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Abstract

Stereo matching methods based on iterative optimization,
like RAFT-Stereo and IGEV-Stereo, have evolved into a cor-
nerstone in the field of stereo matching. However, these
methods struggle to simultaneously capture high-frequency
information in edges and low-frequency information in
smooth regions due to the fixed receptive field. As a re-
sult, they tend to lose details, blur edges, and produce false
matches in textureless areas. In this paper, we propose Se-
lective Recurrent Unit (SRU), a novel iterative update op-
erator for stereo matching. The SRU module can adap-
tively fuse hidden disparity information at multiple frequen-
cies for edge and smooth regions. To perform adaptive
fusion, we introduce a new Contextual Spatial Attention
(CSA) module to generate attention maps as fusion weights.
The SRU empowers the network to aggregate hidden dis-
parity information across multiple frequencies, mitigating
the risk of vital hidden disparity information loss during it-
erative processes. To verify SRU’s universality, we apply it
to representative iterative stereo matching methods, collec-
tively referred to as Selective-Stereo. Our Selective-Stereo
ranks 15t on KITTI 2012, KITTI 2015, ETH3D, and Middle-
bury leaderboards among all published methods. Code is
available at https://github.com/Windsrain/Selective-Stereo.

1. Introduction

Stereo matching is a fundamental area of research in com-
puter vision. It explores the calculation of displacement,
referred to as disparity, between matching points in a pair
of rectified images. This technique plays a significant role
in various applications, including 3D reconstruction and au-
tonomous driving.

With the advancement of deep learning, learning-based
stereo matching [4, 14, 15, 17, 34, 35] have progressively
displaced traditional methods and significantly enhancing
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Figure 1. Row 1: Comparisons with state-of-the-art stereo meth-
ods on KITTI 2012 [13] and KITTI 2015 [21], ETH3D [24] and
Middlebury [23] leaderboards. Row 2: Visual comparison with
RAFT-Stereo on ETH3D. Row 3: Visual comparison with IGEV-
Stereo on Middlebury. Our method distinguishes subtle details and
sharp edges and performs well in weak texture regions.

the accuracy of disparity estimation. Initially, aggregation-
based methods [7, 32, 41] led the development of stereo
matching algorithms. These methods begin by defining a
maximum range of disparity, constructing a 4D cost volume
using feature maps, and subsequently employing 3D CNN
to filter the volume and derive the final disparity map. Such
methods focus on filtering the initially coarse cost volume,
thus effectively aggregating geometry information. How-
ever, cost aggregation requires a large number of convolu-
tions, resulting in high computational costs, making it diffi-
cult to be applied to high-resolution images.

Recently, a novel class of methods based on iterative op-
timization [11, 16, 17, 44] has been gaining prominence and
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achieving state-of-the-art performance on several leader-
boards. These methods begin by constructing an all-pairs
cost volume, indexing a local cost volume from the orig-
inal cost volume, and subsequently employing recurrent
units [10] to calculate disparity residuals and update the dis-
parity prediction. One major advantage of these methods is
their ability to capture all candidate matching points with-
out predefining the range of disparities. Additionally, these
methods don’t need to aggregate the cost volume using a
large number of redundant convolutions. Instead, a contin-
uous update of the disparity prediction is achieved through
lightweight recurrent units during iterations. Therefore,
these methods are capable of processing high-resolution im-
ages.

However, iterative methods encounter several chal-
lenges. Firstly, the all-pairs cost volume includes consid-
erable noisy information [34], potentially causing the loss
of crucial information when iterating the hidden informa-
tion. Besides, as the network iterates, the hidden informa-
tion increasingly incorporates global low-frequency infor-
mation while losing local high-frequency information like
edges and thin objects [44]. Secondly, the existing recurrent
units possess a fixed receptive field, leading the network to
solely concentrate on information at the current frequency
and ignore other frequencies, such as detailed, edge, and
textureless information.

