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Abstract

The machine learning community has witnessed a dras-
tic change in the training pipeline, pivoted by those “foun-
dation models” with unprecedented scales. However, the
field of adversarial training is lagging behind, predomi-
nantly centered around small model sizes like ResNet-50,
and tiny and low-resolution datasets like CIFAR-10. To
bridge this transformation gap, this paper provides a mod-
ern re-examination with adversarial training, investigating
its potential benefits when applied at scale. Additionally, we
introduce an efficient and effective training strategy to en-
able adversarial training with giant models and web-scale
data at an affordable computing cost. We denote this newly
introduced framework as AdvXL.

Empirical results demonstrate that AdvXL establishes
new state-of-the-art robust accuracy records under Au-
toAttack on ImageNet-1K. For example, by training on
DataComp-1B dataset, our AdvXL empowers a vanilla ViT-
g model to substantially surpass the previous records of l∞-
, l2-, and l1-robust accuracy by margins of 11.4%, 14.2%
and 12.9%, respectively. This achievement posits AdvXL as
a pioneering approach, charting a new trajectory for the
efficient training of robust visual representations at signif-
icantly larger scales. Our code is available at https:
//github.com/UCSC-VLAA/AdvXL.

1. Introduction

The landscape of machine learning, particularly deep learn-

ing, has witnessed a transformative shift with the advent of

large-scale models and datasets. This paradigmatic shift,

exemplified by the inception of “foundation models” such

as Large Language Models (LLMs) [6, 14, 41, 55, 56], has

redefined the boundaries of what is achievable in various

domains of artificial intelligence. Excitingly, parallel devel-

opments have also been observed in computer vision — re-

cent advancements in scaling datasets and model sizes have

mirrored the feasibility of “LLM-like” scaling for building

exceptionally strong visual recognition models [12, 16, 64].

(a) Scale comparison.
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(b) Performance comparison.

Figure 1. Our AdvXL increases significantly in terms of both

model size and data scale, which brings a substantial boost over

prior best results of l∞, l2, and l1 robustness on ImageNet-1K,

even though our model is only trained to be l∞-robust.

However, amidst this evolution, adversarial training [19,

39] — a pivotal strategy aimed at securing model robustness

against adversarial attacks — has faced significant scala-

bility challenges in this foundation model era. Adversar-

ial training, typically employed in small models such as

ResNet-50 [23] trained on small datasets like CIFAR-10

[28], involves repeatedly generating adversarial examples

through on-the-fly attacks during the training process. This

iterative and intensive procedure demands substantial com-

putational resources, thus making it challenging to scale up.
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Contrasting with these challenges, recent endeavors in

adversarial training have indeed shown intriguing glimpses

of promise from data scaling by incorporating 50 mil-

lion additional images to sustain state-of-the-art robustness

records on CIFAR-10 [57]. Additionally, other adversar-

ial training works [34, 52] attain impressive performance

with model scaling using larger models like Swin-L [35]

and ConvNeXt-L [37] on ImageNet-1K. These observa-

tions, coupled with the burgeoning success of foundation

models, instigates a critical question: can the principles of
model and data scaling, already proven effective in vanilla
training, be transferable to adversarial training? Moreover,

how effectively does such scaling translate to robustness im-

provement in adversarial training?

In response to these questions, we re-examine adver-

sarial training at a previously uncharted foundation-model

scale. In terms of model scaling, we increased the model

parameters from the previously largest 200M size to 1B;

for data scaling, we adversarially train models on vari-

ous datasets spanning from the medium-size ImageNet-1K

with around 1M images to the web-scale dataset compris-

ing more than 1B images. Additionally, to make the scal-

ing of adversarial training computationally affordable, we

introduce an efficient approach with a straightforward two-

stage training schedule, i.e., first lightweight pre-training,

then intensive fine-tuning. We name this efficient and scal-

able adversarial training framework as AdvXL.

Collectively, extensive experiments showcase that these

scaling endeavors successfully result in substantial im-

provements over the previous state-of-the-art methods on

adversarial robustness. For example, by training a one-

billion parameter model on a one-billion image dataset,

we establish a new state-of-the-art record for l∞-robust

accuracy of 71.0% under AutoAttack on ImageNet-1K,

marking a substantial enhancement in model robustness.

Notably, AdvXL demonstrates exceptional generalizability

when tested against unseen attacks, improving upon the pre-

vious best l2- and l1-robust accuracy of models trained to

be l∞-robust by margins of ∼14% and ∼13%, respectively.

