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Abstract

Recently, lightweight Vision Transformers (ViTs) demon-
strate superior performance and lower latency, com-
pared with lightweight Convolutional Neural Networks
(CNNs), on resource-constrained mobile devices. Re-
searchers have discovered many structural connections be-
tween lightweight ViTs and lightweight CNNs. However,
the notable architectural disparities in the block structure,
macro, and micro designs between them have not been ad-
equately examined. In this study, we revisit the efficient de-
sign of lightweight CNNs from ViT perspective and empha-
size their promising prospect for mobile devices. Specifi-
cally, we incrementally enhance the mobile-friendliness of
a standard lightweight CNN, i.e., MobileNetV3, by integrat-
ing the efficient architectural designs of lightweight ViTs.
This ends up with a new family of pure lightweight CNNs,
namely RepViT. Extensive experiments show that RepViT
outperforms existing state-of-the-art lightweight ViTs and
exhibits favorable latency in various vision tasks. Notably,
on ImageNet, RepViT achieves over 80% top-1 accuracy
with 1.0 ms latency on an iPhone 12, which is the first
time for a lightweight model, to the best of our knowl-
edge. Besides, when RepViT meets SAM, our RepViT-SAM
can achieve nearly 10× faster inference than the advanced
MobileSAM. Codes and models are available at https:
//github.com/THU-MIG/RepViT.

1. Introduction

In the field of computer vision, designing lightweight mod-
els has been a major focus for achieving superior model
performance with reduced computational costs. This is par-
ticularly important for resource-constrained mobile devices
to enable the deployment of visual models at the edge.
Over the past decade, researchers have primarily focused
on lightweight convolutional neural networks (CNNs) and
have made significant progress. Many efficient design prin-
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Figure 1. Comparison of latency and accuracy between RepViT
(Ours) and others. The top-1 accuracy is tested on ImageNet-1K
and the latency is measured by iPhone 12 with iOS 16. RepViT
achieves the best trade-off between performance and latency.

ciples have been proposed, including separable convolu-
tions [27], inverted residual bottlenecks [53], channel shuf-
fling [44, 75], and structural re-parameterization [13, 14],
etc. These design principles have led to the development of
representative models like MobileNets [26, 27, 53], Shuf-
fleNets [44, 75], and RepVGG [14].

In recent years, Vision Transformers (ViTs) [18] have
emerged as a promising alternative to CNNs for learn-
ing visual representations. They have demonstrated supe-
rior performance compared to CNNs on a variety of vi-
sion tasks, like image classification [39, 63], semantic seg-
mentation [6, 66] and object detection [4, 34]. However,
the trend of increasing the number of parameters in ViTs
to improve performance results in large model sizes and
high latency [11, 40], making them unsuitable for resource-
constrained mobile devices [36, 46]. Although it is possible
to directly reduce the model size of ViT models to match the
constraints of mobile devices, their performance often be-
comes inferior to that of lightweight CNNs [5]. Therefore,
researchers have embarked on exploring the lightweight de-
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sign of ViTs, aiming to achieve performance surpassing that
of lightweight CNNs.

Many efficient design principles have been proposed to
enhance the computational efficiency of ViTs for mobile
devices [5, 35, 46, 49]. Some approaches propose inno-
vative architectures that combine convolutional layers with
ViTs, resulting in hybrid networks [5, 46]. Additionally,
novel self-attention operations with linear complexity [47]
and dimension-consistent design principles [35, 36] are in-
troduced to improve the efficiency. These studies demon-
strate that lightweight ViTs [35, 47, 49] can achieve lower
latency on mobile devices while outperforming lightweight
CNNs [26, 53, 60], as shown in Figure 1.

Despite the success of lightweight ViTs, they continue
to face practical challenges due to inadequate hardware and
computational library support [60]. Additionally, ViTs are
susceptible to inputs with high resolution, resulting in high
latency [3]. In contrast, CNNs utilize highly optimized con-
volution operations with linear complexity relative to the
input, making them advantageous for deployment on edge
devices [54, 73]. Therefore, designing high-performance
lightweight CNNs becomes imperative, compelling us to
meticulously compare existing lightweight ViT and CNNs.

Lightweight ViTs and lightweight CNNs exhibit certain
structural similarities. For example, both of them employ
convolutional modules to learn spatially local representa-
tions [46, 47, 49, 61]. For learning global representations,
lightweight CNNs usually enlarge the kernel size of convo-
lutions [73], while lightweight ViTs generally employ the
multi-head self-attention module [46, 47]. However, despite
these structural connections, there remain notable differ-
ences in the block structure, macro/micro designs between
them, which have yet to receive sufficient inspection. For
example, lightweight ViTs usually adopt the MetaFormer
block structure [69], while lightweight CNNs favors the in-
verted residual bottleneck [53]. This naturally leads us to
a question: Can architectural designs of lightweight ViTs
enhance lightweight CNNs’ performance? To answer this
question, we revisit the design of lightweight CNNs from
the ViT perspective in this study. Our research aims to
bridge the gap between lightweight CNNs and lightweight
ViTs and highlight the promising prospect of the former for
deployment on mobile devices compared to the latter.

