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Abstract

Once only a few-shot annotated samples are avail-
able, the performance of learning-based object detection
would be heavily dropped. Many few-shot object detection
(FSOD) methods have been proposed to tackle this issue
by adopting image-level augmentations in linear manners.
Nevertheless, those handcrafted enhancements often suf-
fer from limited diversity and lack of semantic awareness,
resulting in unsatisfactory performance. To this end, we
propose a Semantic-guided Non-linear Instance-level Data
Augmentation method (SNIDA) for FSOD by decoupling the
foreground and background to increase their diversities re-
spectively. We design a semantic awareness enhancement
strategy to separate objects from backgrounds. Concretely,
masks of instances are extracted by an unsupervised se-
mantic segmentation module. Then the diversity of sam-
ples would be improved by fusing instances into different
backgrounds. Considering the shortcomings of augmenting
images in a limited transformation space of existing tradi-
tional data augmentation methods, we introduce an object
reconstruction enhancement module. The aim of this mod-
ule is to generate sufficient diversity and non-linear train-
ing data at the instance level through a semantic-guided
masked autoencoder. In this way, the potential of data
can be fully exploited in various object detection scenarios.
Extensive experiments on PASCAL VOC and MS-COCO
demonstrate that the proposed method outperforms base-
lines by a large margin and achieves new state-of-the-art
results under different shot settings.

1. Introduction

In recent years, deep learning based methods have
achieved impressive performance in a variety of visual
tasks, such as object recognition [38, 39], and image seg-
mentation [17, 30]. However, it relies heavily on abundant
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Figure 1. Confidence weighting maps under different shot settings
on PASCAL VOC. N-shot means each category with N annota-
tions during finetuning. Aug to 10 shot indicates data augmen-
tation from 1-shot to 10-shot with traditional linear augmentation
methods (including flipping, rotating, scaling, and cutting). Our
method (row.4 vs row.5) better adapts to the shape characteristics
of various categories, which means our method possesses superior
semantic awareness capabilities.

annotated data, which limits their applicability to some re-
alistic scenes, where samples are hard to collect or annota-
tions are expensive. In contrast, humans can quickly grasp a
novel concept with few samples. To bridge the gap between
the performance of deep learning and the ability of humans,
few-shot Object detection (FSOD) [9, 34, 45] has attracted
much attention. FSOD, typically with only K instances per
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(a) Traditional data augmentation (b) Our data augmentation

Figure 2. Augmented images and the t-SNE [42] visualization of
object proposal embedding learned with (a) traditional data aug-
mentation and (b) our proposed method respectively. Instances
from each category form tight clusters, indicating their similari-
ties. In comparison, clusters generated by our method are much
more divergent than ones by the traditional linear method. That
is, samples augmented by our method would have much greater
diversities since they are reconstructed via learned discriminative
features (resembling a series of local semantic blurs qualitatively),
resulting in a better FSOD performance.

class, easily lacks generalization capability and incurs over-
fitting since only extremely few annotated instances of pre-
viously unseen categories are available for training.

An obvious solution for FSOD is data augmentation [24,
25], which tries to increase the diversity of the input infor-
mation by directly expanding the number of training labeled
instances or indirectly augmenting the features. Most exist-
ing data augmentation methods [4, 5, 22, 23, 26, 41, 48] ob-
tain more samples through handcrafted enhancements (e.g.
flipping, rotating, scaling, cutting) at levels of images, pro-
posals, or features. However, the common characteristic
of these methods is that linear-based augmentations lack
semantic awareness and can not generate various training
samples with sufficient diversity, since they are not fore-
ground/background sensitive.

As shown in Figure 1, for a ResNet-101 [16] based ob-
ject detection model, the confidence weighting maps would
gradually become salient once more training instances for
novel classes are available. That is when there is only one
instance, information distinguishing foreground and back-
ground tends to be noisy and local. Compared with 1-shot,
10-shot could help converge to salient features and achieve
better separation from the background (Figure 1, row.2 and
row.3). At present, there is no practical solution to obtain
semantic information for few-shot instances. For example,
though augmenting 1-shot to 10-shot with traditional meth-
ods, such as flipping/rotating/scaling, increases the sample

quantity, the performance improvement is limited since the
semantic information is not well enhanced and the fore-
ground/background still can not be readily separated (Fig-
ure 1, row.3 vs row.4), resulting more susceptible to overfit-
ting due to the lack of diversity. However, Our method (Fig-
ure 1, row.4 vs row.5) better adapts to the shape of various
categories, which means our method possesses superior se-
mantic awareness capabilities.