These results underscore the pivotal role of (significantly)

scaled adversarial training in enhancing model robustness

against diverse adversarial threats.

2. Related Work

2.1. Adversarial Training

Adversarial training has emerged as a pivotal defense mech-

anism against adversarial attacks in machine learning. Ini-

tially introduced by Goodfellow et al. [19], this method-

ology involves training models on crafted adversarial ex-

amples designed to provoke model misclassification. Sub-

sequent studies have extended this foundation, examin-

ing facets such as the impact of batch size, learning rate,

data augmentation, and training duration on model robust-

ness, predominantly on smaller datasets like CIFAR-10

[7, 20, 25, 33, 40, 42]. Other research efforts have explored

deeper nuances of adversarial training recipes tailored for

ImageNet-1K [3, 11, 49, 52, 60–62]. Recent works also

investigate the robustness of novel network designs like Vi-

sion Transformer (ViT) [9, 17, 21, 52]. In particular, Singh

et al. [52] achieve the best generalized robustness by en-

hancing ViT and ConvNeXT with Convolutional Stem.

Despite its effectiveness, adversarial training is notori-

ously resource-intensive, limiting its scalability. To address

this challenge, researchers have pursued more resource-

efficient adversarial training methodologies. Examples in-

clude Free Adversarial Training [51] and Fast Adversar-

ial Training [58], both aimed at reducing training costs

while preserving model robustness. However, these ap-

proaches have predominantly focused on smaller networks

and datasets, leaving a noticeable gap concerning large-

scale models. In this work, we aim to significantly ex-

pand the horizons of scaling adversarial training to unprece-

dented levels of efficiency and effectiveness.

2.2. Scaling Vision Foundation Models

Parallel to large-scale language models, exemplified by in-

novations like GPT series [41], similar efforts have been

made for vision models, particularly with the scaling of

ViTs [12, 16, 64]. Liu et al. [36] effectively trained the

SwinV2-G model, housing an astounding 3B parameters,

by employing residual-post-norm and scaled cosine atten-

tion. Similarly, Dehghani et al. [12] have shown substan-

tial performance enhancements by scaling ViTs to 22B pa-

rameters, mirroring the scaling trends witnessed in language

models.

Despite the burgeoning scaling efforts in vision founda-

tion models, the exploration of adversarial training has tra-

ditionally been limited to small or base model sizes. Recent

scaling effort has led to noteworthy performance improve-

ments, evidenced by the achievements on RobustBench [9]

with larger models like Swin-L and ConvNeXt-L [34, 52].

Diverging from these antecedent initiatives, our work ex-

plores adversarial training at an even much larger scale, up

to the training of a one-billion-parameter model on one-

billion samples, thereby pioneering the frontiers of adver-

sarial training into uncharted territory.

3. AdvXL
In this section, we introduce AdvXL, a novel training

framework designed for adversarially robust visual repre-

sentation learning at scale. We first revisit the fundamen-

tal concept of adversarial attacks and adversarial training

in Sec. 3.1. Following this, in Sec. 3.2, we present a two-

stage efficient adversarial training pipeline characterized by

a coarse-to-fine, weak-to-strong approach. In Sec. 3.3, we
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showcase how to leverage CLIP [47] text encoder as a tool

for enabling us to learn with web-crawled images, where

a precise label is usually missing but with a corresponding

text description, for scaled adversarial training.

3.1. Adversarial Training

Adversarial examples are uniquely crafted inputs that, de-

spite their visual similarity to authentic samples within

specific norm constraints, are engineered to deceive ma-

chine learning models into producing inaccurate predic-

tions. These examples play a crucial role in assessing the

robustness of a model in scenarios where malicious manip-

ulations may occur.

Adversarial Training is central to fortifying a model

against such adversarial inputs. This technique involves a

strategic training process designed to enhance the model’s

robustness to adversarial attacks. The mathematical foun-

dation of AT is encapsulated as an optimization problem:

min
θ

∑

(xi,yi)∈D
max

δ:‖δ‖p≤εp
L (fθ (xi + δ) , yi) , (1)

where θ represents the parameters for a network fθ. The ob-

jective is to train the network fθ such that it maintains con-

sistent predictions under adversarial perturbations δ, i.e.,

within an lp-ball of radius εp centered around each input

sample xi.

Adversarial Training has proven highly effective to safe-

guard models against adversarial threats [5, 19, 53]. In

our approach, we adopt the widely recognized PGD-based

Adversarial Training (PGD-AT) method for the inner max-

imization problem, renowned for its robust performance

and computational efficiency. For the outer minimization

problem, we typically employ optimization algorithms like

Stochastic Gradient Descent or AdamW [38], using cross-

entropy as the loss function L.