To accomplish this objective, following [41], we be-
gin with a standard lightweight CNN, i.e., MobileNetV3-
L [26]. We gradually “modernize” its architecture by in-
corporating the efficient architectural designs of lightweight
ViTs [35, 36, 38, 46]. Finally, for resource-constrained
mobile devices, we obtain a new family of lightweight
CNNs, namely RepViT, which is composed entirely of Re-
parameterization convolutions in a ViT-like MetaFormer
structure [36, 69, 70]. As a pure lightweight CNN, RepViT
presents superior performance and efficiency compared

with existing state-of-the-art lightweight ViTs [35, 49] on
various computer vision tasks, including image classifica-
tion on ImageNet [12], object detection and instance seg-
mentation on COCO-2017 [37], and semantic segmentation
on ADE20k [78]. Notably, RepViT reaches over 80% top-1
accuracy on ImageNet, with 1.0 ms latency on an iPhone
12, which is the first time for a lightweight model, to the
best of our knowledge. Our largest model, RepViT-M2.3,
obtains 83.7% accuracy with only 2.3 ms latency. After in-
corporating RepViT with SAM [33], our RepViT-SAM can
obtain nearly 10× faster inference speed than the state-of-
the-art MobileSAM [71] while enjoying significantly bet-
ter zero-shot transfer capability. We hope that RepViT can
serve as a strong baseline and inspire further research into
lightweight models for edge deployments.

2. Related Work
In the past decade, Convolutional Neural Networks (CNNs)
have emerged as the predominant approach for computer vi-
sion tasks [16, 23, 24, 43, 62, 67] due to their natural induc-
tive locality biases and translation equivalence. However,
the extensive computation of standard CNNs renders them
unsuitable for deployment on resource-constrained mobile
devices. To overcome this challenge, numerous techniques
have been proposed to make CNNs more lightweight and
mobile-friendly, including separable convolutions [27], in-
verted residual bottleneck [53], channel shuffle [44, 75],
and structural re-parameterization [14], etc. These methods
have paved the way for the development of several widely
used lightweight CNNs, like MobileNets [26, 27, 53], Shuf-
fleNets [44, 75], and RepVGG [14].

Subsequently, the Vision Transformer (ViT) [18] was
introduced, which adapts the transformer architecture to
achieve state-of-the-art performance on large-scale image
recognition tasks, surpassing that of CNNs [18, 58]. Build-
ing on the competitive performance of ViTs, subsequent
works have sought to incorporate spatial inductive biases
to enhance their stability and performance [10, 22], design
more efficient self-attention operations [17, 79], and adapt
ViTs to a diverse range of computer vision tasks [19, 74].

Although ViTs have shown superior performance over
CNNs on various vision tasks, most of them are heavy-
weighted, requiring substantial computation and memory
footprint [39, 58]. That makes them unsuitable for mo-
bile devices with limited resources [46, 49]. Consequently,
researchers have dedicated to exploring various techniques
to make ViTs more lightweight and more friendly for mo-
bile devices [47, 59]. For example, MobileViT [46] adopts
a hybrid architecture, combining lightweight MobileNet
blocks and multi-head self-attention (MHSA) blocks. Ef-
ficientFormer [36] proposes a dimension-consistent design
paradigm to enhance the latency-performance boundary.
These lightweight ViTs have demonstrated new state-of-
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the-art performance and latency trade-offs on mobile de-
vices, outperforming previous lightweight CNNs [53, 60].

The success of lightweight ViTs is usually attributed
to the multi-head self-attention module with the capability
of learning global representations. However, the notable
architectural distinctions between lightweight CNNs and
lightweight ViTs, including their block structures, as well
as macro and micro elements, are generally overlooked. As
such, distinguished from existing works, our primary goal
is to revisit the design of lightweight CNNs by integrating
the architectural designs of lightweight ViTs. We aim to
bridge the gap between lightweight CNNs and lightweight
ViTs, and emphasize the mobile-friendliness of the former.