In this paper, we propose Selective Recurrent Unit (SRU)
to address the limitations of traditional recurrent units. As
Chen et al. [5] mentions features contain information at
different frequencies, high-frequency information describes
rapidly changing fine details, while low-frequency informa-
tion describes smoothly changing structures. Unlike tradi-
tional recurrent units that treat information at different fre-
quencies equally, our SRU incorporates multiple branches
of GRU, each with a distinct kernel size representing differ-
ent receptive fields. The hidden information obtained from
each GRU branch is fused and then fed into the next iter-
ation. This fusion enables the capture of information from
different receptive fields at different frequencies, while also
performing secondary filtering to reduce noise information
from local cost volume. To further enhance the fusion
process, we propose a Contextual Spatial Attention (CSA)
module to utilize the context information. Instead of simply
summarizing information from different branches, CSA in-
troduces attention maps extracted from the context informa-
tion. After doing so, information captured by small kernels
has large weights in regions like edge, while information
captured by large kernels has large weights in regions like
low-texture. These attention maps determine the weight of
fusion, allowing the network to adaptively select suitable
information based on different image regions. Besides, we
prove the effectiveness and universality of our module by
transferring it to different iterative networks. All networks

are collectively referred to as Selective-Stereo. By doing so,

we consistently improve the performance of these networks

without introducing a significant increase in parameters and
time.

We demonstrate the effectiveness of our method on sev-
eral stereo benchmarks. On Scene Flow [20], our Selective-
RAFT reaches the state-of-the-art EPE of 0.47, and our
Selective-IGEV even achieves a new state-of-the-art EPE
of 0.44. And as shown in Fig. 1, our Selective-RAFT
surpasses RAFT-Stereo by a large margin and achieves
competitive performance compared with the state-of-the-art
methods on KITTI [13, 21] leaderboards. Our Selective-
IGEV ranks 1%¢ on KITTI, ETH3D [24], and Middle-
bury [23] leaderboards among all published methods.

Our main contributions can be summarized as follows:

* We propose a novel iterative update operator SRU for it-
erative stereo matching methods.

* We introduce a new Contextual Spatial Attention module
that generates attention maps for adaptively fusing hidden
disparity information at multiple frequencies.

* We verify the universality of our SRU on several iterative
stereo matching methods.

* Our method outperforms existing published methods on
public leaderboards such as KITTI, ETH3D, and Middle-
bury.

2. Related Work

Aggregation-based methods in stereo matching. Sev-
eral aggregation-based methods [4, 7, 8, 14, 15, 25, 35—
37, 41] have shown significant progress in the domain of
stereo matching in recent years. DispNet [20] establishes
the groundwork for subsequent network architecture. GC-
Net [15] proposes a 4D concatenate cost volume, which is
subsequently regularized using 3D CNNs. Additionally, it
also introduces the soft argmin function for disparity re-
gression, resulting in a significant influence on subsequent
methods. PSMNet [4] proposes a stacked hourglass 3D
CNN, which improves the cost aggregation stage to enhance
the network’s ability to capture context information. Gwc-
Net [14] proposes Group-wise Correlation Volume, which
combines the advantages of correlation and concatenation
volume. GA-Net [41] designs a semi-global guided ag-
gregation layer and a local guided aggregation layer, in-
spired by the traditional semi-global matching algorithm, to
further assist in aggregating global and geometry informa-
tion in the network. Building upon Group-wise Correlation
Volume, ACVNet [32] proposes Attention Concat Volume,
which uses attention weights to suppress redundant infor-
mation and maintain sufficient information for matching.
Iterative-based methods in stereo matching. In recent
years, many iterative methods [17, 27, 33, 34], spearheaded
by RAFT [17], have gradually become the mainstream of
research. RAFT-Stereo [17] builds upon the optical flow
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Figure 2. Overview of our proposed Selective-Stereo (Selective-RAFT version). The Contextual Spatial Attention (CSA) module extracts
attention maps from context information as a guide for Selective Recurrent Units (SRUs). Then the network iteratively updates the disparity
using local cost volumes retrieved from the correlation pyramid and attention maps given by CSA through SRUs.

method RAFT [27] by introducing an all-pairs cost vol-
ume pyramid that maintains high resolution. It extracts lo-
cal correlation features from this pyramid, performs itera-
tive disparity updates using GRU-based update operators,
and incorporates a multi-level GRU to expand the receptive
field. On this basis, IGEV-Stereo [34] asserts that the ini-
tial cost volume is excessively coarse. To alleviate the need
for iterations and reduce time overhead, it proposes to use
a lightweight cost aggregation network before iterations.
CREStereo [16] designs a hierarchical network in a coarse-
to-fine manner, as well as a stacked cascaded architecture
for inference in place of the original single-resolution iter-
ative structure. DLNR [44] proposes the use of LSTM as
a replacement for GRU, providing the advantage of decou-
pling the update of hidden states from disparity prediction.