3.2. Two-stage Training

Our adversarial training framework hinges on a two-stage

process: a lightweight pre-training stage and an intensive

fine-tuning stage. During the pre-training stage, the model

is trained with inputs at reduced token length and weaker

attacks, spanning a relatively extended duration. Then, dur-

ing the subsequent fine-tuning stage, the model is trained

with inputs at full resolution and stronger attacks, following

a comparatively shorter schedule. Compared to the vanilla

one-stage adversarial training pipeline, this coarse-to-fine

(w.r.t. input), weak-to-strong (w.r.t. adversarial attacker),

two-stage training pipeline significantly reduces the over-

all training cost, rendering it computationally affordable for

further scaling up.

Coarse-to-fine training. We first explore various strategies

for image token reduction in the initial pre-training stage.

Following [30, 31], three distinct approaches are investi-

gated:

• Random Masking. This method, as described in [24, 32],

involves dividing an image into non-overlapping patches

(e.g., 16×16), subsequently masking a random propor-

tion of these patches (e.g., 75%). The model only pro-

cesses the visible patches, reducing the computational

cost by 50% or 75%, depending on the masking ratio.

• Block Masking. Inspired by [4], this approach retains

tokens from a consecutive large block within the image

while discarding others. This method leverages the com-

mon placement of objects in the central regions of im-

ages, potentially preserving semantic meaningful tokens

while significantly reducing the computational cost from

lengthy inputs.

• Resizing. Image resizing is another method for reducing

the image token length. Compared to masking, resizing

retains more image information, especially high-level se-

mantics. For instance, resizing an image to 112 × 112
is computationally akin to applying a 75% masking ratio

to an image resized to 224 × 224. In our approach, we

choose anti-aliasing bilinear interpolation to better pre-

serve the image quality.

A visual comparison illustrating these image token reduc-

tion strategies is presented in Fig. 2. These strategies are

evaluated to discern their efficacy in achieving training ac-

celeration while retaining critical image semantics.

Weak-to-strong training. Another critical factor for accel-

erating adversarial training involves managing the number

of gradient steps used to craft adversarial samples. Gen-

erally speaking, increasing the number of gradient steps re-

sults in stronger attacks and enhances adversarial robustness

but inevitably inflates computational costs. It has been re-

ported that forming a robust network with adversarial train-

ing can take significantly longer, ranging from 3 to 30 times

more than building a non-robust equivalent [51]. As a re-

sult, previous studies [44, 51, 59] have proposed strategies

like recycling gradient information or employing a small

generator network to mitigate the significant computational

burden in adversarial training.

Our exploration reveals that applying a small number

of PGD steps (e.g., PGD-1) during the pre-training stage

and subsequently increasing these steps during the fine-

tuning phase (e.g., PGD-3) sufficiently secure strong robust-

ness, i.e., this method proves effective compared to initiat-

ing training with strong attacks. Importantly, this approach

contributes a notable additional speedup, enhancing the effi-

ciency gained from the coarse-to-fine training pipeline (e.g.,

up to 2×), as solving the inner optimization of adversarial

training often requires optimization with multiple iterations

and is extremely time-consuming.
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(a) Original (b) Random Masking (c) Block Masking (d) Resizing
Figure 2. Illustration of different approaches to image token reduction.

Fine-tuning. Echoing findings from prior research [31,

32], we find that further adversarially training our model

with full-resolution inputs and stronger attacks for a short

schedule yields considerable improvement and delivers a

more favorable accuracy-to-time trade-off. Compared to the

pre-training stage, the fine-tuning phase is notably shorter,

often reduced by one or two orders of magnitude. There-

fore, even though each sample may entail a notably higher

number of image tokens (e.g., 4× by switching back to full

image resolution) and require more gradient steps (e.g., 2×
by switching back to the strong PGD-3 attacker) in this fine-

tuning phase, the overall computation does not increase sig-

nificantly.

3.3. CLIP Embedding for Web-Crawled Images

Previous works have leveraged the zero-shot generaliza-

tion capability of pre-trained CLIP text encoder [47] to

aid a range of downstream tasks, including object detec-

tion [22, 66, 67] and segmentation [29, 48] in an open-

vocabulary setting. Similarly, we hereby propose to em-

ploy CLIP text encoder to extract classifier weights when

training on web-crawled large-scale datasets with open text

descriptions, such as LAION-400M [50] and DataComp-

1B [18]. Moreover, adversarial training on these gigan-

tic datasets enables the model to transcend pre-defined

categories and directly learn intricate class relationships

through natural language supervision.