In this paper, a novel data augmentation method is pro-
posed to address these issues for FSOD, which decouples
the foreground and background to increase their diversity
and augments various training data in semantic-guided non-
linear transformation spaces. It consists of the seman-
tic awareness enhancement strategy (SAES) and the object
reconstruction enhancement module (OREM) to generate
augmented training data at the instance level. The SAES
is adopted to decouple foreground and background. Then
the diversity of samples would be improved by fusing in-
stances into different backgrounds, so as to further enhance
the semantic awareness of the object’s discriminative fea-
tures. To avoid expanding images in a limited linear trans-
formation space, inspired by the powerful nonlinear fitting
and reconstruction capabilities of the masked image mod-
eling [18], we introduce OREM to generate diverse data
for few-shot samples in a non-linear manner. It randomly
masks instances of the novel classes and feeds them into a
self-supervised encoder-decoder (e.g. MAE [18]) to export
reconstructed images. While the higher Masking Ratio of
MAE can indeed introduce more sample diversity, increased
randomness, and uncertainty also bring uncontrollable se-
mantic variations, resulting in weaker classification perfor-
mance. To maintain the high-level semantics of the recon-
structed samples, we adopt a language embedding model to
guide the high-level knowledge of the MAE’s encoder to
generate controlled semantic samples.

We have also conducted some pre-experiments. As illus-
trated in Figure 2, augmented images and t-SNE [42] visu-
alization shows the proposal embedding of augmenting ran-
domly selected 200 PASCAL VOC images to 2400 images
by traditional and proposed methods respectively. Instances
from each category form tight clusters, indicating their sim-
ilarities. In comparison, clusters generated by our method
are much more divergent than ones by the traditional linear
method. That is, samples augmented by our method would
have much greater diversities, resulting in a better FSOD
performance. To summarize, our contributions are 3-fold:

(1) In this paper, we present a novel data augmen-
tation method for FSOD, which decouples the fore-
ground/background of the novel class objects and increases
their diversity in a semantic-guided non-linear manner.

(2) The core idea of our method is non-linear semantic
decoupling. Thus, the SAES is adopted to decouple fore-
ground/background and the OREM is introduced to gener-
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Figure 3. The overall framework. To enhance the generalization ability, we present a novel data augmentation method consisting of
two steps to generate diverse data. (a) To decouple the foreground/background of few-shot instances, Semantic Awareness Enhancement
Strategy (SAES) is adopted to extract the mask of instances. Then the diversity of samples would be improved by fusing instances into
different backgrounds. (b) Object Reconstruction Enhancement Module (OREM) is employed to randomly mask instances and feed them
into a semantic-guided masked autoencoder to export the enhanced image in a non-linear manner.

ate diverse instances with high-level semantic invariance.

(3) The proposed method can be readily plugged into ex-
isting finetuning-based FSOD methods for further perfor-
mance improvement. Extensive experiments on PASCAL
VOC and MS-COCO with the proposed method outperform
baselines by a large margin and achieve new state-of-the-art
results under different shot settings.

2. Related Work
2.1. Few-Shot Object Detection

Differing from general object detection [10, 11, 37—
39] with adequate annotations, few-shot object detection
(FSOD) [3, 7, 21, 46, 54] aims to detect objects with few
labeled samples, which could be roughly categorized into
the meta-learning fashion and finetuning fashion. For the
meta-learning fashion, methods [20, 50] learn-to-learn solv-
ing a set of unrelated tasks. The aim is to perform an ex-
emplar search at the instance level using only a few anno-
tated image support sets. FSRW [20] leverages a reweight-
ing module with adequate labeled base classes based on
YOLOV2 [36] and transfers to novel classes quickly. FS-
DetView [50] introduces a joint feature embedding to make
the most of rich feature information originating from base
class sharing. These methods usually suffer from the de-
sign of complex episodic training schemes. Recently, sev-
eral finetuning methods [34, 45] attracted more attention
compared to meta-learning methods. Two-stage Finetuning
Approach [45] (TFA) is the baseline method of finetuning
fashion, which trains on fully labeled base classes in the

first stage, and finetunes on the balanced support set in the
second stage. A simple yet effective work, DeFRCN [34],
decouples conflict tasks between class-agnostic RPN and
class-relevant RCNN. MFD [49] is designed to explicitly
learn three types of commonalities between base classes and
novel classes, which are extracted from a memory bank dur-
ing the fine-tuning phase. However, the overfitting problem
easily arises in this fashion with limited instances of novel
classes. In this work, we design a novel non-linear instance-
level data augmentation method to alleviate the problem.

