies a proportion ranging from 0.1 to 0.5, with
a ratio ranging from 0.1 to 10.0. The richer data indicates
that Real-IAD is highly challenging, and it is expected to
promote further development in IAD.
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4. Benchmark

4.1. Evalution settings

Unsupervised IAD (UIAD): The algorithm learns patterns
and structures only from normal samples. Therefore, most
existing anomaly datasets are usually divided into training
and testing sets, where the training set only contains normal
samples. In contrast, the testing set consists of both normal
and anomalous samples. Following the previous arts, we
fisrt evaluate our Real-IAD with the UIAD setting.
Fully Unsupervised IAD (FUIAD): The setting is in-
evitable in real-world IAD but is seldom discussed. And it
is difficult to construct the FUIAD setting due to the limited
availability of anomalous samples in the existing datasets,
such as MVTec AD [2] and VisA [40]. This paper is the first
to consider FUIAD (i.e., UIAD with noise) from a dataset
construction perspective. In the Real-IAD, large and di-
verse samples of anomalies give us the flexibility to build
an FUIAD setup.

To create an FUIAD setting, we first need to fix the test-
ing set including normal and anomaly samples. In our ex-
periment, the number of normal and anomaly samples is
uniformly set to 100 samples (500 images). The remain-
ing normal and anomaly samples will be a candidate set for
constructing a noisy training set. We keep the total number
of samples in the training set constant but the correspond-
ing numbers of normal and abnormal ones are adaptively
adjusted with a given noise ratio. To do this, we need first
infer the number of training samples according to the scale
of the candidate set and the range of noisy ratio (e.g., [0.1,
0.4]). Then, we randomly sample normal and anomaly sam-
ples from the candidate set to construct a training set with
a specific noisy ratio. In this way, we obtain several new
fully unsupervised benchmarks with different noise ratios
dubbed α ∈ [0, 1].

4.2. Evaluation Metric

The AUROC is the most widely used metric for image-level
and pixel-level anomaly detection. In addition, a normal-
ized Per-Region Overlap (PRO) between segmentation and
ground truth is calculated and the Area Under PRO curve
(AUPRO) is also adopted as a pixel-level metric [2].

Most IAD methods [12, 22, 26, 29, 30, 36, 38] evalu-
ate anomaly detection only at image and pixel levels due to
limitations of existing IAD datasets. The proposed Real-
IAD, to the best of our knowledge, is the first multi-view
anomaly detection dataset, where each sample consists of
multiple different views. Therefore, in addition to evaluat-
ing anomaly detection performance at the image and pixel
levels, we integrate the results from multiple views to assess
sample-level performance. This is more consistent with the
indicator evaluation in industrial production lines.

5. Comparisons with IAD Benchmarks

5.1. Results on Unsupervised IAD

We comprehensively compare the performance of our Real-
IAD with some popular IAD benchmarks (e.g., MVTec
AD [2] and VisA [40]). MVTec AD [2] is a widely used
dataset in the field of industrial anomaly detection. It con-
sists of high-resolution images of 10 objects and 5 textures,
captured under different lighting conditions and with differ-
ent types of anomalies. The dataset provides ground truth
annotations for the location and type of anomalies present
in the images, enabling quantitative evaluation of detection
performance. VisA [40] is 2× larger than MVTec AD, with
both image and pixel-level annotations. It spans 12 ob-
jects across 3 domains, with challenging scenarios includ-
ing complex structures in objects, multiple instances, and
object pose/location variations. The proposed Real-IAD is
a large-scale (approximately 150K) with more categories
(30 objects), and multi-view (5 shooting angles) dataset for
anomaly detection, where each anomaly image is labeled by
a pixel-level mask and a specific defect type. Considering
that MVTec and VisA are single-view, we also select one
viewpoint (i.e., top view) from Real-IAD to form a single-
view Real-IAD, a subset of multi-view Real-IAD.