Specifically, we adopt the contrastive loss from [47, 54],

formulated as:

L
(
fI , fT , Ii, Ti

)
=

− 1

2n

∑
i

⎛
⎝log

exp
(
hT
i · hI

i /τ
)

∑
j exp

(
hT
i · hI

j/τ
) + log

exp
(
hI
i · hT

i /τ
)

∑
j exp

(
hI
i · hT

j /τ
)
⎞
⎠

(2)

where n represents the batch size; τ is a learnable tem-

perature parameter; hI
i = f I (Ii) /

∣∣f I (Ii)
∣∣ and hT

i =

fT (Ti) /
∣∣fT (Ti)

∣∣ denote the normalized projected fea-

tures of an image-text pair (Ii, Ti). Note that we opt for

CLIPA-trained text encoder [30, 31] as the initial fT weight

and keep it frozen during training. In this case, the adver-

sarial training framework can be described as the following

optimization problem,

min
θI

∑

(Ii,Ti)∈D
max

δ:‖δ‖p≤εp
L (

f I , fT , Ii + δ, Ti

)
, (3)

where θI represents the parameters of the image encoder

f I . To elucidate this integration further, Fig. 3 provides

a visual representation illustrating the incorporation of the

CLIP encoder in adversarial training.

4. Experiment
In this section, we first introduce the datasets used for ad-

versarial training, along with the details of the training and

evaluation setup in Sec. 4.1. In Sec. 4.2, we delve into the

ablation results, exploring key elements in our two-stage

training pipeline. Furthermore, we investigate the perfor-

mance of adversarial training as the model, data, and sched-

ule scale synergistically in Sec. 4.3. Finally, we compare

and contrast the efficiency and efficacy of AdvXL against

prior arts in Sec. 4.5.

4.1. Implementation

Dataset. We utilize four different datasets as the training

set for adversarial training, which are ImageNet-1K and

ImageNet-21K [13] — two well-curated labeled datasets

for supervised training, as well as LAION-400M [50] and

DataComp-1B [18] — two weakly labeled datasets with

natural language captions crawled from the Internet.

Specifically, ImageNet-1K comprises approximately

1.28M images from 1000 classes, while ImageNet-21K

consists of around 13M images from 19k classes. LAION-

400M is the first publicly available web-scale dataset con-

sisting of 400M image-text pairs. It is filtered by CLIP

and NSFW criterion, but is still relatively non-curated.

DataComp-1B is a more recent dataset with about 1.3B

samples filtered from a candidate pool of 12.8B image-text

pairs from Common Crawl, which has been recorded to

yield superior performance for contrastive training.

To summarize, our choices of training datasets cover a

wide range of representative datasets, spanning from ∼1M

to ∼1B samples, from well-curated labeled data to non-

curated web data. This diverse selection enables a compre-

hensive investigation into the adversarial training concern-

ing data scaling behaviors.
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Figure 3. Illustration of leveraging CLIP embedding in adversarial training. The gray line denotes the adversarial example generation flow.

Training. By default, our training initiates with a pre-

training stage utilizing an image size of 112 × 112 and

PGD-1 with a step size of 4/255. Subsequently, the model

undergoes a fine-tuning stage employing an image size of

224 × 224 and PGD-3 with a step size of 4/255. Our pri-

mary focus centers on ViT [15], renowned for its scalability

[15, 24, 32, 47] yet relatively underexplored in the realm of

adversarial training. Note that the current best ViT model

on ImageNet-1K in RobustBench is only ViT-B/16 [9], in-

dicating plenty of room for further scaling.

On ImageNet-1K and ImageNet-21K, our recipe closely

follows prior works [24], which successfully trains ViTs on

ImageNet at scale from scratch. Specifically, we adopt the

AdamW optimizer [38] with a short-term linear learning

rate warmup followed by a cosine learning rate schedule.

Our data augmentation strategy integrates RandAug [10],

MixUp [65] and CutMix [63]. Additionally, we incorporate

stochastic depth [27] and weight decay for model regular-

ization. On web-scale datasets such as LAION-400M and

DataComp-1B, our training recipe aligns with methodolo-

gies outlined in [31].

The specifics of our training schedules are tailored to in-

dividual datasets, where the total number of training sam-

ples serves as the primary metric, following a paradigm akin

to CLIP training [31, 32, 47]. For instance, our default pre-

training schedule on ImageNet-1K spans a total of 256M

samples, which corresponds to 200 epochs of training.