Frequency information application in vision. There
are several works[5, 6, 39] that focus on using frequency
information in computer vision. Chen et al. [5] propose the
octave convolution to factorize the mixed feature maps by
their frequencies. Xu et al. [39] propose a method of learn-
ing in the frequency domain and suggest that CNN mod-
els are more sensitive to low-frequency channels than high-
frequency. DSGAN [12] introduces the frequency separa-
tion into super-resolution. LITv2 [22] proposes to disentan-
gle the high/low-frequency patterns in an attention layer.

3. Method

In this section, we present the overall architecture of
Selective-Stereo. Because our method can be plugged into
different networks, we take Selective-RAFT (Fig. 2) as an
example and focus on illustrating its key components.

3.1. Feature Extraction

To ensure fair comparisons, Selective-RAFT maintains con-
sistency with RAFT-Stereo [17] by employing its feature
extraction network. Feature extraction comprises two main
components: feature network and context network.

Feature Network. Given the left and the right images
Iy € R¥>*HXW 'we first downsample them to 1/2 reso-
Iution using a 7 x 7 convolutional layer. Then, a series of
residual blocks is employed to extract features and we apply
another downsampling layer to get features at 1/4 resolu-
tion in the middle. Lastly, a 1 x 1 convolutional layer is ap-
plied to get the final left and right features f, g € RC* T
with suitable dimensions.

Context Network. Its architecture remains consistent
with the feature network, and it adds a series of residual
blocks and two additional downsampling layers, obtaining
multi-level context features f7 (i = 1, 2, 3) at 1/4, 1/8, 1/16
resolutions. Then we can get the initial hidden and the con-
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text information:

h; =tanh(f;) n
¢; =ReLU(ff)

3.2. Cost Volume Construction

Given the left and the right features f, g, we first construct
an all-pairs correlate cost volume:

Cijt = Y frij - 8hir, C € RTXTXF )
h

Then we construct a 4-level correlation pyramid {C;} (i =
1,2, 3, 4) by using 1D average pooling with a kernel size of
2 and a stride of 2 at the last dimension.

3.3. Contextual Spatial Attention Module

To help information from different receptive fields and fre-
quencies fuse, the Contextual Spatial Attention (CSA) mod-
ule extracts multi-level attention maps from context infor-
mation as guidence. As illustrated in Fig. 3, CSA can be
divided into two submodules: Channel Attention Enhance-
ment (CAE) and Spatial Attention Extractor (SAE). These
submodules are derived from CBAM [31] and we simplify
them to better adapt to stereo matching.

Channel Attention Enhancement. Given a context in-
formation map ¢ € RE*7*W e first use an average-
pooling and a max-pooling operation on the spatial dimen-
sion to get two maps fuu4, frae € RE*1*L. Then we use
two convolutional layers to perform feature transformation
on these maps separably. After that, we add these two maps
together and use the sigmoid function to convert them into
weights M, € RE*1*1 between 0 and 1. Lastly, using
an element-wise product, the initial map can capture which
channel map has high feature values to be enhanced, and
which channel map has low feature values to be suppressed.

Spatial Attention Extractor. After the CAE module,
we continue to use the same pooling operations, but now
we pool on the channel dimension. Then we concatenate
these pooling maps to form a map in R2*#*W and use
one convolutional layer with a sigmoid function to gener-
ate the final attention map. Reviewing previous operations,
this attention map has high weights in regions needing high-
frequency information because this information possesses
high feature values in the context information. Similarly, it
has low weights in regions needing low-frequency informa-
tion. In general, the attention map can explicitly distinguish
regions that need information at different frequencies.

3.4. Selective Recurrent Unit

To capture information at different frequencies, Selective
Recurrent Unit (SRU) uses attention maps extracted by
CSA to fuse hidden information derived from GRUs with
different kernel sizes.

Multi-level update structure. As illustrated in Fig. 4,
SRUs at 1/8, 1/16 resolutions take the attention map, con-
text information, hidden information at the same resolution,
and the hidden information at adjacent resolutions as in-
puts. At 1/4 resolution, SRUS take disparity, and local cost
volume as additional inputs, and then their outputs will go
through two convolutional layers to generate disparity resid-
uals. The local cost volume is derived from the all-pairs
correlation pyramid in the same way as RAFT-Stereo [17].
At last, disparities at 1/4 resolution will be upsampled into
full resolution using the convex combination.

