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Abstract
While super-resolution (SR) methods based on diffusion

models exhibit promising results, their practical application
is hindered by the substantial number of required inference
steps. Recent methods utilize the degraded images in the
initial state, thereby shortening the Markov chain. Never-
theless, these solutions either rely on a precise formulation
of the degradation process or still necessitate a relatively
lengthy generation path (e.g., 15 iterations). To enhance in-
ference speed, we propose a simple yet effective method for
achieving single-step SR generation, named SinSR. Specifi-
cally, we first derive a deterministic sampling process from
the most recent state-of-the-art (SOTA) method for acceler-
ating diffusion-based SR. This allows the mapping between
the input random noise and the generated high-resolution
image to be obtained in a reduced and acceptable number
of inference steps during training. We show that this de-
terministic mapping can be distilled into a student model
that performs SR within only one inference step. Addition-
ally, we propose a novel consistency-preserving loss to si-
multaneously leverage the ground-truth image during the
distillation process, ensuring that the performance of the
student model is not solely bound by the feature manifold of
the teacher model, resulting in further performance improve-
ment. Extensive experiments conducted on synthetic and
real-world datasets demonstrate that the proposed method
can achieve comparable or even superior performance com-
pared to both previous SOTA methods and the teacher model,
in just one sampling step, resulting in a remarkable up to
×10 speedup for inference. Our code will be released at
https://github.com/wyf0912/SinSR/.

1. Introduction

Image super-resolution (SR) aims to reconstruct a high-
resolution image from a given low-resolution (LR) coun-
terpart [45]. Recently, diffusion models, known for their
effectiveness in modeling complex distributions, have gained
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Figure 1. A comparison between the most recent SOTA method
ResShift [46] for the acceleration of diffusion-based SR and the
proposed method. We achieve on-par or even superior perceptual
quality using only one inference step. (“-N” behind the method
name represents the number of inference steps, and the value in the
bracket is the quantitative result measured by MUSIQ↑ [15].)

widespread adoption and demonstrated remarkable perfor-
mance in SR tasks, particularly in terms of perceptual quality.

Specifically, current strategies for employing diffusion
models can be broadly categorized into two streams: con-
catenating the LR image to the input of the denoiser in the
diffusion models [32, 33], and adjusting the inverse process
of a pre-trained diffusion model [4, 5, 14]. Despite achieving
promising results, both strategies encounter computational
efficiency issues. Notably, the initial state of these condi-
tional diffusion models is a pure Gaussian noise without us-
ing the prior knowledge from the LR image. Consequently, a
substantial number of inference steps are required to achieve
satisfactory performance, significantly hindering the practi-
cal applications of diffusion-based SR techniques.

Efforts have been made to enhance the sampling effi-
ciency of diffusion models, leading to various techniques
proposed [22, 28, 37]. However, in the realm of low-level
vision where maintaining high fidelity is critical, these tech-
niques often fall short as they achieve acceleration at the
cost of performance. More recently, innovative techniques
have emerged to reformulate the diffusion process in image
restoration tasks, focusing on improving the signal-to-noise
ratio of the initial diffusion state and thereby shorten the
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Figure 2. An illustration of the generative ability of the proposed
method in only one step. Given the same LR image (Fig. (a) and
(b)), by using different noise added to the input, HR images (Fig.
(c)-(e)) with different details are generated, e.g., eyes of different
shapes and colors. Best zoom in for details.

Markov chain. For instance, [43] initiates the denoising dif-
fusion process with the input noisy image, while in the SR
task, [46] models the initial step as a combination of the
LR image and random noise. Nonetheless, even in these
most recent works [43, 46], limitations persist. For instance,
while [43] shows promising results within just three infer-
ence steps, it requires a clear formulation of the image degra-
dation process. Besides, [46] still necessitates 15 inference
steps and exhibits degraded performance with noticeable
artifacts if the number of inference steps is further reduced.