3. Methodology
In this section, we begin with a standard lightweight CNN,
i.e., MobileNetV3-L, and then gradually modernize it from
various granularities, by incorporating the architectural de-
signs of lightweight ViTs. We first introduce the metric
to measure the latency on mobile devices, and then align
the training recipe with existing lightweight ViTs in Sec-
tion 3.1. Based on the consistent training setting, we ex-
plore the optimal block design in Section 3.2. We further
optimize the performance of MobileNetV3-L on mobile de-
vices from macro-architectural elements in Section 3.3, i.e.,
stem, downsampling layers, classifier and overall stage ra-
tio. We then tune the lightweight CNN through layer-wise
micro designs in Section 3.4. Figure 2 shows the whole
procedure and results we achieve in each step. Finally, we
obtain a new family of pure lightweight CNNs designed for
mobile devices in Section 3.5, namely RepViT. All models
are trained and evaluated on ImageNet-1K.

3.1. Preliminary

Latency metric. Previous works [5, 57] optimize the infer-
ence speed of models based on metrics like floating point
operations (FLOPs) or model sizes. However, these metrics
do not correlate well with real-world latency in mobile ap-
plications [36]. Hence, following [35, 36, 46, 60], we mea-
sure the actual on-device latency as the benchmark metric.
Such a strategy can provide a more accurate performance
evaluation and fair comparisons among different models on
real-world mobile devices. In practice, we utilize the iPhone
12 as the test device and Core ML Tools [1] as the compiler,
like [35, 36, 60]. Besides, to avoid unsupported functions
with Core ML Tools, we employ the GeLU activation in the
MobileNetV3-L model, following [36, 60].

We measure the latency of MobileNetV3-L to be 1.01 ms.

Aligning training recipe. Recent lightweight ViTs [35, 36,
46, 49] generally adopt the training recipe from DeiT [58].
Specifically, they use the AdamW optimizer [42] and
the cosine learning rate scheduler to train the models
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Figure 2. We modernize MobileNetV3-L from various granular-
ities. We mainly consider the latency on mobile devices and the
top-1 accuracy on ImageNet-1K. Finally, we obtain a new fam-
ily of pure lightweight CNNs, namely RepViT, which can achieve
lower latency and higher performance. Note that these results are
obtained without the distillation.

from scratch for 300 epochs, with a teacher of RegNetY-
16GF [51] for distillation. Besides, they adopt Mixup [72],
auto-augmentation [8], and random erasing [77] for data
augmentation. Label Smoothing [56] is also employed as
the regularization scheme. For fair comparisons, we align
the training recipe of MobileNetV3-L with the existing
lightweight ViTs, with the exception of excluding knowl-
edge distillation for now. Consequently, MobileNetV3-L
obtains 71.5% top-1 accuracy.

We will now use this training recipe by default.

3.2. Block design

Separate token mixer and channel mixer. The block
structure of lightweight ViTs [35, 36, 47] incorporates
an important design feature, namely the separate token
mixer and channel mixer [70]. According to the recent re-
search [69], the effectiveness of ViTs primarily originates
from their general token mixer and channel mixer archi-
tecture, i.e., the MetaFormer architecture, rather than the
equipped specific token mixer. In light of this finding, we
aim to emulate the existing lightweight ViTs by splitting the
token mixer and channel mixer in MobileNetV3-L.

Specifically, as depicted in Figure 3.(a), the original Mo-
bileNetV3 block adopts a 1×1 expansion convolution, and a
1× 1 projection layer to enable interaction among channels
(i.e., channel mixer). A 3 × 3 depthwise (DW) convolu-
tion is equipped after the 1 × 1 expansion convolution for
the fusion of spatial information (i.e., token mixer). Such
a design makes the token mixer and channel mixer coupled
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Figure 3. Block design. (a) is a MobileNetV3 block with an
optional squeeze-and-excitation (SE) layer. (b) is the designed
RepViT block, which separates the token mixer and channel mixer
through the structural re-parameterization technique. The SE layer
is also optional in RepViT block. The norm layer and nonlinearity
are omitted for simplicity.

together. In order to separate them, we first move up the
DW convolution. The optional squeeze-and-excitation (SE)
layer is also moved up to be placed after the DW, as it de-
pends on spatial information interaction. Consequently, we
can successfully separate the token mixer and channel mixer
in the MobileNetV3 block. We further employ a widely
used structural re-parameterization technique [7, 14] for the
DW layer to enhance the model learning during training.
Thanks to the structural re-parameterization technique, we
can eliminate the computational and memory costs associ-
ated with the skip connection during inference, which is es-
pecially advantageous for mobile devices. We name such
a block as RepViT block (Figure 3.(b)), which reduces the
latency of MobileNetV3-L to 0.81 ms, together with a tem-
porary performance degradation to 68.3%.