SRU’s architecture. A single GRU can be defined as
follows:

z, =0 (Conv([h—1,xk], W),

ri, =0 (Conv([hg_1,zx], W),
i 3)
x = tanh(Conv([ry ® hg—1, xk], Wh)),

he =(1—2;) ©hg—1+ 2,0 Bk

where z, is the concatenation of disparity, correlation, hid-
den information, and context information previously de-
fined. Unlike RAFT-Stereo [17] that divide the context
information into c,, c¢,, ¢, we add it into xj because us-
ing convolutions with different kernel sizes can fully utilize
context information.
As illustrated in Fig. 3, a single SRU can be defined as
follows:
h,=A®h;+(1-A)oh, (4)

where A denotes the attention map derived from CSA at the
same resolution, hj, denotes the GRU with smaller kernel
sizes and !, denotes the larger one.

As Sec. 3.3 mentioned, the attention map has high
weights in regions needing high-frequency information.
Therefore, the GRU with smaller kernel sizes that can cap-
ture high-frequency information like edge, and thin objects
should do element-wise products with the attention map
directly, and the GRU with larger kernel sizes should do
element-wise products with the contrary attention map.

Receptive fields analysis. The repective fields comput-
ing formula [1] can be defined as follows:

L l

ro =3 ((ki — 1)

=1 i=1

1
si)+1 (5)

where k; denotes the kernel size, s; denotes the stride size,
and r denotes the whole network.

Given a multi-level structure like Fig. 4, if we take the
1/4 resolution as the basis, and the downsampling opera-
tions can be regarded as a convolution with kernel size 3,
stride size 2, this structure’s receptive fields are k, 2k + 3,
3k 4 6. That means it only has 3 fixed receptive fields in
total.
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Figure 3. The architecture of proposed modules. Left: Contextual Spatial Attention (CSA) module. Right: Selective Recurrent Unit (SRU).

Sl 116 2

Figure 4. Multi-level SRU. Information is passed between SRUs
at adjacent resolutions. Dashed arrows represent upsampling and
downsampling operations. At 1/4 resolution, disparity and local
cost volume will be additional information put into SRUs.

If we replace GRUs with our SRUs with a small kernel
size s and a large kernel size [, the multi-level structure will
have 6 receptive fields initially. Besides, pixels in hidden
information are affected by different receptive fields dur-
ing fusion, and the fusion is influenced by attention maps
adaptively. In general, the multi-level SRU holds dynamic
receptive fields, and it enables itself to capture information
at different frequencies.

3.5. Loss Function

We supervise our network on the L1 distance between all
predicted disparities {d; } Y, and the ground truth disparity
dg¢ with increasing weights. The total loss is defined as:

N
L£=> AN"di —dglh 6)

i=1

where v = 0.9, and N is the number of iterations.

4. Experiments

Scene Flow [20] is a synthetic dataset including 35,454
training pairs and 4,370 testing pairs with dense disparity
maps. For training and testing, we use the finalpass ver-
sion, because it contains more realistic and difficult effects
than the cleanpass version. KITTI 2012 [13] and KITTI
2015 [21] are datasets for real-world driving scenes. KITTI
2012 contains 194 training pairs and 195 testing pairs, and

KITTI 2015 contains 200 training pairs and 200 testing
pairs. ETH3D [24] is a collection of gray-scale stereo pairs
containing 27 training pairs and 20 testing pairs for indoor
and outdoor scenes. Middlebury [23] is a high-resolution
dataset containing 15 training pairs and 15 testing pairs for
indoor scenes.

4.1. Implementation Details

We implement our Selective-Stereo with PyTorch and the
model is trained on NVIDIA RTX 3090 GPUs. For all ex-
periments, we use the AdamW [19] optimizer and clip gra-
dients to the range [-1, 1]. We use the one-cycle learning
rate schedule with a learning rate of 2e-4. We first train our
model on Scene Flow with a batch size of 8 for 200k steps
as the pretrained model. The crop size is 320 x 720, and we
use 22 update iterations during training.

4.2. Ablation Study

In this section, we evaluate our model in different settings to
verify our proposed modules in several aspects. All results
use 32 update iterations.