For the UIAD setting, we mainly choose embedded-
based IAD methods, such as PatchCore[29], PaDim [11],
and CFlow [30], data-augmentation-based methods, Sim-
pleNet [26] and DeSTSeg [38], and reconstruction-based
RD [12] and UniAD [34] for performance comparisons.
PatchCore [29] first extracts neighborhood-aware patch-
level features and then stores them in a memory bank. At
test time, images are classified as anomalies if at least one
patch is anomalous, and pixel-level anomaly segmentation
is generated by scoring each patch feature. PaDiM [11]
extract pre-trained features to model normal distribution,
then utilize a distance metric to measure the anomalies.
CFlow [30] proposed to use a conditional normalizing flow
framework to estimate the exact data likelihoods which
are infeasible in other generative models for IAD. Sim-
pleNet [26] and DeSTSeg [38] convert Unsupervised IAD
into supervised IAD training with generated anomaly im-
ages/features and real normal images/features. Feature
reconstruction-based RD [12] and UniAD [34] prevent the
model from learning the shortcut with reverse distillation
and neighborhood-masked attention, respectively. We re-
produce PatchCore [29], PaDim [11], CFlow [30] and
RD [12] with open-sourced Anomalib, and other methods
including SimpleNet [26], DeSTSeg [38] and UniAD [34]
with official codes. In our experiments, we resize all im-
ages to 256×256, only center crop 224×224 from the re-
sized 256×256 for PatchCore [29] and PaDim [11]. Other
hyperparameters, such as batch size and learning rate, are
kept the same as the official implementation.
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Table 2. UIAD performance comparisons on Real-IAD and some existing IAD datasets, MVTec AD [2] and VisA [40]. The results are
averaged over all categories on each dataset. We report the averaged value and standard deviation (denoted as “mean±std”) based on the
results of different methods for each metric. The lower the value means the corresponding anomaly detection task is more challenging.

Embedding-based Data-Aug-based Reconstruction-based
Mean±StdDatasets Metric↑

PatchCore[29] PaDim[11] CFlow[30] SimpleNet[26] DeSTSeg[38] RD[12] UniAD[34]
I-AUROC 99.0 95.5 97.1 99.3 98.4 98.5 97.5 97.9 ±1.2

MVTec AD [2]
P-AUPRO 94.7 91.3 92.3 89.9 94.7 93.1 90.7 92.4 ±1.8
I-AUROC 95.1 85.1 91.8 95.4 90.3 95.9 88.8 91.8 ±3.7

VisA [40]
P-AUPRO 91.2 79.7 84.8 88.7 90.6 92.9 85.5 87.6 ±4.2
I-AUROC 90.4 86.6 85.0 91.7 89.2 87.6 82.7 87.6 ±2.9

Real-IAD (single-view)
P-AUPRO 92.5 90.0 88.6 88.9 90.3 94.4 86.0 90.0 ±2.6
S-AUROC 93.7 91.2 89.8 94.9 94.0 83.7 88.1 90.3 ±4.0
I-AUROC 89.4 80.3 82.5 88.5 86.9 87.1 82.9 85.0 ±3.6Real-IAD (multi-view)
P-AUPRO 91.5 81.8 90.5 84.6 81.5 93.8 86.1 86.3 ±4.4

The results of all methods on MVTec, VisA, and our
single-/multi-view Real-IAD are presented in Table 2. 1)
We can observe that there is a significant performance de-
crease from MVTec (97.9% in I-AUROC) to our single-
view and multi-view Real-IAD (85% in I-AUROC). This
indicates that the proposed Real-IAD is more challeng-
ing than the existing datasets for anomaly detection. The
performance drop is more pronounced when using a uni-
fied model, which is reasonable considering the more com-
plex data distribution (i.e., more views and more classes)
in Real-IAD; 2) It is hard to evaluate different methods on
the existing datasets as the results are very similar. Espe-
cially on MVTec, most methods achieve about 98%-99%
in I-AUROC. In contrast, on the Real-IAD dataset, most
methods only obtain about 90% I-AUROC, which is better
for evaluating the effectiveness of anomaly detection algo-
rithms; 3) The pixel-level P-PRO on Real-IAD is compara-
ble to the existing VisA but noticeably lower than MVTec
AD. This indicates that the proposed Real-IAD dataset also
presents challenges at the pixel-level anomaly localization.

5.2. IAD Benchmarks Meet FUIAD

Traditional Unsupervised IAD methods indeed assume that
the training dataset only contains normal samples. How-
ever, in practical applications, it isn’t easy to guarantee that
all training samples are normal. Considering that the yield
rate of good products on a production line is typically higher
than 60%, it means that no more than 40% products are ab-
normal. Therefore, existing unsupervised methods may not
be suitable for practical applications because they require
manual annotation before training that is laborious.