Evaluation. In our analysis, we primarily use robust ac-

curacy under PGD-20 attack with a step size of 1/255 as

the principal metric. When comparing against other state-

of-the-art methods, we follow RobustBench [9] and use the

robust accuracy evaluated on a subset of selected 5000 im-

ages of the ImageNet-1K validation set under AutoAttack.

AutoAttack is a standardized adversarial robustness bench-

mark that consists of an ensemble of white- and black-

box attacks, including APGD for cross-entropy and targeted

DLR loss, FAB-attack [8] and the black-box Square At-

tack [2]. The attack radii are ε∞ = 4/255, ε2 = 2, and ε1
= 75 for l∞, l2, and l1 attacks, respectively.

Approach Ratio/Size Compute Clean PGD-20

baseline 224/0% 1.0× 75.5 54.5

Random Masking 224/50% 0.5× 72.0 51.9

Random Masking 224/75% 0.25× 67.3 46.5

Block Masking 224/50% 0.5× 72.3 52.0

Block Masking 224/75% 0.25× 70.6 49.3

Resizing 160/0% 0.5× 74.7 53.9

Resizing 112/0% 0.25× 73.0 52.5

Resizing 96/0% 0.18× 70.0 49.9

(a) Image token reduction.

Stage Step Step size Compute Clean PGD-20

Pre-training

1 4/255 1.0× 73.0 52.5

2 3/255 1.5× 72.1 52.6

3 3/255 2.0× 71.8 52.5

Fine-tuning

1 4/255 1.0× 75.0 50.6

2 4/255 1.5× 73.2 52.3

3 4/255 2.0× 73.0 52.5

(b) Attack strength.

Approach Ratio/Size Clean PGD-20

w/o Tuning
160/0% 74.4 43.2

112/0% 68.5 39.3

160/0% 74.7 53.9
w Tuning

112/0% 73.0 52.5

(c) Fine-tuning.

Table 1. Ablating design choices with ViT-B/16 on ImageNet-1K.

We report clean and PGD-20 robust accuracy (%). If not speci-

fied, the default setting is: 112×112 image size for pre-training,
224×224 image size for fine-tuning; PGD-1 for pre-training, and
PGD-3 for fine-tuning; 200 epochs for pre-training length, 20
epochs for fine-tuning. Default settings are marked in gray . In ta-

ble (a) and (b), note that full-resolution fine-tuning is included. In

table (b), when tuning the PGD step and step size in pre-training,

we fix them to be 3 and 4/255 respectively in fine-tuning; When

tuning the PGD step and step size in fine-tuning, we fix them to be

1 and 4/255 respectively in pre-training.
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4.2. Design Choices

We first conduct an ablation study on the design choices of

AdvXL using ViT-B/16 on ImageNet-1K, with robust accu-

racy under PGD-20 serving as the primary metric for adver-

sarial robustness. We maintain the default baseline setting

(see the caption of Tab. 1). Any alterations are confined to

the specific factors under examination.

Token Reduction. Our investigation delves into three dis-

tinct strategies for reducing image token length: 1) random

masking, which randomly removes a portion of input to-

kens; 2) block masking, which retains a large consecutive

block of the input grid; 3) resizing, which preserves most

high-level semantic information. As shown in Tab. 1a, all

three methods exhibit substantial computational speedups.

Notably, image resizing demonstrates superior performance

among these strategies, presumably because it suffers the

least from loss of information. For instance, resizing the in-

put image to 112 × 112 leads to a 75% reduction in total

computation, with only a minor decrease of 2.5% in clean

accuracy and 2.0% in PGD-20 robust accuracy. We select an
image size of 112 × 112 for pre-training as the default set-
ting due to its satisfactory balance between efficiency and
performance.

Attack Strength. Tab. 1b scrutinizes the impact of vary-

ing attack steps and step sizes during pre-training and fine-

tuning. Intriguingly, we observe that the number of PGD

steps for pre-training does not need to align with that for

fine-tuning. For instance, adopting PGD-1 for pre-training

yields nearly equivalent robustness compared to PGD-3,

while reducing the computation by 100%. This suggests

that despite exposure to weaker attacks during pre-training

(e.g., with PGD-1), a short-term but stronger adversarial

fine-tuning (e.g., with PGD-3) is sufficient for the model to

secure strong robustness against adversarial attacks. There-

fore, we opt to use PGD-1 for pre-training and PGD-3 for
fine-tuning in our default setting.