Reducing expansion ratio and increasing width. In
vanilla ViTs, the expansion ratio in the channel mixer is
typically set to 4, making the hidden dimension of the Feed
Forward Network (FFN) module 4× wider than the input
dimension. It thus consumes a significant portion of the
computation resource, thereby contributing substantially to
the overall inference time [76]. To alleviate this bottle-
neck, recent works [21, 30] employ a narrower FFN. For in-
stance, LV-ViT [30] adopts an expansion ratio of 3 in FFN.
LeViT [21] sets the expansion ratio to 2. Besides, Yang et
al. [68] point out that there exists a significant amount of
channel redundancy in FFN. Therefore, it is reasonable to
use a smaller expansion ratio.

In MobileNetV3-L, the expansion ratio ranges from 2.3
to 6, with a concentration of 6 in the last two stages that have
a greater number of channels. For our RepViT block, we set
the expansion ratio to 2 in the channel mixer for all stages,
following [21, 30, 38]. This results in a latency reduction
to 0.65 ms. Consequently, with the smaller expansion ratio,
we can increase the network width to remedy the large pa-

rameter reduction. We double the channels after each stage,
ending up with 48, 96, 192, and 384 channels for each stage,
respectively. These modifications can increase the top-1 ac-
curacy to 73.5% with a latency of 0.89 ms.

Note that, by directly adjusting the expansion ratio and
network width on the original MobileNetV3 block, we ob-
tain inferior performance with 73.0% top-1 accuracy under
a similar latency of 0.91 ms. Therefore, by default, for the
block design, we employ the new expansion ratio and net-
work width with the RepViT block.

3.3. Macro design

In this part, we carry out optimizations with a specific focus
on its macro architecture for mobile devices, from the front
to the back of the network.

Early convolutions for stem. ViTs typically use a patchify
operation as the stem, dividing the input image into non-
overlapping patches [18]. This simple stem corresponds to
a non-overlapping convolution with a large kernel size (e.g.,
kernel size = 16) and a large stride (e.g., stride = 16). Hierar-
chical ViTs [39, 63] adopt the same patchify operation, but
with a smaller patch size of 4. However, recent work [65]
shows that such a patchify operation easily causes the sub-
standard optimizability and sensitivity to training recipes
for ViTs. To mitigate these problems, they suggest using
a small number of stacked stride-two 3×3 convolutions as
an alternative for the stem, known as early convolutions,
which improves the optimization stability and performance,
and is thus widely adopted by lightweight ViTs [35, 36].

In contrast, MobileNetV3-L adopts a complex stem that
involves a 3× 3 convolution, a depthwise separable convo-
lution, and an inverted bottleneck, as shown in Figure 4.(a).
Since the stem module processes the input image at the
highest resolution, a complex architecture can suffer from
severe latency bottlenecks on mobile devices. Therefore, as
a trade-off, MobileNetV3-L reduces the initial number of
filters to 16, which in turn limits the representation power of
the stem. To address these issues, following [35, 36, 38, 65],
we employ the way of early convolutions [65] and simply
equip two 3 × 3 convolutions with stride = 2 as the stem.
As shown in Figure 4.(b), the number of filters in the first
convolution is set to 24 and the one in the second is set to
48. The overall latency is reduced to 0.86 ms. Meanwhile,
the top-1 accuracy is improved to 73.9%.

We will now use early convolutions as the stem.

Deeper downsampling layers. In ViTs, spatial down-
sampling is typically achieved by a separate patch merg-
ing layer. As demonstrated in [41], such a separation-
based downsampling layer facilitates an increase in net-
work depth and mitigates the information loss due to the
resolution reduction. Therefore, EfficientViT [38] adopts a
sandwich layout to deepen the downsampling layer, achiev-
ing efficient and effective downsampling. In contrast,
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Figure 4. Macro design. (a) and (b), (c) and (d), (e) and (f) indicate the designs for stem, downsampling layer and classifier, respectively.
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resolutions respectively, where H and W denote the width and

height of the input image. C represents the channel dimension and B denotes the batch size. The norm layer and nonlinearity are omitted.

MobileNetV3-L achieves downsampling only by an in-
verted bottleneck block with the DW convolution of stride
= 2, as illustrated in Figure 4.(c). This design may lack
adequate network depth, resulting in information loss and
negative impact on the model performance. Therefore, to
achieve a separate and deeper downsampling layer, we first
use a DW convolution with stride = 2 and a pointwise 1× 1
convolution to perform the spatial downsampling and mod-
ulate the channel dimension, respectively, as shown in Fig-
ure 4.(d). Besides, we prepend a RepViT block to further
deepen the downsampling layer. A FFN module is placed
after the 1 × 1 convolution to memorize more latent infor-
mation. As a result, such deeper downsampling layers bring
the top-1 accuracy to 75.4% with a latency of 0.96 ms.

We will now leverage the deeper downsampling layers.