To address these challenges, we introduce a novel ap-
proach that can generate high-resolution (HR) images in
only one sampling step, without compromising the diversity
and perceptual quality of the diffusion model, as shown in
Fig. 1 and Fig. 2. Specifically, we propose to directly learn
a well-paired bi-directional deterministic mapping between
the input random noise and the generated HR image from a
teacher diffusion model. To accelerate the generation of well-
matched training data, we first derive a deterministic sam-
pling strategy from the most recent state-of-the-art work [46],
designed for accelerating diffusion-based SR, from its origi-
nal stochastic formulation. Additionally, we propose a novel
consistency-preserving loss to leverage ground-truth images,
further enhancing the perceptual quality of the generated HR
images by minimizing the error between ground-truth (GT)
images and those generated from the predicted initial state.
Experimental results demonstrate that our method achieves
comparable or even better performance compared to SOTA
methods and the teacher diffusion model [46], while greatly
reducing the number of inference steps from 15 to 1, result-
ing in up to a ×10 speedup in inference.

Our main contributions are summarized as follows:
• We accelerate the diffusion-based SR model to a single

inference step with comparable or even superior perfor-
mance for the first time. Instead of shortening the Markov
chain of the generation process, we propose a simple yet

effective approach that directly distills a deterministic gen-
eration function into a student network.

• To further fasten training, we derive a deterministic sam-
pling strategy from the recent SOTA method [46] on ac-
celerating the SR task, enabling efficient generation of
well-matched training pairs.

• We propose a novel consistency-preserving loss that can
utilize the ground-truth images during training, preventing
the student model from only focusing on fitting the deter-
ministic mapping of the teacher diffusion model, therefore
leading to better performance.

• Extensive experiments on both synthetic and real-world
datasets show that our proposed method can achieve com-
parable or even superior performance compared to SOTA
methods and the teacher diffusion model, while greatly
reducing the number of inference steps from 15 to 1.

2. Related Work
2.1. Image Super-Resolution

With the rise of deep learning, deep learning-based tech-
niques gradually become the mainstream of the SR task [8,
45]. One prevalent approach of early works is to train a
regression model using paired training data [1, 2, 16, 44].
While the expectation of the posterior distribution can be
well modeled, they inevitably suffer from the over-smooth
problem [17, 27, 34]. To improve the perceptual quality
of the generated HR images, generative-based SR mod-
els attract increasing attention, e.g., autoregressive-based
models [6, 26, 29, 30]. While significant improvements are
achieved, the computational cost of autoregressive models is
usually large. Subsequently, normalizing flows [23, 42] are
demonstrated to have good perceptual quality under an effi-
cient inference process, while its network design is restricted
by the requirements of the invertibility and ease of calcula-
tion. Besides, GAN-based methods also achieve great suc-
cess in terms of perceptual quality [9, 13, 17, 27, 34]. How-
ever, the training of GAN-based methods is usually unstable.
Recently, diffusion-based models have been widely investi-
gated in SR [4, 5, 14, 32, 33]. The diffusion-based SR meth-
ods can be roughly summarized into two categories, concate-
nating the LR image to the input of the denoiser [32, 33], and
modifying the backward process of a pre-trained diffusion
model [4, 5, 10, 14]. While promising results are achieved,
they rely on a large number of inference steps, which greatly
hinders the application of diffusion-based models.

2.2. Acceleration of Diffusion Models

Recently, the acceleration of diffusion models has attracted
more and more attention. Several algorithms are proposed
for general diffusion models [22, 28, 37, 38] and proved
quite effective for image generations. One intuitive strat-
egy among them is to distill the diffusion models to a stu-
dent model. However, the huge training overhead to solve
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(a) The inference of SR3 [33] starts from a pure noise, which requires a
large number of inference steps (T=100 after using DDIM [37]).
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(b) The recent SOTA method ResShift [46] shortens the Markov chain to
speed up the inference process by incorporating the information of the LR
image y to the initial state xT (T=15).
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(c) A simplified pipeline of the proposed method SinSR (distill only). It
directly learns the deterministic mapping between xT and x0, therefore the
inference process can be further compressed into only one step (T=1).