2.2. Data augmentation in FSOD

Data augmentation is a common tool for improving per-
formance in computer vision, especially in cases where
training data is not abundant, such as FSOD. In the recent
literature, MPSR [48] and FSOD-SR [23] generate multi-
scale positive instances as object pyramids to solve the
problem of scale variations. LVC [22] introduces a pseudo-
labeling method to source high-quality pseudo-annotations
in novel categories. FSCE [41] regards the proposals of
different IoU as the intra-image augmentation used in con-
trastive methods. However, the above linear augmentation
methods enhance sample quantity in the limited transforma-
tion space, and cannot generate sufficient diversity of data.

NP-RepMet [53] incorporates the negative proposals dis-
carded into the model training, which results in a more ro-
bust embedding space. To address the lack of variability
in the training data, Halluc [57] introduces a hallucinator
network to transfer the shared within-class variation from
base classes to novel classes. And TIP [26] introduces trans-
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formed guidance consistency loss on predictions from vari-
ous transformed images. However, most of the above meth-
ods rely on image-level augmentation and lack of semantic
awareness, resulting in unsatisfactory performance. Differ-
ent from previous methods for FSOD, our method improves
the diversity of samples in a semantic-guided non-linear
manner at the instance level.

3. Method
3.1. Problem Setting

Referring to the problem setup [20, 45, 50] used in previ-
ous research, we split the general object detection datasets
into FSOD datasets. Specifically, object classes are divided
into the base class set (.. With abundant annotations and
the novel class set C},4¢; With only & labeled samples in
each class, where Cj,,. from the base class dataset dpq e,
Chrover from the novel class dataset d,, ;. There is no inter-
section between two category sets, ChqseNChrover = . Our
approach follows the finetuning-based methods [34, 45] of
FSOD, which can be divided into the base training stage and
the novel class finetuning stage.

3.2. Overview

The overall proposed framework is shown in Figure 3.
We present a Semantic-guided Non-linear Instance-level
Data Augmentation method (SNIDA) for FSOD. Our ap-
proach first applies CutMix data augmentation [55] to pro-
duce a synthetic set (ds,,), which crops entire object
patches (P,) from C,, e images and randomly pastes
them onto Cp,s. images. Next, we adopt the Semantic
Awareness Enhancement Strategy to generate a saliency
set (dsq1), which obtains semantic awareness through fore-
ground/background decoupling and fusing instances into
different backgrounds. To further increase the diversity of
instances, we employ the Object Reconstruction Enhance-
ment Module to generate the reconstructed set (d,..) dur-
ing finetuning, which introduces semantic-guided masked
image modeling to generate reconstructed images of few-
shot instances. The generated dsyr,, dsq, and dr.. are all
employed during the finetuning stage.

3.3. Semantic Awareness Enhancement Strategy

To increase the number of novel class samples, we per-
form CutMix to combine base class images with novel class
objects, which crops entire object patches (FP,) from im-
ages in dj, e and applies simple random data augmenta-
tions such as scaling/ flipping/color degradation. The aug-
mented object patches are then pasted onto the images I
from dp,se. By repeating this process, we generate synthetic
set (dsyn) containing samples from both d,ope; and dpgse.
The visualization of d,,, is shown in Figure 4 (col.1).

However, in image-level augmentation methods (Cut-
Mix), the discontinuities at the merged boundaries may lead

Figure 4. Visualizations of the synthetic, saliency, and recon-
structed set on PASCAL VOC. Though the reconstructed set seems
to just introduce some local blurs compared to the saliency set,
these local blurs are generated via learned discriminative features
which could effectively enhance the sample semantic diversity.

the network to mistakenly treat fixed background features
as category-discriminative features, particularly when only
a few samples are available. To address this issue, we adopt
the Semantic Awareness Enhancement Strategy (SAES), to
guide the network by decoupling the foreground and back-
ground to extract object semantic discriminative features
during finetuning. In our approach, we add a split branch
(Mask Head) to our baselines to learn the mask of C,,,pe;
samples. The input to the network is synthetic set d,,, gen-
erated by CutMix, and the output is the detection results of
all objects as well as the mask of novel class samples.