Simple classifier. In lightweight ViTs [21, 36, 46], the clas-
sifier generally consists of a global average pooling layer
followed by a linear layer. Such a simple classifier is thus
friendly to the latency, especially for mobile devices. In
contrast, MobileNetV3-L employs a complicated classifier,
which includes one extra 1 × 1 convolution and one extra
linear layer to expand the features to a higher-dimensional
space [9], as shown in Figure 4.(e). Such a design is cru-
cial for MobileNetV3-L to generate rich predictive fea-
tures [26], particularly given the small output channel in
the final stage. However, it in turn results in a heavy burden
to the latency on mobile devices. Considering that the fi-
nal stage now has more channels after block design in Sec-
tion 3.2, we thus replace it with a simple classifier, i.e., a
global average pooling layer and a linear layer, as shown in
Figure 4.(f). This step causes an accuracy drop of 0.6% but
make the latency decrease to 0.77 ms.

We will now employ the simple classifier.

Overall stage ratio. Stage ratio represents the ratio of
the number of blocks in different stages, thereby indicat-
ing the distribution of computation across the stages. Pre-
vious works [50, 51] have shown that the utilization of

more blocks in the third stage confers a favorable bal-
ance between the accuracy and speed. Therefore, existing
lightweight ViTs generally apply more blocks in this stage.
For example, EfficientFormer-L2 [36] employs a stage ra-
tio of 1:1:3:1.5. Meanwhile, Conv2Former [25] shows that
a more aggressive stage ratio and a deeper layout perform
better for small models. They thus adopt the stage ratio of
1:1:4:1 and 1:1:8:1 for Conv2Former-T and Conv2Former-
S, respectively. Here, we employ a stage ratio of 1:1:7:1
for the network. We then increase the network depth to
2:2:14:2, achieving a deeper layout. This step increases the
top-1 accuracy to 76.9% with a latency of 0.91 ms.

We will use this stage ratio.

3.4. Micro design

In this section, we focus on the micro architecture for
lightweight CNNs, including the kernel size selection and
squeeze-and-excitation (SE) layer placement.

Kernel size selection. The performance and latency of
CNNs are often impacted by the size of convolution ker-
nels. For example, to capture long-range dependencies like
MHSA, ConvNeXt [41] employs large kernel-sized convo-
lutions, exhibiting the performance gain. Similarly, Re-
pLKNet [15] shows a powerful paradigm that utilizes super
large convolution kernels in CNNs. However, large kernel-
sized convolution is not friendly for mobile devices, due to
its computation complexity and memory access costs. Ad-
ditionally, compared to 3× 3 convolutions, larger convolu-
tion kernels are typically not highly optimized by compil-
ers and computing libraries [14]. MobileNetV3-L primarily
utilizes 3 × 3 convolutions, with a small number of 5 × 5
convolutions employed in certain blocks. To ensure the in-
ference efficiency on the mobile device, we prioritize the
simple 3× 3 convolutions in all modules. This replacement
can maintain the top-1 accuracy at 76.9% while enjoying a
latency reduction to 0.89 ms.

We will now use 3× 3 convolutions.
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Table 1. Classification performance on ImageNet-1K. Following [21, 38], throughput is tested on a Nvidia RTX3090 GPU with maxi-
mum power-of-two batch size that fits in memory.

Model Type Params (M) GMACs
Latency ↓

(ms)
Throughput ↑

(im/s)
Epochs Top-1 (%)

MobileViG-Ti [48] CNN-GNN 5.2 0.7 1.0 4337 300 75.7
FastViT-T8 [59] Hybrid 3.6 0.7 0.9 3909 300 76.7

SwiftFormer-XS [55] Hybrid 3.5 0.6 1.0 4304 300 75.7
EfficientFormerV2-S0 [35] Hybrid 3.5 0.4 0.9 1274 300 / 450 75.7 / 76.2

RepViT-M0.9 CONV 5.1 0.8 0.9 4817 300 / 450 78.7 / 79.1
RepViT-M1.0 CONV 6.8 1.1 1.0 3910 300 / 450 80.0 / 80.3

MobileViG-S [48] CNN-GNN 7.2 1.0 1.2 2985 300 78.2
EfficientFormer-L1 [36] Hybrid 12.3 1.3 1.4 3360 300 79.2

SwiftFormer-S [55] Hybrid 6.1 1.0 1.2 3376 300 78.5
EfficientFormerV2-S1 [35] Hybrid 6.1 0.7 1.1 1153 300 / 450 79.0 / 79.7

RepViT-M1.1 CONV 8.2 1.3 1.1 3604 300 / 450 80.7 / 81.2
MobileViG-M [48] CNN-GNN 14.0 1.5 1.6 2491 300 80.6
FastViT-S12 [59] Hybrid 8.8 1.8 1.5 2313 300 80.9