Hence, a more practical solution is to perform fully un-
supervised anomaly detection, which allows a certain pro-
portion of abnormal samples in the training process. This
paradigm can better adapt to real-world scenarios and re-
duce reliance on manual annotation. By building a fully Un-
supervised IAD setting, it is possible to better simulate ab-
normal situations in real-world scenarios, thereby improv-
ing the robustness and practicality of IAD algorithms.

Table 3. Comparison with popular IAD datasets on FUIAD set-
ting. NR (α) and # TS are the noisy ratio and anomalous testing
samples, respectively. The fail settings are marked in blue.

# valid category # training images or samples
NR # TS MVTec AD ViSA Real-IAD MVTec AD ViSA Real-IAD(I) Real-IAD(S)

α = 0.1

25 15 12 30 268 667 2605 521
50 13 12 30 223 500 2466 493
75 9 12 30 200 250 2327 465
100 4 0 30 181 0 2188 437
150 0 0 30 0 0 1910 382

α = 0.2

25 15 12 30 252 375 2931 586
50 13 12 30 193 250 2774 554
75 9 12 30 148 125 2618 523
100 4 0 30 120 0 2462 492
150 0 0 30 0 0 2149 429

α = 0.4

25 15 12 30 152 187 3908 781
50 13 12 30 108 125 3699 739
75 9 12 30 78 62 3491 698
100 4 0 30 60 0 3283 656
150 0 0 30 0 0 2866 573

Popular anomaly detection datasets like MVTec AD [2]
and VisA [40] are primarily designed for unsupervised set-
tings. To evaluate the capabilities of fully unsupervised al-
gorithms, researchers have to randomly sample a portion of
anomaly samples from the testing set and add them as noise
samples to the training set, creating a fully unsupervised
IAD experiment. In this way, it leads to a significant reduc-
tion in the number of testing samples, which may be insuf-
ficient to effectively evaluate the performance of anomaly
detection algorithms. For quantitative analysis, we assume
a certain number of testing samples (e.g., 25, 50, 75, 100
and 150) for each category and calculate the number of valid
testing categories and the number of training images or sam-
ples based on a given noise ratio (e.g., 0.1, 0.2 and 0.4). The
corresponding statistic results are reported in Table 3.

We can see that increasing the noisy ratio or inject-
ing anomalous noisy samples into the normal training set
(MVTec and VisA) would lead to a decrease in the number
of valid testing categories and the number of normal train-
ing samples, making it impossible to evaluate the perfor-
mance of FUIAD algorithms in some challenging settings
(high noisy ratios). In contrast, the proposed Real-IAD en-
sures a consistent number of valid testing categories and a
stable scale of corresponding normal samples in the training
set when the noisy ratio ranges from 0.1 to 0.4 and the num-
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Table 4. FUIAD performance (S-AUROC/I-AUROC/P-PRO) comparisons on Real-IAD. The results are averaged over 30 categories. The
best results are marked in red and the second-best ones are marked in blue.

Settings
Embedding-based Data-Aug-based Reconstruction-based

PaDim[11] CFlow[15] PatchCore[29] SoftPatch[21] SimpleNet[26] DeSTSeg[38] RD[12] UniAD[34]
α = 0.0 92.7 / 84.6 / 84.4 88.8 / 83.9 / 90.6 94.4 / 91.3 / 92.6 93.9 / 91.4 / 92.1 94.9 / 89.8 / 83.9 94.6 / 89.6 / 88.7 85.5 / 89.3 / 95.0 89.6 / 85.4 / 87.6
α = 0.1 85.5 / 81.9 / 86.4 81.8 / 80.3 / 90.7 92.2 / 90.4 / 93.2 92.8 / 90.9 / 92.9 87.8 / 83.3 / 79.9 88.1 / 85.6 / 86.9 83.5 / 88.1 / 95.1 87.2 / 84.2 / 87.7
α = 0.2 82.2 / 80.1 / 86.5 81.3 / 79.6 / 90.7 91.1 / 89.5 / 93.0 92.2 / 90.5 / 92.9 82.7 / 79.6 / 75.9 81.4 / 80.3 / 83.2 80.7 / 87.3 / 94.9 85.2 / 82.8 / 87.3
α = 0.4 76.5 / 77.0 / 86.1 78.6 / 78.0 / 90.2 88.9 / 88.1 / 92.4 90.6 / 89.3 / 92.5 77.7 / 74.7 / 70.5 74.5 / 74.4 / 75.5 76.8 / 84.5 / 94.7 81.5 / 80.1 / 86.6

ber of anomalous testing samples varies from 50 to 150. We
believe that Real-IAD provides a more reliable and compre-
hensive assessment for FUIAD algorithms.