As there are no segmentation masks available for few-
shot objects, we need to rely on unsupervised methods.
Nevertheless, learning dense semantic representations of
few-shot objects in an unsupervised setting is a challeng-
ing task. Particularly with a low-data regime, the network
may prioritize low-level image features over image seman-
tics. Inspired by the unsupervised semantic segmentation
method [43], we further introduce the unsupervised saliency
object detection (SOD) [33] to learn the mask regions of
novel class objects. These regions serve as priors for guid-
ing the network to learn the pixel representation for segmen-
tation. SOD provides only the mask area of salient objects.
Therefore, we crop the region (R,,) of novel class objects
from dy,, as input of SOD. Then, the object saliency mask
M, obtained from SOD is pasted onto the background mask
to obtain the mask M) of the input image I as a prior.

Although the mask M, provides some object informa-
tion, it is not a semantic-level supervision. To address this
problem, we introduce a pixel-level contrastive loss to learn

12547



the representation of foreground/background, comprising
distances between embedding vectors for positive sample
pairs and negative sample pairs, as follows:
Lom =g 3 dlivy) i S dlviw) ()
n = T Vi Vj) — 7777 Vi,V
P Y ’

(4,J)€P (i,k)EN

Where, d(-, -) denotes Euclidean distance for measuring the
distance between pixel embedding vectors. v; denotes the
embedding vector of the i-th pixel. P and A represent the
set of positive and negative sample pairs. The optimiza-
tion process of this loss is designed to minimize the dis-
tance between embedding vectors belonging to the same
classes while pushing foreground and background apart. In
this way, a pixel embedding space is introduced as a dense
semantic representation to get the mask My of C),pper-

Finally, we assemble the segmented novel class instances
into the original base class image [, as follows:

Isal :IsunQMI+Ib®(1 _MI) (2)

where ® is the dot product. By splicing the novel class
instance into the image of I, we get the I,; image of dg;
and the corresponding mask M;. As shown in Figure 4
(col.2), dsq; achieves instance-level augmentation by fusing
instances into different backgrounds.

3.4. Object Reconstruction Enhancement Module

In this section, we introduce a semantic-guided non-
linear data augmentation method at the instance level,
namely the Object Reconstruction Enhancement Mod-
ule (OREM), which effectively enhances the diversity of
Chover instances during finetuning. We draw inspiration
from masked image modeling, such as Masked Autoen-
coder (MAE) [18] leverage a self-supervised masked en-
coder to generate the reconstructed image of the input mask
tokens. Thus, we utilize the non-linear fitting capability of
the MAE to further augment instance diversity. To maxi-
mize the impact of MAE on the object, we crop each novel
class object from [ and its corresponding mask M to obtain
the cropped k;j, novel class objects image I* and mask M*.

The diversity of samples has been improved by fusing
instances into different backgrounds in SAES. Thus we ex-
pect that part of the foreground area will also be enhanced
while the background area remains unchanged in OREM,
so as to increase the diversity of the instance. Specif-
ically, we divide the I* image into N non-overlapping

patches ({z'};¥ ;) and the positions of patches are denoted

as P € {1,...,N}. All patches are divided into patches
of the novel classes foreground and other patches. Their
positions are denoted as Py € {1,..,N}’ and P, €
{1,..., N} respectively, where J and K represent the
number of foreground and other patches respectively, and

K +J = N. Then we randomly mask the proportion of the

[ Masking Ratio 0% *
[ ]Masking Ratio 10% :

64 H[_] Masking Ratio 30%]| ‘ﬂi'_ e T I ]
[ ]Masking Ratio 50%
6 [ ]Masking Ratio 70%| /" ]
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Figure 5. Different masking ratios in OREM on novel split 1 of
PASCAL VOC.

foreground patch of novel classes. The masked positions
are denoted M; € {1,..., N}*%/ where k% is the mask-
ing ratio of foreground patches. The remaining patches z%,
are shown in Eq. (3).

ahy={a?ie PN U{al ri¢ Mpnie P}, (3)

Ife = fo(fe(al) @)

As illustrated in Eq. (4), x% are sent to the encoder fg
and decoder fp of MAE to generate the reconstructed im-
age of the novel class I, ,’i, which can serve as the enhanced
version of the object. Finally, we paste the enhanced object
Iﬁec back to I, to generate I,... of d...