Figure 3. A comparison between the vanilla diffusion-based SR
method [33], a most recent method for acceleration of the diffusion-
based SR [46], and the proposed one-step SR. Different from recent
works that shorten the Markov chain to speed up the inference pro-
cess [43, 46], the proposed method directly learns the deterministic
generation process and the details can be found in Fig. 4.

the ordinary differential equation (ODE) of the inference
process makes this scheme less attractive on a large-scale
dataset [24]. To alleviate the training overhead, progressive
distillation strategies are usually adopted [25, 35]. Mean-
while, instead of simply simulating the behavior of a teacher
diffusion model through distillation, better inference paths
are explored in an iterative manner [20, 21]. While progres-
sive distillation effectively decreases the training overhead,
the error accumulates at the same time, leading to an ob-
vious performance loss in SR. Most recently, targeting the
image restoration task, some works reformulate the diffusion
process by either using the knowledge of degradation pro-
cess [43] or a pre-defined distribution of the initial state [46],
yielding a shortened Markov chain of the generation process
and better performance than directly applying DDIM [37]
in low-level tasks. However, they either require a clear for-
mulation of the degradation or still require a relatively large
number of inference steps.

3. Motivation
Preliminary. Given an LR image y and its correspond-
ing HR image x0, existing diffusion-based SR methods
aim to model the conditional distribution q(x0|y) through
a Markov chain where a forward process is usually defined

as q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) with an initial

state xT ∼ N (0, I). The role of the diffusion model can be
regarded as transferring the input domain (standard Gaussian
noise) to the HR image domain conditioned on the LR im-
age. Since the matching relationship between xT and x0 is
unknown, usually a diffusion model [11, 21, 33] through an
iterative manner is required to learn/infer from an unknown
mapping between xT and x0. Our method is grounded in
the idea that having an SR model that effectively captures
the conditional distribution q(x0|y) and establishes a deter-
ministic mapping between xT and x̂0 given an LR image
y, we can streamline the inference process to a single step
by employing another network, denoted as fθ̂, to learn the
correspondence between x̂0 and xT , as illustrated in Fig. 3.
Distillation for diffusion SR models: less is more. While
the concept of distilling the mapping between xT and x̂0

to a student network has been previously explored [21], its
application to SR introduces several challenges:
• The training overhead becomes substantial for one-step

distillation due to a large number of inference steps of
previous models, e.g., LDM [32] still need 100 steps after
using DDIM [37] for inference to generate high-quality
pairs (x̂0, xT , y) as the training data of the student model.

• The performance degradation is attributed to the introduc-
tion of a more intricate distillation strategy involving itera-
tion. For example, to reduce the training overhead, an iter-
ative distillation strategy [35] is adopted which gradually
decreases the number of inference steps during training.
However, despite achieving satisfactory results in genera-
tion tasks, the cumulative error significantly impacts the
fidelity of the SR results, as SR tasks are relatively more
sensitive to image quality.
To address the aforementioned two challenges, we pro-

pose to distill the diffusion SR process into a single step in a
simple but effective way based on the following observations.
More details of the observations can be seen in Sec. 5.3
• We demonstrate that the most recent SOTA method for

accelerating the diffusion-based SR [46], which achieves
comparable performance in 15 steps as LDM [32] in 100
DDIM steps, has a deterministic mapping between xT and
x0. Besides, the greatly reduced number of inference steps
and the existence of the deterministic mapping make the
training of a single-step distillation possible as shown in
Fig. 6 and Table 4.

• Learning the mapping between xT and x̂0 is found to be
easier than denoising xt under different noise levels as
shown in Table 5. Therefore, it is feasible to directly learn
the mapping between xT and x̂0 so that the accumulated
error by the iterative distillation can be avoided.

• Due to the accumulated error, a more sophisticated distil-
lation strategy (iterative-based) does not contribute to the
improvement in our setting as shown in Table 6.
The organization of the following sections is as follows:

25798



ℒ!"𝜖 ∼ 𝒩(0, 𝜅!𝐼) 𝑥+" = F#(x$, y)

Student network 𝑓#$

ℒ%&'()*( = 𝐿+,-(	𝑓#$ 𝐹# 𝑥. , 𝑦, 0 , 𝑥.)