FastViT-SA12 [59] Hybrid 10.9 1.9 1.8 2181 300 81.9
SwiftFormer-L1 [55] Hybrid 12.1 1.6 1.6 2576 300 80.9

EfficientFormerV2-S2 [35] Hybrid 12.6 1.3 1.6 611 300 / 450 81.6 / 82.0
RepViT-M1.5 CONV 14.0 2.3 1.5 2151 300 / 450 82.3 / 82.5

MobileViG-B [48] CNN-GNN 26.7 2.8 2.7 1446 300 82.6
EfficientFormer-L3 [36] Hybrid 31.3 3.9 2.7 1422 300 82.4
EfficientFormer-L7 [36] Hybrid 82.1 10.2 6.6 619 300 83.3

SwiftFormer-L3 [55] Hybrid 28.5 4.0 2.9 1474 300 83.0
EfficientFormerV2-L [35] Hybrid 26.1 2.6 2.7 399 300 / 450 83.3 / 83.5

RepViT-M2.3 CONV 22.9 4.5 2.3 1184 300 / 450 83.3 / 83.7

Squeeze-and-excitation layer placement. One advantage
of self-attention module compared with convolution is the
ability to adapt weights according to input, known as the
data-driven attribute [29, 64]. As a channel wise attention
module, SE layers [28] can compensate for the limitation
of convolutions in lacking data-driven attributes, bringing
better performance [73]. MobileNetV3-L incorporates SE
layers in certain blocks, with a primary focus on the lat-
ter two stages. However, as shown in [52], stages with
low-resolution feature maps get a smaller accuracy bene-
fit, compared to stages with higher resolution feature maps.
Meanwhile, along with performance gains, SE layers also
introduce non-negligible computational costs. Therefore,
we design a strategy to utilize SE layers in a cross-block
manner, i.e., adopting the SE layer in the 1st, 3rd, 5th, ...
block in each stage, to maximize the accuracy benefit with
a minimal latency increment. This step brings the top-1 ac-
curacy to 77.4% with a latency of 0.87 ms.

We will now use this cross-block SE layer placement.
This brings our final model, namely RepViT.

3.5. Network architecture

Following [36, 46], we develop multiple RepViT variants,
including RepViT-M0.9/M1.0/M1.1/M1.5/M2.3. The suf-
fix ”-MX” means that the latency of the corresponding
model is X ms on the mobile device, i.e., iPhone 12 with
iOS 16. Variants are distinguished by the number of chan-

nels and the number of blocks within each stage. Please
refer to the supplementary material for more details.

4. Experiments

4.1. Image Classification

Implementation details. We conduct image classifica-
tion experiments on ImageNet-1K, using a standard image
size of 224×224 for both training and testing. Following
[35, 36, 48, 59], we train all models from scratch for 300
epochs or 450 epochs using the same training recipe. For
fair comparisons, the RegNetY-16GF model with a top-1
accuracy of 82.9% is used as the teacher model for distil-
lation. Following [35, 36, 60], the latency is measured on
iPhone 12 with models compiled by Core ML Tools under
a batch size of 1. Note that RepViT-M0.9 is the outcome of
the “modernizing” process applied to MobileNetV3-L. Fol-
lowing [35, 59], we report the performance with and with-
out distillation in Table 1 and Table 2, respectively.

Comparison with state-of-the-arts. As shown in Table 1,
RepViT consistently achieves state-of-the-art performance
across various model sizes. With similar latency, RepViT-
M0.9 can significantly outperform EfficientFormerV2-S0
and FastViT-T8 by 3.0% and 2.0% top-1 accuracy, respec-
tively. RepViT-M1.1 can also enjoy 1.7% performance im-
provement over EfficientFormerV2-S1. It is worth noting
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Table 2. Results without distillation on ImageNet-1K.

Model Latency (ms) Epochs Top-1 (%)
MobileOne-S1 [60] 0.9 300 75.9

EfficientFormerV2-S0 [35] 0.9 300 73.7
FastViT-T8 [59] 0.9 300 75.6
RepViT-M0.9 0.9 300 77.4
RepViT-M1.0 1.0 300 78.6

MobileOne-S2 [60] 1.1 300 77.4
EdgeViT-XS [49] 3.6 300 77.5

EfficientFormerV2-S1 [35] 1.1 300 77.9
RepViT-M1.1 1.1 300 79.4

MobileOne-S4 [60] 1.6 300 79.4
FastViT-S12 [59] 1.5 300 79.8

EfficientFormerV2-S2 [35] 1.6 300 80.4
RepViT-M1.5 1.5 300 81.2

EfficientNet-B3 [57] 5.3 350 81.6
PoolFormer-S36 [69] 3.5 300 81.4

RepViT-M2.3 2.3 300 82.5

that RepViT-M1.0 notably achieves over 80% top-1 accu-
racy with 1.0 ms latency on iPhone 12, which is the first
time for a lightweight model, to the best of our knowledge.
Our largest model, RepViT-M2.3, obtains 83.7% accuracy
with only 2.3 ms latency. The results above well demon-
strate that pure lightweight CNNs can outperform existing
the state-of-the-art lightweight ViTs on mobile devices by
incorporating the efficient architectural designs.