Figure 5 shows the influence of setting different mask-
ing ratios of MAE. And best performance is achieved at the
masking ratio of 30%. The higher masking ratio should en-
hance the diversity of samples. However, the performance
diminishes. The observed phenomenon is attributed to the
network exhibiting emphasis on low-level image features,
resulting in overlooking semantic awareness. To address
this issue, we introduce the pre-trained language encoder to
constrain the intermediate representation to enhance the se-
mantic awareness of the masked autoencoder. Specifically,
it leverages high-level features of CLIP text embedding [35]
to guide the semantic features of vision. First, given labels
from novel categories of datasets, we use an available CLIP
method to represent these labels into rich semantic knowl-
edge as fc,,,.,- A linear layer transforms the visible rep-
resentation fp generated by MAE’s encoder to simulate f,,.
The semantic discriminator loss Lgp is defined as follows:

__ fCupper - linear(fp)
[fnovell - llinear(fe)||

Where linear is a linear layer. - means the dot product and
[I|| is L2 normalization. The second term is a weight decay
term of the MAE’s encoder and helps prevent overfitting.
Our OREM equipped with Lgp significantly preserves the
invariance of high-level semantics in reconstructed images.

Lsp = AW B
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Novel Split 1 Novel Split 2 Novel Split 3
Method/Shot 1 2 3 5 1w0|l1 2 3 5 1|1 2 3 5 o |Mean
FSRW [20]  ICCV19 | 148 155 267 339 472|157 153 227 30.1 405|213 256 284 428 459 | 284
MetaDet [44] ICCV 19 | 189 20.6 302 36.8 49.6|21.8 23.1 27.8 317 430|206 239 294 439 44.1| 31.0
TFA w/ cos [45] ICML 20 | 39.8 36.1 447 557 560|235 269 341 35.1 39.1 |30.8 348 428 495 498 | 39.9
MPSR [48]  ECCV20 | 417 - 514 552 618|244 - 392 399 478|356 - 423 480 49.7| 358
FSCE[41]  CVPR2I | 442 438 514 619 634|273 295 435 442 502|372 419 475 546 585 | 46.6
SRR-FSD [58] CVPR2] | 478 50.5 513 552 56.8|32.5 353 39.1 408 43.8 |40.1 41.5 443 469 464 | 448
TIP [26] CVPR21 | 27.7 365 433 502 59.6|227 30.1 33.8 409 469|217 30.6 38.1 445 509 | 385
FSOD-UP [47] ICCV 2] | 43.8 478 503 554 617|312 305 412 422 483|355 397 439 50.6 535 | 45.0
FADI[2]  NewrIPS21 | 503 548 542 593 632|306 350 403 428 480|457 497 49.1 550 59.6| 492
FCT [14] CVPR22 | 499 57.1 579 632 67.1|27.6 345 437 492 512|395 547 523 57.0 587 516
LVC [22] CVPR22 | 545 532 588 632 657|328 292 50.7 49.8 506|484 527 550 59.6 59.6| 523
TENET [56] ECCV22 | 467 - 554 623 669|403 - 447 493 521|355 - 460 544 546 507
MRSN [32] ECCV22 | 47.6 486 57.8 619 626|312 383 467 47.1 506|355 309 456 544 574 | 477
FewX [8] ECCV22 | 40.1 442 512 620 630|333 33.1 423 463 523|361 43.1 435 520 560 | 46.6
D&R [28] AAAI23 | 410 517 557 618 654|307 39.0 425 466 517|379 47.1 517 568 59.5| 49.3
ICPE [31] AAAI23 | 543 595 624 657 662|335 40.1 487 517 525|509 63.1 553 60.6 60.1| 55.0
VFA [15] AAAI23 | 577 646 647 672 674|414 462 51.1 518 51.6|489 548 566 59.0 58.9| 56.1
FS-DETR[I] ICCV23 | 450 485 515 527 561|373 413 434 466 490|438 47.1 506 52.1 569 | 48.1
Ductal. [15] ICCV23|523 555 63.1 659 667|427 458 487 548 563 |47.8 518 568 603 624 | 554
Norm-VAE [51] CVPR 23 | 62.1 649 678 692 675|399 468 544 542 536|582 603 61.0 640 655| 59.1
DeFRCN [34] ICCV21 | 53.6 575 615 641 60.8|30.1 38.1 47.0 533 479|484 509 523 549 574 51.9
SNIDA-DeFRCN 593 60.8 643 654 65.6|352 408 502 54.6 50.0 | 51.6 524 559 58.5 62.6| 55.1
MFD [49] ECCV22 | 634 663 677 694 681|421 465 534 553 538|561 583 590 622 63.7| 59.0
SNIDA-MED 649 679 697 71.4 705|422 478 545 56.6 549 | 58.1 61.3 60.7 63.6 66.0 | 60.7