Pretrained teacher model 𝑓#

: Inversion 	𝑓#$ 𝐹#(𝑥.), 𝑦, 0
: Restoration 	𝑓#$ 𝑥., 𝑦, 𝑇 ℒ/%*"%00 = 	𝐿+,-(𝑓#$ 𝑥., 𝑦, 𝑇 , 𝐹# 𝑥., 𝑦 )
Studentnetw

ork 𝑓
# $

Detach

ℒ!" = 	𝐿+,-(𝑓#$ 𝑥., 𝑦, 𝑇 , 𝑥1)

Ground truth 𝑥1
𝑥..

LR image
LR image

Reconstructed 𝑥.1

(a) One-step bi-directional distillation (b) Consistency preserving loss

…

D
eterm

inistic
sam

pling

D
eterm

inistic
sam

pling

D
eterm

inistic
sam

pling

Error map
(×5 for better 
visualization)

Figure 4. The overall framework of the proposed method. By minimizing Ldistill and Linverse, the student network fθ̂ learns the
deterministic bi-directional mapping between xT and x̂0 obtained from a pre-trained teacher diffusion model in one step. Meanwhile,
the proposed consistency preserving loss Lgt is optimized during training to utilize the information from the GT images to pursue better
perceptual quality instead of simply fitting the deterministic mappings from the teacher model. Specifically, the GT image is first converted
to its latent code x̂T = fθ̂(x0, y, 0), and then converted back to calculate its reconstruction loss LMSE(fθ̂(x̂T , y, T ), x0).

we first demonstrate that ResShift [46], in which the infer-
ence process is originally stochastic, can be converted to a
deterministic model without retraining in Sec 4.1, and then
the proposed consistency preserving distillation in Sec 4.2.

4. Methodology

4.1. Deterministic Sampling

A core difference between ResShift [46] and LDM [32]
is the formulation of the initial state xT . Specifically, in
ResShift [46], the information from the LR image y is inte-
grated into the diffusion step xt as follows

q(xt|x0, y) = N (xt;x0 + ηt(y − x0), κ
2ηtI), (1)

where ηt is a serial of hyper-parameters that monotonically
increases with the timestep t and obeys ηT → 1 and η0 → 0.
As such, the inverse of the diffusion process starts from an
initial state with rich information from the LR image y as
follows xT = y + κ

√
ηT ϵ where ϵ ∼ N (0, I). To generate

a HR image x from a given image y, the original inverse
process of [46] is as follows

pθ(xt−1|xt, y) = N (xt−1|µθ(xt, y, t), κ
2 ηt−1

ηt
αtI), (2)

where µθ(xt, y, t) is reparameterized by a deep network. As
shown in Eq. 2, given an initial state xT = y + κ

√
ηT ϵ,

the generated image is stochastic due to the existence of
the random noise during the sampling from pθ(xt−1|xt, y).
Inspired by DDIM sampling [37], we find that a non-
Markovian reverse process q(xt−1|xt, x0, y) exists which
keeps the marginal distribution q(xt|x0, y) unchanged so

For ease of presentation, the LR image is y is pre-upsampled to the same
spatial resolution with the HR image x. Besides, similar to [32, 46], the
diffusion is conducted in the latent space.

that it can be directly adopted to a pre-trained model. The
reformulated deterministic reverse process is as follows

q(xt−1|xt, x0, y) = δ(ktx0 +mtxt + jty), (3)

where δ is the unit impulse, and kt,mt, jt are as follows
mt =

√
ηt−1

ηt

jt = ηt−1 −
√
ηt−1ηt

kt = 1− ηt−1 +
√
ηt−1ηt −

√
ηt−1

ηt
.

(4)

The details of the derivation can be found in the supplemen-
tary material. As a consequence, for inference, the reverse
process conditioned on y is reformulated as follows

xt−1 = ktx̂0 +mtxt + jty

= ktfθ(xt, y, t) +mtxt + jty,
(5)

where fθ(xt, y, t) is the predicted HR image from a pre-
trained ResShift [46] model. By sampling from the reformu-
lated process in Eq. 5, a deterministic mapping between xT

(or ϵ) and x̂0 can be obtained and is denoted as Fθ(xT , y).