Results without knowledge distillation. As shown in Ta-
ble 2, even without the enhancement of knowledge dis-
tillation, our RepViT can still significantly outperform all
competitor models in different levels of latency. For exam-
ple, with a latency of 1.0 ms, our RepViT-M1.0 can enjoy
2.7% accuracy gain over MobileOne-S1. For larger models,
our RepViT-M2.3 can obtain 1.1% performance improve-
ment while enjoying 34.3% latency reduction (3.5 ms to 2.3
ms), compared with PoolFormer-S36. Such results further
demonstrate the effectiveness of our models.

4.2. RepViT meets SAM

Segment Anything Model (SAM) [33] has shown impres-
sive zero-shot transfer performance for various computer
vision tasks recently. However, its heavy computation costs
remain daunting for resource-constrained mobile devices.
Here, to show the promising performance of RepViT in seg-
menting anything on mobile devices, following [71], we
replace the heavyweight image encoder in SAM with our
RepViT model, ending up with the RepViT-SAM model.
RepViT-SAM employs RepViT-M2.3 as the image encoder
and is trained for 8 epochs under the same setting as [71].
Like MobileSAM [71], we use only 1% data in the SAM-1B
dataset [33] for training. The project page can be found at
https://jameslahm.github.io/repvit-sam/.

We first compare our RepViT-SAM with Mobile-
SAM [71] and the original SAM [33] with ViT-B image

Table 3. Comparison between RepViT-SAM and others in terms
of latency. The latency (ms) is measured with the standard reso-
lution [20] of 1024×1024 on iPhone 12 and Macbook M1 Pro by
Core ML Tools. OOM means out of memory.

Platform
Image encoder Mask

decoder
RepViT-SAM MobileSAM [71] ViT-B-SAM [33]

iPhone 48.9 OOM OOM 11.6
Macbook 44.8 482.2 6249.5 11.8

Table 4. Comparison results on zero-shot edge detection (z.s.
edge.), zero-shot instance segmentation (z.s. ins.), and segmen-
tation in the wild benchmark (SegInW). Bold indicates the best,
and underline indicates the second best.

Model
z.s. edge. z.s. ins. SegInW

ODS OIS AP AP Mean AP

ViT-H-SAM [33] .768 .786 .794 46.8 48.7
ViT-B-SAM [33] .743 .764 .726 42.5 44.8
MobileSAM [71] .756 .768 .746 42.7 43.9

RepViT-SAM .764 .786 .773 44.4 46.1

encoder, i.e., ViT-B-SAM, in terms of latency. As demon-
strated in Table 3, on iPhone 12, our RepViT-SAM can per-
form model inference smoothly, while both competitors fail
to run. On Macbook M1 Pro, RepViT-SAM is nearly 10×
faster than the state-of-the-art MobileSAM.

We then evaluate the performance of our RepViT-SAM
on zero-shot edge detection using BSDS500 [2, 45], zero-
shot instance segmentation using COCO [37], and segmen-
tation in the wild benchmark (SegInW), following [31, 33].
As shown in Table 4, our RepViT-SAM outperforms Mo-
bileSAM and ViT-B-SAM on all benchmarks. Compared
with ViT-H-SAM, which is the largest SAM model with
over 615M parameters, our small RepViT-SAM can ob-
tain comparable performance in terms of ODS and OIS on
the zero-shot edge detection. Overall, taking all the results
into consideration, our RepViT-SAM model exhibits excep-
tional efficiency on both the iPhone 12 and Macbook M1
Pro, while maintaining remarkable transfer performance for
downstream tasks. We hope that RepViT-SAM model can
serve as a strong baseline for SAM on edge deployments.

4.3. Downstream Tasks

Object Detection and Instance Segmentation. We evalu-
ate RepViT on object detection and instance segmentation
tasks to verify its transfer ability. Following [35], we in-
tegrate RepViT into the Mask-RCNN framework [24] and
conduct experiments on MS COCO 2017 [37]. As seen
in Table 5, RepViT consistently outperforms the competi-
tor models in terms of latency, APbox and APmask, un-
der similar model sizes. Specifically, RepViT-M1.1 sig-
nificantly outperforms EfficientFormer-L1 backbone by 1.9
APbox and 1.8 APmask, with a smaller latency. For a
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Table 5. Object detection & instance segmentation results on MS COCO 2017 with the Mask RCNN framework. Semantic segmen-
tation results on ADE20K by integrating models into Semantic FPN. Backbone latencies are measured with image crops of 512×512 on
iPhone 12 by Core ML Tools. * indicates that the model is initialized with weights pretrained for 450 epochs on ImageNet-1K.