Table 1. Few-shot detection performance across the 3 splits on the PASCAL VOC benchmark. The best and second-best results are colored
red and blue, respectively. Two methods equipped with our idea consistently outperform relevant baselines under all settings and achieve

competitive performance compared with recent state-of-the-art methods for 3 novel splits.

4. Experiments
4.1. Few-Shot Object Detection Benchmarks

We followed the previous work [12, 20, 45] to use data
splits and novel samples to evaluate the effectiveness of
our proposed SNIDA. Two widely used few-shot detec-
tion datasets: PASCAL VOC [6] and MS-COCO [29] are
adopted to train and evaluate for a fair comparison.

PASCAL VOC have three different data splits, where
each split group randomly divides 20 classes into 15 base
classes and 5 novel classes. For each novel category, K=1,
2, 3, 5, and 10 shots are available from the combina-
tion of VOC2007 and VOC2012 train/val sets for finetun-
ing. We evaluate the performance on the VOC2007 test set
with the standard PASCAL VOC metric, Average Precision
(IoU=0.5), and report it as nAP50 for the novel categories.

MS-COCO comprises 80 categories, of which 20 are
considered novel categories in common with PASCAL
VOC, and the remaining 60 belong to the base classes. To
finetune the model, we report the outcomes of K=1, 2, 3, 5,
10, and 30 shots for each novel class. We evaluate the per-
formance on 5k images from the validation set. We report
the COCO-style AP as the evaluation metric.

4.2. Implementation Details

In this paper, our experiments are conducted on two ro-
bust baselines: DeFRCN [34] and MFD [49]. DeFRCN
is a simple yet effective finetuning-based framework, that
proposes to perform stop-gradient between the RPN and
the backbone, and scale-gradient between RCNN and the
backbone. MFD is designed to explicitly learn three types
of commonalities between base classes and novel classes.
Subsequently, these commonalities are extracted during the
fine-tuning phase based on a memory bank. We evaluate
DeFRCN and MFD performance (mAP) over multiple runs.

Traditional data augmentation is employed in CutMix to
prevent overfitting, including random scaling, clipping, and
flipping, due to novel classes with only a few samples. We
adopt SGD optimization, with the momentum and weight
attenuation of 0.9 and 0.0001 respectively. The learning rate
during base training is set to 0.02, and the learning rate is set
to 0.01 during few-shot finetuning. We pre-train the masked
autoencoder on ImageNet-1k [40] for 400 epochs following
the setting of [18]. The masking ratio of foreground patches
is set to 70%. All experiment was carried out on 4 Nvidia
GeForce RTX 3090 GPUs with a batch size of 16 by the
open-source library PyTorch (https://pytorch.org/).
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Shot Number

Method 1 2 3 5 10 30

Meta R-CNN [52] Iccviop10 1.8 28 40 65 11.1

MPSR [48] ECCV20|51 67 74 87 98 14.1
FSDetView [50] ECCV20|45 6.6 72 10.7 125 14.7
TFA [45] ICML20| 44 54 6.0 7.7 10.0 13.7
Retentive R-CNN [9] CVPR 21| - - - - 105 13.8
CME [27] CVPR 21| - - - - 151 169
DCNet [19] CVPR2I| - - - - 128 18.6
QA-FewDet [12] ICCV21|49 76 84 9.7 11.6 165
FCT [14] CVPR22|56 79 11.1 14 17.1 214

Meta Faster R-CNN [13] AAAI22| 5.1 7.6 9.8 10.8 12.7 16.6

D&R [28] AAAI23 | 83 127 143 16.4 18.7 21.8
FS-DETR [1] Iccv2s |70 89 10.0 109 113 -
Duetal. [15] ccvasy| - 20.3 22.8