4.2. Consistency Preserving Distillation

Vanilla distillation. We propose utilizing a student network
fθ̂ to learn the deterministic mapping Fθ between the random
initialized state xT and its deterministic output Fθ(xT , y)
from a teacher diffusion model. The vanilla distillation loss
is defined as follows

Ldistill = LMSE(fθ̂(xT , y, T ), Fθ(xT , y)), (6)

where fθ̂(xT , y, T ) is the student network that directly pre-
dicts the HR image in only one step, and Fθ represents the
proposed deterministic inference process of ResShift [46]
in Sec. 4.1 through an iterative manner using a pre-trained

25799



network parameterized by θ. We observe that the student
model trained solely with the distillation loss in Eq. 6 al-
ready achieves promising results in just one inference step,
as indicated by “(distill only)” in the result tables.
Regularization by the ground-truth image. A limitation
of the aforementioned vanilla distillation strategy is that the
GT image is not utilized during training, thereby restricting
the upper performance bound of the student model. To
further enhance the student’s performance, we propose a
novel strategy that incorporates a learned inversion of the HR
image to provide additional regularization from the ground-
truth images. In addition to the vanilla distillation loss, the
student network concurrently learns the inverse mapping
during training by minimizing the following loss,

Linverse = LMSE(fθ̂(Fθ(xT , y), y, 0), xT ), (7)

where the last parameter of fθ̂ is set from T in Eq. 6 to 0,
indicating that the model is predicting the inversion instead
of the x̂0. Then the GT image x0 can be employed to regu-
larize the output SR image given its predicted inversion x̂T

as follows

x̂T = detach(fθ̂(x0, y, 0))

Lgt = LMSE(fθ̂(x̂T , y, T ), x0),
(8)

where Lgt is the proposed consistency preserving loss. By
reusing fθ̂ to learn both fθ̂(·, ·, T ) and fθ̂(·, ·, 0) simultane-
ously, we can initialize the parameter θ̂ of the student model
from the teacher one θ to speed up the training.
The overall training objective. The student network is
trained to minimize the aforementioned three losses at the
same time as follows

θ̂ = argmin
θ̂

Ey,x0,xT
[Ldistill + Lreverse + Lgt], (9)

where the losses are defined in Eq. 6, 7, and 8 respectively.
We assign equal weight to each loss term, and ablation stud-
ies are in the supplementary material. The overall of the
proposed method is summarized in Algorithm 1 and Fig. 4.

5. Experiment
5.1. Experimental setup

Training Details. For a fair comparison, we follow the
same experimental setup and backbone design as that in [46].
Specifically, the main difference is that we finetuned the
model for 30K iterations instead of training from scratch for
500K in [46]. We find that the student model can converge
quickly so that even if for each iteration we need extra time
to solve the ODE to get paired training data, the overall
training time is still much shorter than retraining a model
from scratch following [46]. We train the models on the
training set of ImageNet [7] following the same pipeline

Algorithm 1 Training
Require: Pre-trained teacher diffusion model fθ
Require: Paired training set (X,Y )

1: Init fθ̂ from the pre-trained model, i.e., θ̂ ← θ.
2: while not converged do
3: sample x0, y ∼ (X,Y )
4: sample ϵ ∼ N (0, κ2ηT I)
5: xT = y + ϵ
6: for t = T, T − 1, ..., 1 do
7: if t = 1 then
8: x̂0 = fθ(x1, y, 1)
9: else

10: xt−1 = ktfθ(xt, y, t) +mtxt + jty
11: end if
12: end for
13: Ldistill = LMSE(fθ̂(xT , y, T ), x̂0)
14: Linverse = LMSE(fθ̂(x̂0, y, 0), xT )
15: x̂T = fθ̂(x0, y, 0),
16: Lgt = LMSE(fθ̂(detach(x̂T ), y, T ), x0)
17: L = Ldistill + Linverse + Lgt