Fine-tuning. Tab. 1c outlines the impact of full resolution

fine-tuning with stronger attacks for an extra 20 epochs

on the ImageNet-1K dataset. For 112 × 112 PGD-1 pre-

training, a 224×224 PGD-3 fine-tuning elevates clean accu-

racy by 4.5% and PGD-20 robust accuracy by 13.2%. This

fine-tuning phase substantially narrows the performance

gap between reduced-length pre-training and full-length

training, demanding only around 60% of the pre-training

computational resources. Extending the pre-training sched-

ule by the corresponding compute yields significantly in-

ferior results, highlighting the distinct advantage of fine-

tuning in achieving a superior performance-compute trade-

off. Therefore, we consistently integrate a short-term fine-
tuning stage post pre-training.

4.3. Scaling Behavior

The acceleration outlined previously allows us to delve into

the performance implications of scaling AdvXL within an

affordable computational budget. In particular, we scruti-

nize the scaling behavior along three principal axes below,

in line with the approach established by Li et al. [32]:

• Model scaling. We substitute the ViT-B/16 model with

ViT-L/16 or ViT-H/14, which has ∼2× or ∼4× number of

parameters, respectively.

• Data scaling. We substitute the training set of ImageNet-

1K with three much larger datasets, excessively expand-

ing the total number of training samples up to more than

∼1B. These datasets include ImageNet-21K [13], a super-

set of ImageNet-1K; LAION-400M [50], and DataComp-

1B [18], two web-scale datasets.

• Schedule scaling. To delineate the influence of large

dataset size from that of extended training duration, we

conduct training on ImageNet-21K with the same num-

ber of seen samples as training on ImageNet-1K.

By meticulously traversing these three scaling axes, we

scrutinize their individual effects on AdvXL’s performance.

The findings are detailed in Tab. 2, culminating in the fol-

lowing insights.

Model scaling. The evaluation of larger model sizes re-

veals discernible improvements in both clean accuracy and

adversarial robustness. For instance, as shown in the

first and the second rows of Tab. 2, ViT-L/16 surpasses

ViT-B/16 by 1.8% clean accuracy (from 73.0% to 74.8%)

and 1.8% PGD-20-robust accuracy (from 52.5% to 54.7%)

when training on ImageNet-1K. Interestingly, ViT-H/14,

despite its superior clean accuracy and tripled computa-

tional expense, demonstrates only a slightly better perfor-

mance (0.2% higher PGD-20 robustness) compared to ViT-

L/16 when training on ImageNet-1K, as shown in the third

row of Tab. 2. However, it notably surpasses ViT-L/16 by

a substantial margin (2.2% in PGD-20 robustness) when

training on the larger ImageNet-21K dataset (as shown in

the fifth and sixth rows of Tab. 2). This observation suggests

that larger models necessitate a larger training set to fully

leverage their potential. This finding aligns with conclu-

sions in prior studies [26], advocating for equivalent scaling

of model size and the volume of training tokens.

Schedule scaling. Initial experiments demonstrated that

extending the training schedule for ViT-L/16 on ImageNet-

1K yielded diminishing gains, possibly due to the compar-

atively “limited” scale of ImageNet-1K. However, results

in Tab. 2 shows that with larger and more diverse datasets,

training with additional samples yields non-trivial enhance-

ments. Even with a 20× augmentation in the training sched-

ule using a one-billion sample dataset, such as training a
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Case Model Dataset Samples@Resolution Adv. Steps
Compute

(1e10)
Clean PGD-20

Baseline ViT-B/16 ImageNet-1K 256M@112 + 38.4M@224 1/3 0.5 73.0 52.5

model scaling ViT-L/16 ImageNet-1K 256M@112 + 38.4M@224 1/3 1.7 74.8 54.7

model scaling ViT-H/14 ImageNet-1K 256M@112 + 38.4M@224 2/3 5.7 76.5 54.9

model+data scaling ViT-L/16 + ImageNet-21K 256M@112 + 38.4M@224 1/3 1.7 75.8 56.1

model+data+schedule scaling ViT-L/16 + ImageNet-21K 789M@112 + 38.4M@224 1/3 3.4 77.2 58.3

model+data+schedule scaling ViT-H/14 + ImageNet-21K 789M@84 + 38.4M@224 2/3 8.1 79.0 60.5

model+data+schedule scaling ViT-L/16 + LAION-400M 2.56B@112 + 38.4M@224 1/3 8.8 80.5 62.2

model+data+schedule scaling ViT-H/14 + DataComp-1B 5.12B@84 + 38.4M@224 2/3 38.6 83.3 68.2

Table 2. Scaling behavior of AdvXL. For each model, we report its training set, the number of training samples it used and their resolution,

its PGD number of steps (in pre-training and fine-tuning, respectively), the total training compute (in 1e10 GFLOPS), clean accuracy, and

PGD-20-robust accuracy. “+” on the dataset means any additional dataset used during training besides ImageNet-1K. We scale along three

aspects: model, data, and scale, and observe consistent improvement in terms of both clean accuracy and robustness.