Effectiveness of proposed modules. To verify the
effectiveness of our proposed modules, we take RAFT-
Stereo [17] as the baseline and replace its GRUs with our
SRUs. As shown in Tab. 1, the proposed SRU can improve
the accuracy even without CSA. It means that if we just
sum up the information from different branches, the growth
of receptive fields can be beneficial for inference. If we add
our CSA but invert the weights of the attention maps, the
effect even decreases. That validates that our CSA’s atten-
tion maps do indeed reflect the weights of information at
different frequencies in regions. Therefore, if we add CSA
normally, the full model (Selective-RAFT) can achieve the
best performance with only a 4% increase in parameters.

Universality of proposed modules. To verify the uni-
versality of our proposed modules, we take three typical it-
erative stereo matching methods as the baseline and replace
their GRUs with SRUs. Especially, in DLNR [44], the re-
current units are LSTMs but not GRUs, so we just replace
GRUs inside SRUs with LSTMs to make a fair comparison.
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CSA EPE >1px | Param
Model GRU SRU ooy CSA| 0 7 %p) o)
Baseline (RAFT-Stereo) v 0.53 6.08 11.12
SRU N 0.50 5.38 | 11.65
SRU+CSA (Contrary) v v 0.50 5.58 | 11.65
Full model (Selective-RAFT) v v 047 5.32 11.65

Table 1. Ablation study of the effectiveness of proposed modules on the Scene Flow test set. SRU denotes Selective Recurrent Unit, and
CSA denotes Contextual Spatial Attention. Contrary means we invert the weights of the attention maps. The baseline is RAFT-Stereo.

Left Image
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IGEV-Stereo

Selective-IGEV

Figure 5. Qualitative results on the test set of KITTI. Our Selective-IGEV outperforms IGEV in detailed and weak texture regions.

Model EPE (px) >1px (%) Param (M)
RAFT-Stereo [17] 0.53 6.08 11.12
Selective-RAFT 0.47 5.32 11.65
IGEV-Stereo [34] 0.47 5.21 12.60
Selective-IGEV 0.44 4.98 13.14
DLNR [44] 0.49 5.06 57.37
Selective-DLNR 0.46 4.73 58.09

Table 2. Ablation study of the universality of proposed modules.

Number of Iterations

Model i 2 3 7 8 2
RAFTStereo [17] 208 1.13 087 075 058 053
Selective-RAFT 195 1.06 0.81 0.69 053 047
IGEV-Stereo [34] _ 0.66 062 058 055 050 047
Selective-IGEV ~ 0.65 0.60 0.56 053 048 044

Table 3. Ablation study of the number of iterations.

Kernel Sizes EPE (px) >1px (%)
1x14+1x5 0.48 5.41
3x3+1x5 0.48 5.30
1x14+3x%x3 0.47 5.32

Table 4. Ablation study of the size of convolutional kernels.

As shown in Tab. 2, all methods have a significant improve-
ment in the EPE metrics on Scene Flow, and the insertion
of modules only results in a slight increase in parameters.
Besides, as shown in Fig. 6, the CSA module generates
different attention maps in different networks. In Selective-
RAFT, because the cost volume contains a large amount of
noisy information, the network needs more large kernels to

Selective-RAFT Selective-IGEV

Left Image

Figure 6. Visualization of the attention map of different networks.

filter the local cost volume. On the contrary, the cost vol-
ume has already been aggregated in Selective-IGEYV, so the
network tends to maintain high-frequency information us-
ing small kernels. Moreover, the cost volume in Selective-
IGEV faces an over-smooth problem [34], and that’s why
the attention map tends to increase the weights of large ker-
nels to recover edge regions. In general, the CSA module
shows different tendencies in different networks, which is a
reflection of its adaptive ability.

Number of iterations. Our Selective-Stereo can achieve
better performance with a smaller number of iterations.
As shown in Tab. 3, our Selective-RAFT get the same
performance with only 8 iterations compared to RAFT-
Stereo [17], and for IGEV-Stereo [34], our Selective-IGEV
also get a slight improvement with a few iterations. It shows
that our modules can make secondary filtering to reduce
noisy information from the initial cost volume.