18: Perform a gradient descent step on∇θ̂L
19: end while
20: return The student model fθ̂.

with ResShift [46] where the degradation model is adopted
from RealESRGAN [41].
Compared methods. We compare our method with sev-
eral representative SR models, including RealSR-JPEG [12],
ESRGAN [40], BSRGAN [47], SwinIR [18], RealESR-
GAN [41], DASR [19], LDM [32], and ResShift [46].
For a comprehensive comparison, we further evaluate the
performance of diffusion-based models LDM [32] and
ResShift [46] with a reduced number of sampling steps.
Besides, we compare the proposed method with Rectified-
Flow [21], a SOTA method that can compress the generation
process into a single step, in Table 6.
Metrics. For the evaluation of the proposed method on the
synthetic testing dataset with reference images, we utilize
PSNR, SSIM, and LPIPS [48] to measure the fidelity per-
formance. Besides, two recent SOTA non-reference metrics
are used to justify the realism of all the images, i.e., CLIP-
IQA [39] which leverages a CLIP model [31] pre-trained on
a large-scale dataset (Laion400M [36]) and MUSIQ [15].

5.2. Experimental Results

Evaluation on real-world datasets. RealSR [3] and Re-
alSet65 [46] are adopted to evaluate the generalization ability
of the model on unseen real-world data. Specifically, in Re-
alSR [3], there are 100 real images captured by two different
cameras in different scenarios. Besides, RealSet65 [46] in-
cludes 65 LR images in total, collected from widely used
datasets and the internet. The results on these two datasets
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(b) BSRGAN (c) RealESRGAN (d) SwinIR (e) DASR (f) LDM-100
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(a) LR input

(b) BSRGAN (c) RealESRGAN (d) SwinIR (e) DASR (f) LDM-100

(g) LDM-30 (h) LDM-15 (i) ResShift-15 (j) ResShift-5 (k) Ours-1

(a) LR input

(b) BSRGAN (c) RealESRGAN (d) SwinIR (e) DASR (f) LDM-100

(g) LDM-30 (h) LDM-15 (i) ResShift-15 (j) ResShift-5 (k) Ours-1

Figure 5. Visual comparison on real-world samples. Please zoom in for more details.

Methods
Datasets

RealSR RealSet65
CLIPIQA↑ MUSIQ↑ CLIPIQA↑ MUSIQ↑

ESRGAN [40] 0.2362 29.048 0.3739 42.369
RealSR-JPEG [12] 0.3615 36.076 0.5282 50.539

BSRGAN [47] 0.5439 63.586 0.6163 65.582
SwinIR [18] 0.4654 59.636 0.5782 63.822

RealESRGAN [41] 0.4898 59.678 0.5995 63.220
DASR [19] 0.3629 45.825 0.4965 55.708

LDM-15 [32] 0.3836 49.317 0.4274 47.488
ResShift-15 [46] 0.5958 59.873 0.6537 61.330

SinSR-1 (distill only) 0.6119 57.118 0.6822 61.267
SinSR-1 0.6887 61.582 0.7150 62.169

Table 1. Quantitative results of models on two real-world datasets. The best and second best results are highlighted in bold and underline.

are reported in Table 1. As shown in the table, the proposed
method with only one inference step can outperform the
teacher model that we used by a large margin. Besides, for
the latest metric CLIPIQA, the proposed method archives the
best performance among all the competitors. Some visual

comparisons are shown in Fig. 5, in which the proposed
method achieves promising results using only one step.

Evaluation on synthetic datasets. We further evaluate the
performance of different methods on the synthetic dataset
ImageNet-Test following the setting in [46]. Specifically,
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Methods
Metrics

PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑
ESRGAN [40] 20.67 0.448 0.485 0.451 43.615

RealSR-JPEG [12] 23.11 0.591 0.326 0.537 46.981
BSRGAN [47] 24.42 0.659 0.259 0.581 54.697

SwinIR [18] 23.99 0.667 0.238 0.564 53.790
RealESRGAN [41] 24.04 0.665 0.254 0.523 52.538

DASR [19] 24.75 0.675 0.250 0.536 48.337
LDM-30 [32] 24.49 0.651 0.248 0.572 50.895
LDM-15 [32] 24.89 0.670 0.269 0.512 46.419

ResShift-15 [46] 24.90 0.673 0.228 0.603 53.897
SinSR-1 (distill only) 24.69 0.664 0.222 0.607 53.316

SinSR-1 24.56 0.657 0.221 0.611 53.357

Table 2. Quantitative results of models on ImageNet-Test. The best and second best results are highlighted in bold and underline.