Dataset Model Clean PGD-20

ImageNet-1K
ViT-B/16 73.0 52.5

ConvNeXT-B 73.9 54.2

+LAION-400M
ViT-L/16 80.5 62.2

ConvNeXT-L 77.9 58.5

Table 3. Architecture comparison between ViT and ConvNeXT.

Text Encoder Clean PGD-20

Base 80.6 62.2

Large 80.5 62.2

Huge 80.6 62.3

Table 4. CLIP text encoder size.

ViT-H/14 model on DataComp-1B for 5.12B samples (the

last row of Tab. 2), there is not an observed saturation point.

Data scaling. Our AdvXL also exhibits favorable

outcomes with web-scale datasets LAION-400M and

DataComp-1B. This trend could potentially pave the way

for adversarially trained models to rival foundational

models like CLIP [47] and Flamingo [1]. Notably, we

find that data scaling itself is beneficial, even without a

prolonged training schedule. As shown in the second and

the fourth rows of Tab. 2, by substituting ImageNet-1K

with ImageNet-21K to adversarially train ViT-L/16, we

observe an uptick of 1.0% in clean accuracy and a 1.4%

increase in robustness, notwithstanding identical training

durations. When coupled with our preliminary findings

suggesting diminished returns from extended schedules on

ImageNet-1K, we conclude that the richness and diversity

brought by data scaling stand as pivotal elements in the

success of adversarial training at scale.

4.4. Architecture Choice

We have also ablated alternative architectures such as Con-

vNeXT [37] and Swin-Transformer [35], two leading back-

bones on RobustBench ImageNet leaderboard [34, 52].

However, our attempts to train a Swin-Transformer with

reduced-size inputs posed challenges as the feature size of

the last stage may even be smaller than the window size.

For example, when employing common configurations like

a patch size 4×4 and a window size 7×7, using a 112×112

input would lead to a final stage feature size of 3×3. This

mismatch hindered effective training without architectural

modifications, and thus, we primarily focus on comparing

ViT and ConvNeXT.

To ensure fair evaluation, we maintain consistency with

the same two-stage training recipe detailed in Sec. 4.3 dur-

ing the performance comparison. The results, presented in

Tab. 3, demonstrate that ConvNeXT does outperform ViT

on a relatively small scale. However, this advantage di-

minishes as the scale increases, leading us to keep ViT as

the default backbone for comparisons against other state-

of-the-art models.

Also, we could adopt a larger pre-trained CLIP text en-

coder in contrastive learning, as it is frozen and introduces

little computational overhead. Tab. 4 shows the result of

training ViT-L/16 on LAION-400M with various CLIPA

text encoders. As can be seen, the performance is robust to a

wide range of CLIP text encoder choices. Thus, we simply

use the same-scale text encoder to the image encoder (i.e. a

ViT-L image encoder with a Large text encoder).

4.5. Comparison with SOTA Models

The comparison presented in Tab. 5 evaluates our models

against prior works, focusing on l∞ robustness at ε∞ =

4/255. Following [52], we include l2 robustness at ε2 = 2

and l1 robustness at ε1 = 75. Models listed exhibit over

80M parameters and are sorted based on their l∞ robust-

ness under AutoAttack.

AdvXL emerges as the top performer owing to its un-

precedented scale in adversarial training. Our highly ef-

ficient two-stage training paradigm facilitates this scala-
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Model Dataset Samples@Resolution Pre-trained Adv. Steps
Params

(M)