Backbone
Latency ↓

(ms)
Object Detection Instance Segmentation Semantic

APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 mIoU

ResNet18 [23] 4.4 34.0 54.0 36.7 31.2 51.0 32.7 32.9
PoolFormer-S12 [69] 7.5 37.3 59.0 40.1 34.6 55.8 36.9 37.2

EfficientFormer-L1 [36] 5.4 37.9 60.3 41.0 35.4 57.3 37.3 38.9
RepViT-M1.1 4.9 39.8 61.9 43.5 37.2 58.8 40.1 40.6

PoolFormer-S24 [69] 12.3 40.1 62.2 43.4 37.0 59.1 39.6 40.3
PVT-Small [63] 53.7 40.4 62.9 43.8 37.8 60.1 40.3 39.8

EfficientFormer-L3 [36] 12.4 41.4 63.9 44.7 38.1 61.0 40.4 43.5
RepViT-M1.5 6.4 41.6 63.2 45.3 38.6 60.5 41.5 43.6

EfficientFormerV2-S2* [35] 12.0 43.4 65.4 47.5 39.5 62.4 42.2 42.4
EfficientFormerV2-L* [35] 18.2 44.7 66.3 48.8 40.4 63.5 43.2 45.2

RepViT-M2.3* 9.9 44.6 66.1 48.8 40.8 63.6 43.9 46.1

larger model size, RepViT-M1.5 surpasses EfficientFormer-
L3 with a nearly 2× faster speed while enjoying com-
parable performance. Compared with EfficientFormerV2-
L, RepViT-M2.3 achieves comparable APbox and higher
APmask with a nearly 50% latency, highlighting the sub-
stantial advantage of lightweight CNNs in high-resolution
vision tasks. The results above well demonstrate the superi-
ority of RepViT in transferring to downstream vision tasks.

Semantic Segmentation. We conduct experiments on
ADE20K [78] to verify the performance of RepViT on the
semantic segmentation task. Following [35, 36], we in-
tegrate RepViT into the Semantic FPN framework [32].
As shown in Table 5, RepViT shows favorable mIoU-
latency trade-offs across different model sizes. Specifically,
RepViT-M1.1 significantly outperforms EfficientFormer-
L1 by 1.7 mIoU with a faster speed. RepViT-M1.5
achieves a 1.2 higher mIoU over EfficientFormerV2-S2,
along with a nearly 50% latency reduction. Compared with
EfficientFormerV2-L, RepViT-M2.3 presents an increase of
0.9 mIoU while being nearly 2× faster. All results show the
efficacy of RepViT as a general vision backbone.

4.4. Model Analyses

Structural re-parameterization (SR). To verify the effec-
tiveness of SR in RepViT block, we conduct ablation studies
on ImageNet-1K by removing the multi-branch topology of
SR at training time. As shown in Table 6, without SR, dif-
ferent variants of the proposed RepViT suffer from consis-
tent performance declines. The results well demonstrate the
positive impact of SR.

SE layer placement. To verify the advantage of utilizing
SE layers in a cross-block manner for all stages, we con-
duct ablation studies on ImageNet-1K by removing all SE
layers (i.e., “w/o SE”) and adopting SE layer in each block
(i.e., “per block”). As presented in Table 7, alternatively

Table 6. Analyses on structural re-parameterization (SR).

SR RepViT-M0.9 RepViT-M1.5 RepViT-M2.3
× 78.47% 82.09% 83.10%
✓ 78.74% 82.29% 83.30%

Table 7. Analyses on SE layer placement.

SE
RepViT-M0.9 RepViT-M1.5

Top-1 Latency ↓ Top-1 Latency ↓
w/o SE 77.92% 0.83 ms 81.86% 1.48 ms

per block 78.75% 0.92 ms 82.29% 1.58 ms
ours 78.74% 0.87 ms 82.29% 1.52 ms

adopting SE layers in blocks shows a more advantageous
trade-off between accuracy and latency.

5. Conclusion
In this paper, we revisit the efficient design of lightweight
CNNs by incorporating the architectural designs of
lightweight ViTs. This ends up with RepViT, a new
family of lightweight CNNs for resource-constrained mo-
bile devices. RepViT outperforms existing state-of-the-art
lightweight ViTs and CNNs on various vision tasks, show-
ing favorable performance and latency. It highlights the
promising prospect of pure lightweight CNNs for mobile
devices. We hope that RepViT can serve as a strong base-
line and inspire further research into lightweight models.
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