Metrics
Methods

LDM-15 LDM-30 LDM-100 ResShift-1 ResShift-5 ResShift-10 ResShift-15 SinSR-1
LPIPS↓ 0.269 0.248 0.244 0.383 0.345 0.274 0.228 0.221

CLIPIQA↑ 0.512 0.572 0.620 0.340 0.417 0.512 0.603 0.611
Runtime (bs=64) 0.046s 0.080s 0.249s 0.012s 0.021s 0.033s 0.047s 0.012s
Runtime (bs=1) 0.408s 1.192s 3.902s 0.058s 0.218s 0.425s 0.633s 0.058s

# Parameters (M) 113.60 118.59 118.59

Table 3. Efficiency and performance comparisons with SOTA methods on ImageNet-Test. “-N” represents the number of sampling steps the
model used. The running time per image is tested on a Tesla A100 GPU on the x4 (64→ 256) task averaged over the batch size (bs).

3000 high-resolution images are first randomly selected from
the validation set of ImageNet [7]. The corresponding LR
images are obtained by using the provided script in [46]. As
shown in Table 2, while reducing the inference step from
15 to only 1 slightly decreases PSNR and SSIM, the pro-
posed method achieves the best perceptual quality measured
by LPIPS, a more recent full-reference image quality as-
sessment (IQA) metric than SSIM. Besides, the proposed
method also achieves the best performance among all the
methods measured on the most recent SOTA metric CLIP-
IQA [39], demonstrating that the proposed 1-step model is
on par with or even slightly better than the teacher model
with 15 inference steps in terms of perceptual qualities.
Evaluation of the efficiency. We assess the computational
efficiency of the proposed method in comparison to SOTA ap-
proaches. As shown in Table 3, the proposed method demon-
strates superior performance with only one inference step,
outperforming ResShift [46]—the adopted teacher model,
which had already significantly reduced the inference time
compared to LDM [32]. It is worth noting that all methods
presented in Table 3 run in latent space, and the computa-
tional cost of VQ-VAE is counted.

5.3. Analysis

How important is the deterministic sampling? We eval-
uate the performance of the model trained on generated
paired samples from the proposed deterministic sampling
and the default stochastic sampling strategy (xT , F̂θ(xT , y))
in [46]. Due to the randomness of the generated samples
x ∼ F̂θ(xT , y), given a random noise ϵ, the prediction is an
expectation of its conditional distribution. The comparison
in Fig. 6 further verifies that the results trained w/o determin-

Methods CLIPIQA ↑ MUSIQ ↑
w/ default sampling in [46] 0.4166 51.53

SinSR (distill only) 0.6822 61.27

Table 4. A comparison between the model trained with the default
stochastic sampling process in ResShift [46] and the proposed
deterministic sampling in Eq. 5 using only distillation loss. We
evaluate their performance on the RealSet65 testing set.

(a) input (b) w/ sampling in [46] (c) Ours (deterministic)
Figure 6. A comparison between the model trained with the default
stochastic sampling process in ResShift [46] and the proposed
deterministic sampling in Eq. 5. Best zoom in for more details.

istic teacher model exhibit blurred details. Besides, as shown
in Table 4, there is a significant performance degradation
when we replace the proposed deterministic sampling with
the default one in [46], demonstrating the effectiveness and
necessity of involving the proposed deterministic sampling.
Why does a single-step distillation work? Previous studies
suggest that directly learning the mapping between xT and
x0 is typically challenging due to the non-causal properties
of the generation process [20]. However, our empirical find-
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Methods CLIPIQA ↑ MUSIQ ↑
ResShift [46] (24.32M) 0.5365 52.71
ResShift [46] (118.59M) 0.6537 61.33

SinSR (distill only) (24.32M) 0.6499 58.71

Table 5. A comparison of the models trained with different strate-
gies on RealSet65. The model trained with the diffusion loss, i.e.,
ResShift, is more sensitive to the model size than directly learning
the deterministic mapping between xT and x̂0, indicating that the
deterministic mapping is relatively easier to learn.