Size of convolution kernels. We verify different kernel
sizes on Scene Flow as shown in Tab. 4. At last, we choose
the combination of 1 x 1 and 3 x 3 as our default config-
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Method CSPN  LEAStereo LaC+ GANet ACVNet IGEV-Stereo  Selective-RAFT (Ours)  Selective-IGEV (Ours)
EPE (px) 0.78 0.78 0.72 0.48 0.47 0.47 0.44
Table 5. Quantitative evaluation on Scene Flow test set.
Method KITTI 2012 KITTI 2015 Run-time
2-noc  2-all 3-noc 3-all EPE-noc EPE-all | DI-bg DIl-fg Dl-all (s)

AcfNet [42] 1.83 235 1.17 1.54 0.5 0.5 1.51 3.80 1.89 0.48
LEAStereo [9] 1.90 2.39 1.13 1.45 0.5 0.5 1.40 2.91 1.65 0.30
ACVNet [32] 1.83 235 1.13 1.47 0.4 0.5 1.37 3.07 1.65 0.20
RAFT-Stereo [17] 1.92 242 1.30 1.66 0.4 0.5 1.58 3.05 1.82 0.38
PCWNet [25] 1.69 218 1.04 1.37 0.4 0.5 1.58 3.05 1.82 0.38
LaC + GANet [18] 1.72  2.26 1.05 1.42 0.4 0.5 1.44 2.83 1.67 1.80
CREStereo [16] 172 2.18 1.14 1.46 0.4 0.5 1.45 2.86 1.69 0.41
IGEV-Stereo [34] 1.71 2.17 1.12 1.44 0.4 0.4 1.38 2.67 1.59 0.18
Selective-RAFT (Ours) | 1.64  2.09 1.10 1.43 0.4 0.5 1.41 2.71 1.63 0.45
Selective-IGEV (Ours) 1.59 2.05 1.07 1.38 0.4 0.4 1.33 2.61 1.55 0.24

Table 6. Quantitative evaluation on KITTI 2012 and KITTI 2015.

Edges Non-Edges
Method EPE g>1px EPE >g1px
RAFT-Stereo [17] 3.21 29.16 0.53 6.53
Selective-RAFT 240 21.63 040 4.65
IGEV-Stereo [34] 223 2042 041 4.58
Selective-IGEV 2.18 20.01 038 4.35

Table 7. Quantitative evaluation on Scene Flow test set in different
regions.

uration, because it achieves a competitive performance and
reduces computational costs.

4.3. Comparisons with State-of-the-art

All fine-tuned models use the model pretrained on Scene
Flow. Different target datasets use different finetune strate-
gies. We validate two models called Selective-RAFT
and Selective-IGEV using RAFT-Stereo [17] and IGEV-
Stereo [34] as the baseline respectively.

Scene Flow. As shown in Tab. 5, we achieve a new
state-of-the-art EPE of 0.44 on Scene Flow with Selective-
IGEYV, which surpasses LaC + GANet [18] by 38.89%. Be-
sides, our Selective-RAFT also achieves a competitive EPE
of 0.47 compared to IGEV-Stereo [34] with smaller parame-
ters. To validate the ability to fuse information by regions of
our modules, we then split Scene Flow test set into two re-
gions: edge regions and non-edge regions using the Canny
operator. As shown in Tab. 7, our Selective-RAFT out-
performs RAFT-Stereo [17] by 25.23% and 24.53% in edge
regions and non-edge regions. Due to IGEV-Stereo’s aggre-
gated cost volume [34], there’s only a slight improvement in
edge regions, but our Selective-IGEV still outperforms it by
7.32% in non-edge regions.

KITTI. We finetune our model on the mixed dataset of
KITTI 2012 and KITTI 2015 with a batch size of 8 for 50k

steps. Then we evaluate our Selective-Stereo on the test set
of KITTI 2012 and KITTI 2015. As shown in Tab. 6, we
achieve the best performance among all published methods
for almost all metrics. On KITTI 2012, our Selective-RAFT
outperforms RAFT-Stereo [17] by 14.58% and 13.64% on
2-noc and 2-all metrics, and our Selective-IGEV ranks 15¢
on these metrics. On KITTI 2015, our Selective-RAFT out-
performs RAFT-Stereo [17] by 10.44% on the D1-all met-
ric, and our Selective-IGEV ranks 1% on all metrics with
only 16 iterations same as IGEV-Stereo [34]. As shown in
Fig. 5, our Selective-IGEV outperforms IGEV-Stereo [34]
in detailed and textureless regions.