6. Comparisons with Fully Unsupervised IAD

For fully unsupervised anomaly detection, we set noisy ratio
α ∈ {0.1, 0.2, 0.4}. In addition, to make a fair comparison
between FUIAD and UIAD settings on the same testing set,
we also set the noisy ratio to 0, which transforms FUIAD
into UIAD. The results of FUIAD (α = 0) should be the
upper bound of all FUIAD settings (α > 0). Considering
that it is not easy to establish an effective fully unsupervised
setting on existing datasets, we only evaluate fully unsuper-
vised anomaly detection methods on our Real-IAD. Simi-
lar to the evaluation of unsupervised anomaly detection, we
also select the same methods, PatchCore[29], PaDim [11],
CFlow [30], SimpleNet [26], DeSTSeg [38], RD [12] and
UniAD [34]. To alleviate the effect of noise samples, Soft-
Patch [21] proposes a denoising mechanism based on Patch-
Core for memory bank construction. Therefore, we also
evaluate the SoftPatch method under the FUIAD setting on
our Real-IAD. The main results are reported in Tabel 4.

Under the setting of unsupervised anomaly detection (the
noisy ratio is set to zero), most state-of-the-art anomaly de-
tection methods (such as PatchCore [29], SoftPatch [21],
SimpleNet [26], DeSTSeg [38]) show almost similar perfor-
mance for sample- and image-level anomaly classification.
For pixel-level anomaly segmentation, PatchCore [29],
SoftPatch [21] and RD [12] that use multi-level features are
more advantageous, thanks to the low-level features retain-
ing rich spatial location information.

In the setting of fully unsupervised anomaly detection,
almost all methods suffer severe performance degradation
on all metrics, especially PaDim [11], SimpleNet [26],
DeSTSeg [38] and RD [12]. Unsupervised PatchCore [29]
shows robustness, thanks to the patch-level Memory-Bank
mechanism. In the Memory-Bank, normal and abnormal
features are stored simultaneously, and stable detection can
be achieved as long as the distribution of abnormal fea-
tures during the inference phase is different from the stored
anomalies. In addition, the proportion of abnormal pixels
is actually very low even with a high noise ratio at sample-
level (such as 0.4), and thus the quality of normal patch fea-
tures in Memory-Bank can be ensured to some extent. The

SoftPatch [21] that first filters some noisy features and then
constructs Memory-Bank achieves almost optimal perfor-
mance in all methods. However, the performance improve-
ment is relatively limited compared to unsupervised Patch-
Core [29]. This means that fully unsupervised anomaly de-
tection still requires more in-depth research efforts. E.g.,
using model ensemble methods to improve robustness to
noise, combining the semantic understanding capabilities of
large vision language models to provide prior distribution of
noisy data, etc.

7. Conclusion

Based on the analysis of existing anomaly detection datasets
and practical industry applications, we have several obser-
vations. First of all, unsupervised industrial anomaly de-
tection algorithms have almost reached saturation in perfor-
mance, but it is still hard to deploy them in actual industrial
inspection applications. Secondly, there is a gap between
algorithms and applications, where most algorithms rely on
clean normal training samples, but the data obtained in ac-
tual industrial production lines contains a certain amount of
noise. Finally, fully unsupervised industrial anomaly detec-
tion is a more suitable setting for practical applications, but
existing datasets are not sufficient to support research due
to limited samples. In order to address the above problems,
we propose a large-scale, real-world, multi-view anomaly
detection dataset (Real-IAD), which contains 150k high-
resolution images, covering 30 objects of metal, plastic,
wood, ceramics, and mixed materials, each object contains
5 different views with 8 common defects. The Real-IAD
provides high-quality annotations at different levels such as
pixel, image, and sample. We established two settings, un-
supervised and fully unsupervised, to conduct extensive and
comprehensive evaluations using state-of-the-art anomaly
detection methods. We hope that the Real-IAD can advance
research in the field of anomaly detection.
Limitation and Future Works. This paper only reports the
results of some typical methods on Real-IAD. In the future,
we will replicate more methods on Real-IAD and provide
results under more settings, e.g., zero-shot, few-shot, and
semi-supervised settings, etc. In addition, considering the
large-scale and multi-view characteristics of Real-IAD, it is
also worthwhile to further study algorithms that are well-
suited to these features.
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