LPIPS↓ MUSIQ↑ CLIPIQA↑
ResShift [46] 0.2275 53.90 0.6029

w/ Rectified Flow [21] 0.2322 51.05 0.5753
SinSR (distill only) 0.2221 53.32 0.6072

Table 6. A comparison between models accelerated by the pro-
posed method and [46], which includes a reflow and a distillation
operation. The models are evaluated on ImageNet-Test [46].

ings indicate that the matching between xT and x0 in the
SR task is relatively easier to learn than denoising under dif-
ferent noise levels, as diffusion models do. Specifically, the
capacity of the student network fθ̂ is sufficient to effectively
capture the ODE process Fθ using only one step. To ver-
ify our assumption, we evaluate the performance of smaller
models trained under different strategies. Specifically, one
model is trained following the experimental settings of [46]
while the number of parameters decreases from 118.6M
to 24.3M. Another model uses the same backbone as the
aforementioned small model while directly learning the map-
ping relationship between xT and x̂0 from the standard-size
teacher diffusion model. A comparison between these two
small models is reported in Table 5. As demonstrated by the
results, the model trained for denoising under different noise
levels suffers from a serious performance drop compared
with the model that directly learns the deterministic mapping
between. This strongly supports our assumption that directly
learning the deterministic mapping is relatively easier.
Is a more sophisticated distillation strategy necessary?
To explore the necessity of more advanced techniques that
learn the mapping between xT and x0, we evaluate the per-
formance of Rectified Flow [21], a recent method that learns
the mapping to a single step through an iterative manner.
Specifically, Reflow operations are conducted to avoid cross-
ing the generation paths, and then followed by distilling the
rectified generation process into a single step. However, as
shown in Table 6, the involved iterative distillation degrades
the performance of the final model due to the accumulated
error as discussed by the author [21]. Besides, as verified by
the previous section that the deterministic mapping between
xT and x0 is easy to learn in the SR task, the benefit of a
more sophisticated distillation strategy is not obvious.
Learned inversion. As the core of the consistency pre-
serving loss, a comparison with the DDIM inversion [37] is

LR image DDIM inversion Learned inversion GT image

Figure 7. A comparison between HR images generated from DDIM
inversion and the proposed learned inversion. Zoom in for details.

shown in Fig. 7, where the proposed method achieves better
fidelity performance. It indicates that the proposed method
can obtain a more accurate estimation of xT . Besides, more
analyses regarding the consistency preserving loss are in the
supplementary material.
Training overhead. While the proposed method involves
solving ODEs during training, benefiting from a shortened
inference process and initializing the student model from
the pre-trained teacher model, the training cost of finetuning
using the proposed training paradigm is still lower than that
of retraining the diffusion model from scratch. Specifically,
the training cost is shown in Table 7.

Num of Iters s/Iter Training Time

ResShift [46] 500k 1.32s ∼7.64 days
SinSR (Ours) 30k 7.41s ∼2.57 days

Table 7. A comparison of the training cost on an NVIDIA A100.

6. Conclusion
In this work, we propose a novel strategy to accelerate
the diffusion-based SR models into a single inference step.
Specifically, a one-step bi-directional distillation is proposed
to learn the deterministic mapping between the input noise
and the generated high-resolution image and versa vice from
a teacher diffusion model with our derived deterministic
sampling. Meanwhile, a novel consistency preserving loss
is optimized at the same time during the distillation so that
the student model not only uses the information from the
pre-trained teacher diffusion model but also directly learns
from ground-truth images. Experimental results demonstrate
that the proposed method can achieve on-par or even better
performance than the teacher model in only one step.
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