Norm-VAE [51] CVPR23| 95 13.7 143 159 18.7 225

DeFRCN [34] ICCV 21|93 129 148 16.1 18.5 22.6

SNIDA-DeFRCN 10.2 14.5 15.8 16.9 19.1 23.1
MEFD [49] ECCV22|10.8 139 150 164 194 22.7
SNIDA-MFD 12.0 154 16.4 17.8 20.7 23.8

Table 2. Experiments on COCO dataset. The best and second-
best results are colored red and blue, respectively. Two methods
equipped with our idea consistently outperform relevant baselines
under all settings. A new state-of-the-art result is also achieved.

4.3. Comparison Results

Results on PASCAL VOC. Table | presents the results
from 3 novel splits of PASCAL VOC compared with base-
lines and the existing state-of-the-art methods. Our few-
shot data augmentation method surpasses the two baselines
in all splits and shots. Our method based on MFD [49]
achieves the best performance with 60.7%, which outper-
forms the baseline with a margin of 1.7 on average. In terms
of overall performance, our method illustrates superior per-
formance compared to most existing methods across dif-
ferent splits and shots on average, which demonstrates the
robustness and generalization of our method.

Results on MS-COCO. For the MS COCO dataset, we
adopt some recent works for comparison, as shown in Ta-
ble 2. After applying our method, we consistently achieve
performance improvement over the two baselines on aver-
age respectively. New state-of-the-art results under differ-
ent shot settings are achieved with other existing methods.
Under the setting of 1, 2, 3, 5, 10, and 30 shots, our method
achieves 11%, 11%, 9%, 9%, 7%, and 5% performance gain
compared with MFD [49] on AP respectively. Especially
under the setting of 1-2 shot instances is quite limited, our
method is greatly improved with a boost of up to about 10%
AP. The results show that our data augmentation method
performs better on the more difficult MS COCO dataset.

Comparision among Different Augmentation Meth-
ods. Table 3 shows the results of Cutout [5], GridMask [4],
CutMix [55], and our method on the Novel Split 1 of
PASCAL VOC. We adopt DeFRCN [34] as the baseline.

| Cutout  GridMask  CutMix Ours
Image
1-shot 54.7 54.3 55.5 59.3
2-shot 57.2 58.0 57.6 60.8
3-shot 62.3 62.0 614 64.3
5-shot 64.0 63.7 63.9 65.4
10-shot 62.5 63.2 63.5 65.6
Mean 60.1 60.2 60.4 63.1

Table 3. The results of Cutout, GridMask, CutMix, and our
method on the Novel Split 1 of PASCAL VOC. Our method sig-
nificantly improves the performance under different shots.

The proposed method is able to consistently outperform
other augmentation methods and achieves better perfor-
mance across different shots. Unlike the above meth-
ods, our method obtains semantic awareness through fore-
ground/background decoupling and fusing. The diversity
of instances in our method is further enhanced thanks to the
adoption of the semantic-guided non-linear transformation.

4.4. Ablation Studies

To investigate the proposed method’s effectiveness, we
conducted three ablation experiments. DeFRCN [34] is
adopted as the baseline on the Novel Split 1 of PASCAL
VOC. Comprehensive Results on all Novel Splits are pro-
vided in the supplementary materials. Table 4 summarizes
the results of our method under different settings, and the
following is a detailed comparison. Note that we adopt Cut-
Mix to increase the number of training samples for novel
classes and improve the performance by 1.2 on average.

Impact of Semantic Awareness Enhancement Strat-
egy. To assess the impact of the SAES, we incorporated
SAES into the baseline model with CutMix and conducted a
comparative analysis. The results presented in Table 4 (line
2 vs line 3) demonstrate that SAES has yielded a consid-
erable improvement, indicating that the decoupling of fore-
ground and background is critical for effectively learning
objective semantic discriminative features. By fusing in-
stances into different backgrounds, the adoption of SAES
can indeed bring performance improvements.