ETH3D. Following CREStereo [16] and GMStereo [38],
we use a collection of several public stereo datasets for
training. The crop size is 384 X 512 and we first finetune the
Scene Flow pretrained model on the mixed Tartan Air [29],
CREStereo Dataset [16], Scene Flow [20], Sintel Stereo [3],
InStereo2k [2] and ETH3D [24] datasets for 300k steps.
Then we finetune it on the mixed CREStereo Dataset [16],
InStereo2k [2] and ETH3D [24] datasets with for another
90k steps. As shown in Tab. 8, our Selective-RAFT outper-
forms RAFT-Stereo [17] by 17.90% on Bad 0.5 metric, and
our Selective-IGEV achieves the best performance among
all published methods for almost all metrics.

Middlebury. Also following CREStereo [16] and
GMStereo [38], we first finetune the Scene Flow pre-
trained model on the mixed Tartan Air [29], CREStereo
Dataset [16], Scene Flow [20], Falling Things [28], In-
Stereo2k [2], CARLA HR-VS [40] and Middlebury [23]
datasets using a crop size of 384 x 512 for 200k steps. Then
we finetune it on the mixed CREStereo Dataset [16], Falling
Things [28], InStereo2k [2], CARLA HR-VS [40] and Mid-
dlebury [23] datasets using a crop size of 384 x 768 with a
batch size of 8 for another 100k steps. As shown in Tab. 8§,
our Selective-IGEV achieves the best performance among
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Middlebury
Bad2.0 Bad1.0 Bad4.0 AvgErr

ETH3D

Method Bad 1.0 Bad0.5 Bad4.0 AvgErr
CroCo-Stereo [30] 0.99 3.27 0.13
GMStereo [38] 1.83 5.94 0.08
HITNet [26] 2.79 7.83 0.19
IGEV-Stereo [34] 1.12 3.52 0.11
RAFT-Stereo [17] 2.44 7.04 0.15
CREStereo [16] 0.98 3.58 0.10
EAI-Stereo [43] 2.31 5.21 0.70
DLNR [44] - - -
Selective-RAFT (Ours) 1.69 5.78 0.13
Selective-IGEV (Ours) 1.23 3.06 0.05

0.14 7.29 16.9 4.18 1.76
0.19 7.14 23.6 2.96 1.31
0.20 6.46 13.3 3.81 1.71
0.14 4.83 9.41 3.33 2.89
0.18 4.74 9.37 2.75 1.27
0.13 3.71 8.25 2.04 1.15
0.21 3.68 7.81 2.14 1.09
- 3.20 6.82 1.89 1.06
0.17 - - - -
0.12 2.51 6.53 1.36 0.91

Table 8. Quantitative evaluation on ETH3D and Middlebury benchmarks. Note: Middlebury only allows one publish per paper, so we only

publish our Selective-IGEV.

Left Image IGEV-Stereo

Selective-IGEV

P et
tention Map

Figure 7. Qualitative results on the test set of Middlebury. The third column is the visualization of attention maps generated by the CSA
module. Our Selective-IGEV outperforms IGEV in large textureless and thin object regions.

all published methods. As shown in Fig 7, compared to
IGEV-Stereo [34], our Selective-IGEV performs better in
textureless, and detailed regions. The third column in Fig 7
is the visualization of attention maps generated by the CSA
module. It shows that attention maps can surely split re-
gions that require information at different frequencies.

5. Conclusion

We propose Selective-Stereo, a novel iterative stereo match-
ing method. The proposed Contextual Spatial Attention
module and Selective Recurrent Unit help the network
capture information at different frequencies for edge and
smooth regions. Our Selective-Stereo ranks 15 on KITTI,
ETH3D, and Middlebury in almost all metrics among all
published methods. It shows an ability to fuse information

at different frequencies adaptively for edge and smooth re-
gions with the help of attention maps extracted by CSA.

However, our method still faces some challenges. Firstly,
although our method can fuse information adaptively using
attention maps, the SRU’s receptive field is still limited by
predefined values. Secondly, adding branches or increas-
ing the sizes of convolutional kernels leads to high mem-
ory and time costs, so we will explore the combination of
lightweight convolutions and our method to reduce memory
costs. Lastly, it’s also a good direction to do research on the
combination of convolutions and self-attention due to their
different advantages and receptive fields.
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