Compute

(1e10)
Source Clean l∞ l2 l1

RobArch-L

ImageNet-1K

128M@224 3 104 1.3 [43] 73.5 48.9 39.5 14.7

ViT-B/16 384M@224 2 87 2.7 [49] 76.6 53.5 - -

ConvNeXT-B 384M@224 3 89 2.4 [34] 76.0 55.8 44.7 21.2

Swin-B 384M@224 3 88 2.4 [34] 76.2 56.2 47.9 23.9

ConvNeXt-B+ConvStem 320M@224 � 3 89 2.0 [52] 75.2 56.3 49.4 23.6

ConvNeXt-L+ConvStem 128M@224 � 3 198 1.8 [52] 77.0 57.7 47.0 22.2

ConvNeXt-L+ConvStem 128M@224(320 eval) � 3 198 1.8 [52] 78.2 59.4 56.2 33.8

ConvNeXt-L 384M@224 3 198 5.3 [34] 78.0 58.5 - -

Swin-L 384M@224 3 197 5.3 [34] 78.9 59.6 - -

ViT-H/14 + DataComp-1B 5.12B@84 + 38.4M@224 + 6.4M@336 2/3 304 39.6 ours 83.9 69.8 69.8 46.0

ViT-g/14 + DataComp-1B 5.12B@84 + 38.4M@224 + 6.4M@336 2/3 1013 63.4 ours 83.9 71.0 70.4 46.7

Table 5. Comparison to SOTA l∞-robust models on ImageNet. For each model we report the training set it used, the number and

resolution of training samples it used, if it uses pre-trained weights or not, the number of PGD steps in AT (in pre-training and fine-tuning,

respectively), the number of parameters of each model, the total training compute (in 1e10 GFLOPS), its source, its clean accuracy and

l∞, l2, l1-robust accuracy with ε∞ = 4/255, ε2 = 2, ε1 = 75(AutoAttack). Note that for the model initialized with pre-trained weight, the

pre-training compute is not included. For unavailable metrics of those publicly unavailable models, we use “-” to fill in the blank. “+” on

the dataset means any additional dataset used during training besides ImageNet-1K. Our AdvXL successfully secures new state-of-the-art

records on all three robustness metrics thanks to its unprecedented model and data scale.

bility without incurring excessive computational expenses.

For instance, our largest ViT-g/14 model trained on the

DataComp-1B dataset achieves outstanding results with a

computing budget of merely about 12× that of the previ-

ous best results from [34]. Despite this relatively modest

computational investment, our model outperforms them by

an impressive 11.4% in terms of l∞-robust accuracy under

AutoAttack. We would like to stress that training with full

resolution and strong attacks on 5.12B samples, without our

efficiency design, would incur ∼20× the computational cost

of our approach (equating to ∼250× the compute of the pre-

vious best results), rendering such an endeavor computa-

tionally infeasible.

Even more noteworthy is the exceptional generalizabil-

ity showcased by our AdvXL ViT-g/14 models trained on

the web-scale DataComp-1B dataset, securing l2-robust ac-

curacy of 70.4% and l1-robust accuracy of 46.7%. These

figures represent an absolute improvement of about 13%

over the best previous results. This observation indicates

that scaling model, data, and schedule collectively not only

significantly enhances robustness against known attacks but

also fortifies the model against unseen attacks during train-

ing. Our findings on scaling adversarial training illuminate

the path towards the evolution of next-generation robust vi-

sual models, potentially propelling the field of adversarial

training into the era of foundation models.

5. Discussion and Conclusion

Adversarial training has traditionally been confined to

small networks and datasets, predominantly ResNet-50 and

CIFAR-10. Until recently, there have been few attempts

to train adversarially robust models on the medium-size

ImageNet-1K dataset. In this work, we break new ground

by scaling adversarial training to web-scale datasets con-

taining over 1B samples. Our AdvXL approach com-

prises two core components: 1) a coarse-to-fine, weak-to-

strong, two-stage training paradigm to mitigate the com-

putational cost of scaling up; 2) the utilization of a pre-

trained CLIP text encoder enabling training on web-scale

datasets. Through scaling along model, data, and sched-

ule dimensions, we successfully establish a new state-of-

the-art record of l∞-robust accuracy under AutoAttack, sur-

passing the previous best by a margin of ∼10%. Addition-

ally, training on those gigantic datasets demonstrates in-

creased generalizability against unseen attacks during train-

ing, aligning with observations from various foundation

models [1, 6, 45–47]. We envision our work as a stepping

stone for adversarial training to enter the era of foundation

models, inspiring further large-scale adversarial training en-

deavors.

Broad impact. Our method delivers over 5× speedup, sig-

nificantly reducing wall-clock time for training models with

hundreds of millions or even billions of parameters on

billion-scale datasets (e.g., on the order of thousands of

TPU/GPU-days). AdvXL not only facilitates rapid proto-

typing and accelerated research cycles but also contributes

to substantial energy and carbon emissions savings, a criti-

cal consideration in large-scale model training.
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