Impact of Object Reconstruction Enhancement Mod-
ule. To validate the impact of the OREM, we add and com-
pare it to the baseline with CutMix while keeping other con-
ditions unchanged. The experimental results show that the
OREM outperforms the baseline with CutMix and improves
the overall performance by 1.4 on average (Table 4, line 2
vs line 4). That is, such a semantic-guided non-linear data
enhancement procedure is important for further promoting
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. Novel Split 1 Novel Split 2 Novel Split 3 Speed
CutMix SAES OREM | |, ""5% "5 151 1 2 3 5 101 2 3 5 10 |M3| gien
528 577 599 624 600|307 387 469 528 479|473 502 525 552 589 | 516 | 048

v 555 576 614 639 635|320 389 474 536 489|488 499 534 567 598 | 52.8 | 050
v v 573 599 637 64.1 637|337 393 47.1 544 496|494 513 552 580 61.0| 539 | 059
v v 585 601 637 647 645|328 397 492 550 499|500 512 555 579 61.1| 542 | 057
v v v | 593 608 643 654 656|352 408 502 546 50.0 | 51.6 524 559 585 62.6| 55.1 | 0.63

Table 4. Ablation study of different components of our method for FSOD on 3 novel splits of PASCAL VOC. After finetuning with the
SAES, our model achieves a significant improvement over the baseline. The performance could be further promoted with OREM adoption.

66

—#&— Masking Ratio 0%

—o— Masking Ratio 30%
—&— Masking Ratio 50%
—*— Masking Ratio 70%

54 1 1 1 1 1
1-shot 2-shot 3-shot 5-shot 10-shot

Figure 6. Ablation study of different masking ratios in OREM on
novel split 1 of PASCAL VOC. Note the masking ratio here is not
for all patches of the entire image, but only for the foreground.

the performance of FSOD since it could better exploit the
potential of data by augmenting data diversity.

Moreover, we also carefully analyze the influence of set-
ting different masking ratios k% in the OREM in Figure 6.
It shows that the OREM achieves the best performance at
the masking ratio of 70%. Images generated by an under-
sized masking ratio lack variety, which affects the general-
ization of the detection model. Compared with Figure 5, the
higher masking ratio achieves better performance, which is
attributed to the correct semantic-guided high-level seman-
tic supervision imposed by the semantic discrimination loss.

Impact of Different Semantic Supervision. To vali-
date the impact of the different semantic supervision, we
conducted experiments within the semantic discriminator of
OREM, involving three distinct types of semantic supervi-
sion. Firstly, Random supervision assigns random and alter-
native labels to the sample. Secondly, Misleading supervi-
sion provides consistent but incorrect labels. Thirdly, Con-
sistency supervision guides with correct labels. The results
indicate that both the first and second supervision resulted
in a slight drop in performance compared to the baseline,
while the third, involving correct semantic guidance, signif-
icantly improved overall performance. This implies that
correct high-level supervision aids in preserving the invari-
ance of high-level semantics in reconstructed images. Si-
multaneously, the introduction of rich non-linear semantic
knowledge further enhances the quality and expressive ca-
pacity of reconstructed images under high masking ratios.

. . Shot
Semantic Supervision 1 5 3 5 10 Mean
Baseline 573 599 637 641 637 | 617
Random 559 57.8 623 625 624 | 602
Misleading 56.5 582 63.1 630 63.1 | 60.8
Consistency 593 608 643 654 65.6 | 63.1

Table 5. Different semantic supervision in Semantic Discriminator
of OREM on novel split 1 of PASCAL VOC.

4.5. Drawback and Discussion

As shown in the last column of Table 4, we also evalu-
ate the speed of finetuning under all five settings. We can
see that despite the significant performance improvement,
the proposed method is nearly 31% slower than the base-
line during the finetuning. However, it is worth noting that
finetuning-based FSOD models equipped with our idea will
not bring any extra computational burden during the infer-
ence but consistently achieve better results.

5. Conclusion

In this paper, we propose an instance-level data augmen-
tation method for FSOD, which decouples the foreground
and background to increase their semantic diversity respec-
tively. To decouple the foreground background of few-shot
instances, the semantic awareness enhancement strategy is
adopted to extract the mask of instances and fuse instances
into different backgrounds. The object reconstruction en-
hancement module is additionally introduced to augment
instances in a semantic-guided non-linear manner to further
enhance the instance diversity. The proposed method can be
readily plugged into existing finetuning-based FSOD meth-
ods for further performance improvement. Extensive exper-
iments on two datasets indicate the model equipped with
our method significantly outperforms baselines by a large
margin. New state-of-the-art results on the PASCAL VOC
and MS-COCO under different shot settings are achieved,
demonstrating the effectiveness of our idea.
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